Knowledge (XXG)

Sphaleron

Source 📝

55: 466: 117:
This saddle point rests at the top of a barrier between two different low-energy equilibria of a given system; the two equilibria are labeled with two different baryon numbers. One of the equilibria might consist of three baryons; the other, alternative, equilibrium for the same system might consist
208:
In absence of processes which violate B − L it is possible for an initial baryon asymmetry to be protected if it has a non-zero projection onto B − L. In this case the sphaleron processes would impose an equilibrium which distributes the initial B asymmetry between
964:
from conversion of baryons to antileptons would be orders of magnitude higher than the energy efficiency of existing power-generation technology such as nuclear fusion. Tegmark speculates that an extremely advanced civilization might use a "sphalerizer" to generate energy from ordinary baryonic
311: 177:
Since a sphaleron may convert baryons to antileptons and antibaryons to leptons and thus change the baryon number, if the density of sphalerons was at some stage high enough, they could wipe out any net excess of baryons or anti-baryons. This has two important implications in any theory of
943:
and each of the lepton families is raised (or lowered, depending on the winding direction) by one; as there are three quark families, baryon number can only change in multiples of three. The baryon number violation can alternatively be visualized in terms of a kind of
126:-like process) or must for a reasonable period of time be brought up to a high enough energy that it can classically cross over the barrier (in which case the process is termed a "sphaleron" process and can be modeled with an eponymous sphaleron particle). 948:: in the course of the winding, a baryon originally considered to be part of the vacuum is now considered a real baryon, or vice versa, and all the other baryons stacked inside the sea are accordingly shifted by one energy level. 204:. This is because in a second-order phase transition, sphalerons would wipe out any baryon asymmetry as it is created, while in a first-order phase transition, sphalerons would wipe out baryon asymmetry only in the unbroken phase. 461:{\displaystyle \mathbf {A} =\nu \,{\frac {\,f(\xi )\,}{\xi }}~{\hat {\mathbf {r} }}\times \mathbf {\sigma } \,,\qquad \phi ={\frac {\nu }{\,{\sqrt {2\,}}\,}}~h(\xi )~{\hat {\mathbf {r} }}\cdot \mathbf {\sigma } ~\phi _{0}} 878: 129:
In both the instanton and sphaleron cases, the process can only convert groups of three baryons into three antileptons (or three antibaryons into three leptons) and vice versa. This violates conservation of
573: 1719: 1043:
Phong, Vo Quoc; Khiem, Phan Hong; Loc, Ngo Phuc Duc; Long, Hoang Ngoc (2020). "Sphaleron in the first-order electroweak phase transition with the dimension-six Higgs field operator".
833: 150:
collisions, because although the LHC can create collisions of energy 10 TeV and greater, the generated energy cannot be concentrated in a manner that would create sphalerons.
908: 511: 302: 251: 1363: 729: 694: 596: 775: 804: 755: 652: 939:
Baryon number violation is caused by the "winding" of the fields from one equilibrium to another. Each time the weak gauge fields wind, the count for each of the
934: 626: 165:. This means that under normal conditions sphalerons are unobservably rare. However, they would have been more common at the higher temperatures of the 1255:
Rubakov, Valery A.; Shaposhnikov, Mikhail E. (1996). "Electroweak baryon number nonconservation in the early universe and in high-energy collisions".
1096:
Papaefstathiou, Andreas; Plätzer, Simon; Sakurai, Kazuki (2019). "On the phenomenology of sphaleron-induced processes at the LHC and beyond".
1646:
Diakonov, Dmitri; Polyakov, Maxim; Sieber, Peter; Schaldach, Jörg; Goeke, Klaus (15 June 1994). "Fermion sea along the sphaleron barrier".
1595:
Arnold, Peter; McLerran, Larry (15 February 1988). "The sphaleron strikes back: A response to objections to the sphaleron approximation".
1452:
Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. (1985). "On anomalous electroweak baryon-number non-conservation in the early universe".
838: 200:
While a baryon net excess can be created during the electroweak symmetry breaking, it can be preserved only if this phase transition was
142:
is conserved. The minimum energy required to trigger the sphaleron process is believed to be around 10 TeV; however, sphalerons
1729: 1311: 516: 209:
both B and L numbers. In some theories of baryogenesis, an imbalance of the number of leptons and antileptons is formed first by
1487:
Harvey, J.; Turner, M. (1990). "Cosmological baryon and lepton number in the presence of electroweak fermion-number violation".
940: 1755: 780:
For a sphaleron in the background of a non-broken phase, the Higgs field must obviously fall off eventually to zero as
1750: 1550:
Arnold, P.; McLerran, L. (1987). "Sphalerons, small fluctuations, and baryon-number violation in electroweak theory".
1023:
There is no true instanton in electroweak theory; instead, the tunneling rate is determined by constrained instantons.
961: 1149:
Zhou, Ruiyu; Bian, Ligong; Guo, Huai-Ke (2020). "Connecting the electroweak sphaleron with gravitational waves".
658: 812: 1391: 191: 79: 1389:
Shaposhnikov, M.E.; Farrar, G.R. (1993). "Baryon asymmetry of the universe in the minimal standard model".
887: 210: 197:
would be wiped out due to abundant sphalerons caused by high temperatures existing in the early universe.
147: 118:
of three antileptons. In order to cross this barrier and change the baryon number, a system must either
476: 213:
and sphaleron transitions then convert this to an imbalance in the numbers of baryons and antibaryons.
1665: 1604: 1561: 1498: 1461: 1410: 1336: 1221: 1168: 1115: 1062: 992: 261: 99: 1697: 1655: 1532: 1434: 1400: 1284: 1266: 1237: 1211: 1184: 1158: 1131: 1105: 1078: 1052: 229: 1327:
Klinkhamer, F.R.; Manton, N.S. (1984). "A saddle-point solution in the Weinberg-Salam theory".
699: 664: 1725: 1689: 1681: 1628: 1620: 1577: 1552: 1524: 1489: 1426: 1307: 578: 119: 1202:
Ho, David L.-J.; Rajantie, Arttu (2020). "Electroweak sphaleron in a strong magnetic field".
760: 1673: 1612: 1569: 1514: 1506: 1469: 1418: 1344: 1276: 1229: 1176: 1123: 1070: 998: 783: 734: 631: 201: 162: 107: 87: 1257: 194: 103: 913: 605: 1669: 1608: 1565: 1502: 1465: 1414: 1340: 1225: 1172: 1119: 1066: 974: 881: 226: 183: 83: 71: 43: 1744: 1473: 1288: 1241: 1188: 1135: 1082: 135: 131: 1701: 1536: 1438: 1280: 986: 731:, which must be determined numerically, go from 0 to 1 in value as their argument, 179: 111: 59: 1715: 1422: 1233: 1180: 1127: 1074: 957: 655: 255: 1685: 1677: 1624: 1616: 1510: 1348: 936:, hence establishing the connection between the sphaleron and the instanton. 1573: 1519: 980: 945: 123: 1693: 1528: 1430: 1632: 1581: 54: 166: 25: 139: 1660: 1405: 1364:"Think of the universe as a skateboard park: Supernovas and sphalerons" 1271: 30:
Roughly, a high-energy composite of 3 leptons or of 3 baryons
95: 91: 114:
of the electroweak potential (in infinite-dimensional field space).
1216: 1163: 1110: 1057: 873:{\displaystyle {\frac {~\mathbf {r} \cdot \mathbf {\sigma } ~}{r}}} 835:, the gauge sector approaches one of the pure-gauge transformation 880:, which is the same as the pure gauge transformation to which the 599: 222: 53: 90:, and is involved in certain hypothetical processes that violate 1302:
White, Graham Albert (2016). "Section 3.5: The sphaleron".
568:{\displaystyle ~\phi _{0}={\begin{bmatrix}1\\0\end{bmatrix}}~} 254:, we have the following equations for the gauge field and the 16:
Solution to field equations in Standard Model particle physics
1721:
Life 3.0: Being Human in the Age of Artificial Intelligence
78:"slippery") is a static (time-independent) solution to the 122:
through the barrier (in which case the transition is an
1304:
A Pedagogical Introduction to Electroweak Baryogenesis
995: – Finite energy solutions in Euclidean spacetime 541: 977: – Non-conservation of chiral current in physics 916: 890: 841: 815: 786: 763: 737: 702: 667: 634: 608: 581: 519: 479: 314: 264: 232: 42: 34: 24: 1654:(12). American Physical Society (APS): 6864–6882. 928: 902: 872: 827: 798: 769: 749: 723: 688: 646: 620: 590: 567: 505: 460: 296: 245: 1603:(4). American Physical Society (APS): 1020–1029. 98:numbers. Such processes cannot be represented by 8: 19: 1718:(2017). "Chapter 6: Our cosmic endowment". 628:is the electroweak coupling constant, and 1659: 1518: 1404: 1270: 1215: 1162: 1109: 1056: 915: 889: 856: 848: 842: 840: 814: 785: 762: 736: 701: 666: 633: 607: 580: 536: 527: 518: 496: 492: 478: 452: 440: 426: 424: 423: 401: 398: 393: 392: 386: 375: 370: 356: 354: 353: 343: 330: 327: 326: 315: 313: 282: 269: 263: 237: 231: 190:Any baryon net excess arising before the 1035: 1016: 983: – Solitons in Euclidean spacetime 828:{\displaystyle \xi \rightarrow \infty } 153:A sphaleron is similar to the midpoint 989: – Yang–Mills theory vacuum state 18: 7: 1362:Butterworth, Jon (8 November 2016). 1306:. Morgan & Claypool Publishers. 1001: – Solutions of Lamé's equation 903:{\displaystyle r\rightarrow \infty } 897: 822: 764: 110:. Geometrically, a sphaleron is a 14: 506:{\displaystyle ~\xi =r\,g\,\nu ~} 849: 427: 357: 316: 1281:10.1070/PU1996v039n05ABEH000145 379: 1098:Journal of High Energy Physics 894: 819: 715: 709: 680: 674: 661:absolute value. The functions 431: 417: 411: 361: 340: 334: 62:(in red) on a simple function. 1: 297:{\displaystyle A_{0}=A_{r}=0} 1474:10.1016/0370-2693(85)91028-7 598:represent the generators of 1423:10.1103/PhysRevLett.70.2833 1234:10.1103/PhysRevD.102.053002 1181:10.1103/PhysRevD.101.091903 1075:10.1103/PhysRevD.101.116010 246:{\displaystyle \theta _{W}} 161:of the instanton, so it is 106:, and are therefore called 80:electroweak field equations 1772: 724:{\displaystyle ~f(\xi )~} 689:{\displaystyle ~h(\xi )~} 225:gauge theory, neglecting 75: 1724:(Kindle 3839 ed.). 1678:10.1103/physrevd.49.6864 1617:10.1103/physrevd.37.1020 1511:10.1103/PhysRevD.42.3344 1349:10.1103/PhysRevD.30.2212 591:{\displaystyle ~\sigma } 146:be produced in existing 1574:10.1103/PhysRevD.36.581 1392:Physical Review Letters 1128:10.1007/JHEP12(2019)017 956:According to physicist 809:Note that in the limit 770:{\displaystyle \infty } 930: 904: 874: 829: 800: 799:{\displaystyle ~\xi ~} 771: 751: 750:{\displaystyle ~\xi ~} 725: 690: 648: 647:{\displaystyle ~\nu ~} 622: 592: 569: 507: 462: 298: 247: 63: 931: 905: 875: 830: 801: 772: 752: 726: 691: 649: 623: 593: 570: 508: 463: 299: 248: 140:B − L 138:, but the difference 57: 1006:References and notes 914: 888: 839: 813: 784: 761: 735: 700: 665: 632: 606: 579: 517: 477: 312: 262: 230: 100:perturbative methods 1756:Anomalies (physics) 1670:1994PhRvD..49.6864D 1609:1988PhRvD..37.1020A 1566:1987PhRvD..36..581A 1503:1990PhRvD..42.3344H 1466:1985PhLB..155...36K 1415:1993PhRvL..70.2833F 1341:1984PhRvD..30.2212K 1226:2020PhRvD.102e3002H 1173:2020PhRvD.101i1903Z 1120:2019JHEP...12..017P 1067:2020PhRvD.101k6010P 993:Periodic instantons 929:{\displaystyle t=0} 621:{\displaystyle ~g~} 21: 1751:Electroweak theory 960:, the theoretical 926: 900: 870: 825: 806:goes to infinity. 796: 767: 747: 721: 686: 644: 618: 588: 565: 556: 503: 458: 294: 243: 64: 1648:Physical Review D 1597:Physical Review D 1553:Physical Review D 1497:(10): 3344–3349. 1490:Physical Review D 1454:Physics Letters B 1399:(19): 2833–2836. 1335:(10): 2212–2220. 1329:Physical Review D 1204:Physical Review D 1151:Physical Review D 1045:Physical Review D 962:energy efficiency 868: 863: 847: 795: 789: 757:, goes from 0 to 746: 740: 720: 705: 685: 670: 643: 637: 617: 611: 584: 564: 522: 502: 482: 447: 434: 422: 407: 403: 399: 364: 352: 348: 195:symmetry breaking 52: 51: 1763: 1736: 1735: 1712: 1706: 1705: 1663: 1643: 1637: 1636: 1592: 1586: 1585: 1547: 1541: 1540: 1522: 1520:2060/19900014807 1484: 1478: 1477: 1449: 1443: 1442: 1408: 1386: 1380: 1379: 1377: 1375: 1359: 1353: 1352: 1324: 1318: 1317: 1299: 1293: 1292: 1274: 1252: 1246: 1245: 1219: 1199: 1193: 1192: 1166: 1146: 1140: 1139: 1113: 1093: 1087: 1086: 1060: 1040: 1024: 1021: 935: 933: 932: 927: 909: 907: 906: 901: 879: 877: 876: 871: 869: 864: 861: 860: 852: 845: 843: 834: 832: 831: 826: 805: 803: 802: 797: 793: 787: 776: 774: 773: 768: 756: 754: 753: 748: 744: 738: 730: 728: 727: 722: 718: 703: 695: 693: 692: 687: 683: 668: 653: 651: 650: 645: 641: 635: 627: 625: 624: 619: 615: 609: 597: 595: 594: 589: 582: 574: 572: 571: 566: 562: 561: 560: 532: 531: 520: 512: 510: 509: 504: 500: 480: 467: 465: 464: 459: 457: 456: 445: 444: 436: 435: 430: 425: 420: 405: 404: 402: 400: 394: 387: 374: 366: 365: 360: 355: 350: 349: 344: 328: 319: 303: 301: 300: 295: 287: 286: 274: 273: 252: 250: 249: 244: 242: 241: 163:non-perturbative 160: 158: 108:non-perturbative 104:Feynman diagrams 88:particle physics 77: 58:An example of a 22: 1771: 1770: 1766: 1765: 1764: 1762: 1761: 1760: 1741: 1740: 1739: 1732: 1714: 1713: 1709: 1645: 1644: 1640: 1594: 1593: 1589: 1549: 1548: 1544: 1486: 1485: 1481: 1451: 1450: 1446: 1388: 1387: 1383: 1373: 1371: 1361: 1360: 1356: 1326: 1325: 1321: 1314: 1301: 1300: 1296: 1258:Physics-Uspekhi 1254: 1253: 1249: 1201: 1200: 1196: 1148: 1147: 1143: 1095: 1094: 1090: 1042: 1041: 1037: 1028: 1027: 1022: 1018: 1008: 971: 954: 912: 911: 886: 885: 844: 837: 836: 811: 810: 782: 781: 759: 758: 733: 732: 698: 697: 663: 662: 630: 629: 604: 603: 577: 576: 555: 554: 548: 547: 537: 523: 515: 514: 475: 474: 448: 391: 329: 310: 309: 278: 265: 260: 259: 233: 228: 227: 219: 175: 156: 154: 17: 12: 11: 5: 1769: 1767: 1759: 1758: 1753: 1743: 1742: 1738: 1737: 1730: 1707: 1661:hep-ph/9311374 1638: 1587: 1560:(2): 581–596. 1542: 1479: 1460:(1–2): 36–42. 1444: 1406:hep-ph/9305274 1381: 1354: 1319: 1312: 1294: 1272:hep-ph/9603208 1265:(5): 461–502. 1247: 1194: 1141: 1088: 1051:(11): 116010. 1034: 1033: 1032: 1026: 1025: 1015: 1014: 1013: 1012: 1007: 1004: 1003: 1002: 996: 990: 984: 978: 975:Chiral anomaly 970: 967: 953: 952:Energy release 950: 941:quark families 925: 922: 919: 899: 896: 893: 884:approaches as 882:BPST instanton 867: 859: 855: 851: 824: 821: 818: 792: 766: 743: 717: 714: 711: 708: 682: 679: 676: 673: 640: 614: 587: 575:, the symbols 559: 553: 550: 549: 546: 543: 542: 540: 535: 530: 526: 499: 495: 491: 488: 485: 471: 470: 469: 468: 455: 451: 443: 439: 433: 429: 419: 416: 413: 410: 397: 390: 385: 382: 378: 373: 369: 363: 359: 347: 342: 339: 336: 333: 325: 322: 318: 293: 290: 285: 281: 277: 272: 268: 240: 236: 218: 215: 206: 205: 198: 184:Standard Model 174: 171: 167:early universe 84:Standard Model 50: 49: 46: 40: 39: 36: 32: 31: 28: 15: 13: 10: 9: 6: 4: 3: 2: 1768: 1757: 1754: 1752: 1749: 1748: 1746: 1733: 1731:9780451485090 1727: 1723: 1722: 1717: 1711: 1708: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1662: 1657: 1653: 1649: 1642: 1639: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1591: 1588: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1554: 1546: 1543: 1538: 1534: 1530: 1526: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1491: 1483: 1480: 1475: 1471: 1467: 1463: 1459: 1455: 1448: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1407: 1402: 1398: 1394: 1393: 1385: 1382: 1369: 1365: 1358: 1355: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1320: 1315: 1313:9781681744582 1309: 1305: 1298: 1295: 1290: 1286: 1282: 1278: 1273: 1268: 1264: 1260: 1259: 1251: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1218: 1213: 1210:(5): 053002. 1209: 1205: 1198: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1165: 1160: 1157:(9): 091903. 1156: 1152: 1145: 1142: 1137: 1133: 1129: 1125: 1121: 1117: 1112: 1107: 1103: 1099: 1092: 1089: 1084: 1080: 1076: 1072: 1068: 1064: 1059: 1054: 1050: 1046: 1039: 1036: 1030: 1029: 1020: 1017: 1010: 1009: 1005: 1000: 999:Lamé function 997: 994: 991: 988: 985: 982: 979: 976: 973: 972: 968: 966: 963: 959: 951: 949: 947: 942: 937: 923: 920: 917: 891: 883: 865: 857: 853: 816: 807: 790: 778: 741: 712: 706: 677: 671: 660: 657: 638: 612: 601: 585: 557: 551: 544: 538: 533: 528: 524: 497: 493: 489: 486: 483: 453: 449: 441: 437: 414: 408: 395: 388: 383: 380: 376: 371: 367: 345: 337: 331: 323: 320: 308: 307: 306: 305: 304: 291: 288: 283: 279: 275: 270: 266: 258:in the gauge 257: 253: 238: 234: 224: 216: 214: 212: 203: 199: 196: 193: 189: 188: 187: 185: 181: 172: 170: 168: 164: 151: 149: 145: 141: 137: 136:lepton number 133: 132:baryon number 127: 125: 121: 115: 113: 109: 105: 101: 97: 93: 89: 85: 81: 73: 69: 61: 56: 47: 45: 41: 37: 33: 29: 27: 23: 1720: 1716:Tegmark, Max 1710: 1651: 1647: 1641: 1600: 1596: 1590: 1557: 1551: 1545: 1494: 1488: 1482: 1457: 1453: 1447: 1396: 1390: 1384: 1372:. Retrieved 1368:The Guardian 1367: 1357: 1332: 1328: 1322: 1303: 1297: 1262: 1256: 1250: 1207: 1203: 1197: 1154: 1150: 1144: 1101: 1097: 1091: 1048: 1044: 1038: 1019: 987:Theta vacuum 955: 938: 808: 779: 472: 220: 211:leptogenesis 207: 180:baryogenesis 176: 173:Baryogenesis 152: 143: 128: 116: 112:saddle point 67: 65: 60:saddle point 48:~10 TeV 38:Hypothetical 1366:. Science. 958:Max Tegmark 256:Higgs field 202:first-order 192:electroweak 182:within the 26:Composition 1745:Categories 1374:1 December 1217:2005.03125 1164:1910.00234 1111:1910.04761 1104:(12): 17. 1058:2003.09625 1686:0556-2821 1625:0556-2821 1289:250852429 1242:218538382 1189:203610139 1136:204401729 1083:214612257 1031:Citations 981:Instanton 946:Dirac sea 898:∞ 895:→ 858:σ 854:⋅ 823:∞ 820:→ 817:ξ 791:ξ 765:∞ 742:ξ 713:ξ 678:ξ 639:ν 586:σ 525:ϕ 498:ν 484:ξ 450:ϕ 442:σ 438:⋅ 432:^ 415:ξ 389:ν 381:ϕ 372:σ 368:× 362:^ 346:ξ 338:ξ 324:ν 235:θ 124:instanton 68:sphaleron 20:Sphaleron 1702:18303496 1694:10017008 1537:28823418 1529:10012733 1439:15937666 1431:10053665 969:See also 965:matter. 102:such as 76:σφαλερός 1666:Bibcode 1633:9958773 1605:Bibcode 1582:9958202 1562:Bibcode 1499:Bibcode 1462:Bibcode 1411:Bibcode 1337:Bibcode 1222:Bibcode 1169:Bibcode 1116:Bibcode 1063:Bibcode 654:is the 221:For an 217:Details 82:of the 1728:  1700:  1692:  1684:  1631:  1623:  1580:  1535:  1527:  1437:  1429:  1310:  1287:  1240:  1187:  1134:  1081:  862:  846:  794:  788:  745:  739:  719:  704:  684:  669:  642:  636:  616:  610:  583:  563:  521:  501:  481:  473:where 446:  421:  406:  351:  144:cannot 120:tunnel 96:lepton 92:baryon 35:Status 1698:S2CID 1656:arXiv 1533:S2CID 1435:S2CID 1401:arXiv 1285:S2CID 1267:arXiv 1238:S2CID 1212:arXiv 1185:S2CID 1159:arXiv 1132:S2CID 1106:arXiv 1079:S2CID 1053:arXiv 1011:Notes 656:Higgs 600:SU(2) 223:SU(2) 159:= 0 ) 72:Greek 1726:ISBN 1690:PMID 1682:ISSN 1629:PMID 1621:ISSN 1578:PMID 1525:PMID 1427:PMID 1376:2017 1370:. UK 1308:ISBN 1102:2019 696:and 134:and 94:and 44:Mass 1674:doi 1613:doi 1570:doi 1515:hdl 1507:doi 1470:doi 1458:155 1419:doi 1345:doi 1277:doi 1230:doi 1208:102 1177:doi 1155:101 1124:doi 1071:doi 1049:101 910:at 659:VEV 148:LHC 86:of 1747:: 1696:. 1688:. 1680:. 1672:. 1664:. 1652:49 1650:. 1627:. 1619:. 1611:. 1601:37 1599:. 1576:. 1568:. 1558:36 1556:. 1531:. 1523:. 1513:. 1505:. 1495:42 1493:. 1468:. 1456:. 1433:. 1425:. 1417:. 1409:. 1397:70 1395:. 1343:. 1333:30 1331:. 1283:. 1275:. 1263:32 1261:. 1236:. 1228:. 1220:. 1206:. 1183:. 1175:. 1167:. 1153:. 1130:. 1122:. 1114:. 1100:. 1077:. 1069:. 1061:. 1047:. 777:. 602:, 513:, 186:: 169:. 155:( 74:: 66:A 1734:. 1704:. 1676:: 1668:: 1658:: 1635:. 1615:: 1607:: 1584:. 1572:: 1564:: 1539:. 1517:: 1509:: 1501:: 1476:. 1472:: 1464:: 1441:. 1421:: 1413:: 1403:: 1378:. 1351:. 1347:: 1339:: 1316:. 1291:. 1279:: 1269:: 1244:. 1232:: 1224:: 1214:: 1191:. 1179:: 1171:: 1161:: 1138:. 1126:: 1118:: 1108:: 1085:. 1073:: 1065:: 1055:: 924:0 921:= 918:t 892:r 866:r 850:r 716:) 710:( 707:f 681:) 675:( 672:h 613:g 558:] 552:0 545:1 539:[ 534:= 529:0 494:g 490:r 487:= 454:0 428:r 418:) 412:( 409:h 396:2 384:= 377:, 358:r 341:) 335:( 332:f 321:= 317:A 292:0 289:= 284:r 280:A 276:= 271:0 267:A 239:W 157:τ 70:(

Index

Composition
Mass

saddle point
Greek
electroweak field equations
Standard Model
particle physics
baryon
lepton
perturbative methods
Feynman diagrams
non-perturbative
saddle point
tunnel
instanton
baryon number
lepton number
B − L
LHC
non-perturbative
early universe
baryogenesis
Standard Model
electroweak
symmetry breaking
first-order
leptogenesis
SU(2)
θ W {\displaystyle \theta _{W}}

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.