Knowledge

Spin group

Source 📝

8667: 8263: 8662:{\displaystyle {\begin{aligned}\operatorname {Z} (\operatorname {Spin} (n,\mathbf {C} ))&={\begin{cases}\mathrm {Z} _{2}&n=2k+1\\\mathrm {Z} _{4}&n=4k+2\\\mathrm {Z} _{2}\oplus \mathrm {Z} _{2}&n=4k\\\end{cases}}\\\operatorname {Z} (\operatorname {Spin} (p,q))&={\begin{cases}\mathrm {Z} _{2}&p{\text{ or }}q{\text{ odd}}\\\mathrm {Z} _{4}&n=4k+2,{\text{ and }}p,q{\text{ even}}\\\mathrm {Z} _{2}\oplus \mathrm {Z} _{2}&n=4k,{\text{ and }}p,q{\text{ even}}\\\end{cases}}\end{aligned}}} 6221: 52: 5865: 7250: 1501: 9066: 6216:{\displaystyle \pi _{1}({\mbox{SO}}(p,q))={\begin{cases}0&(p,q)=(1,1){\mbox{ or }}(1,0)\\\mathbb {Z} _{2}&p>2,q=0,1\\\mathbb {Z} &(p,q)=(2,0){\mbox{ or }}(2,1)\\\mathbb {Z} \times \mathbb {Z} &(p,q)=(2,2)\\\mathbb {Z} &p>2,q=2\\\mathbb {Z} _{2}&p,q>2\\\end{cases}}} 2146: 4674: 7411: 7077: 4821: 7615: 2071: 944: 1416: 8966: 8157: 9327: 1737: 1248: 1346: 7257: 3518: 7064: 3773: 8080: 2519: 7932: 4551:
correspond to the physics notion of fermions; the even subspace corresponds to the bosons. The representations of the action of the spin group on the spinor space can be built in a relatively straightforward fashion.
2079: 7850: 4575: 4429: 2995: 6901: 3409: 3950: 5644: 7994: 6983: 4877:. In physics, the Spin group is appropriate for describing uncharged fermions, while the Spin group is used to describe electrically charged fermions. In this case, the U(1) symmetry is specifically the 4316: 8695:, while quotienting out by {±1} yields the special orthogonal group – if the center equals {±1} (namely in odd dimension), these two quotient groups agree. If the spin group is simply connected (as Spin( 6829: 4720: 2782: 1579: 8268: 3164: 8821: 2852: 7519: 6474: 6422: 2669: 3214: 3565: 8236: 6627: 5184: 5113: 3830: 3675: 7715: 7245:{\displaystyle \cdots \rightarrow \pi _{k}({\text{SO}}(n-1))\rightarrow \pi _{k}({\text{SO}}(n))\rightarrow \pi _{k}(S^{n-1})\rightarrow \pi _{k-1}({\text{SO}}(n-1))\rightarrow \cdots } 1612: 9377: 9205: 7662: 4525: 3289: 3062: 2625: 2428: 2386:; the resulting spinor fields can be seen to be anti-commuting as a by-product of the Clifford algebra construction. This anti-commutation property is also key to the formulation of 3257: 2709: 1922: 1834: 6682: 4736: 2904: 2460: 2264: 1866: 983: 4219: 3630: 9243: 1792: 4007: 3091: 1648: 7462: 6761: 6711: 6577: 5302: 5243: 8085: 5715: 5683: 4488: 4266: 3896: 2010: 4461: 2564: 2368: 3030: 2593: 497: 472: 435: 2000: 2322: 1958: 3714: 3342: 2194: 9172:), or is an index 2 subgroup of the preimage of a point group which maps (isomorphically) onto the point group; in the latter case the full binary group is abstractly 4095: 2293: 872: 3111: 2872: 1496:{\displaystyle \operatorname {Cl} (V)=\operatorname {Cl} ^{0}\oplus \operatorname {Cl} ^{1}\oplus \operatorname {Cl} ^{2}\oplus \cdots \oplus \operatorname {Cl} ^{n}} 9061:{\displaystyle \ldots \rightarrow {\text{Fivebrane}}(n)\rightarrow {\text{String}}(n)\rightarrow {\text{Spin}}(n)\rightarrow {\text{SO}}(n)\rightarrow {\text{O}}(n)} 7770: 7743: 7514: 7488: 6500: 4066: 4036: 1404: 1101:. Strictly speaking, the spin group describes a fermion in a zero-dimensional space; however, space is not zero-dimensional, and so the spin group is used to define 8184: 6993: 6532: 5034: 4844: 3860: 1378: 799: 4161: 4549: 4339: 4239: 4138: 1544: 1524: 4903:. For instance, there are isomorphisms between low-dimensional spin groups and certain classical Lie groups, owing to low-dimensional isomorphisms between the 9252: 1656: 1190: 1266: 8908:) is not simply connected, and quotienting also affects connected components. The analysis is simpler if one considers the maximal (connected) compact 3417: 3722: 6910: 2141:{\displaystyle \operatorname {Cl} ^{\text{even}}=\operatorname {Cl} ^{0}\oplus \operatorname {Cl} ^{2}\oplus \operatorname {Cl} ^{4}\oplus \cdots } 8006: 2468: 7858: 357: 9743: 9588: 9558: 7775: 4669:{\displaystyle 1\to \mathrm {Z} _{2}\to \operatorname {Spin} ^{\mathbf {C} }(n)\to \operatorname {SO} (n)\times \operatorname {U} (1)\to 1.} 5815:) is the "diagonal" 2-fold cover – it is a 2-fold quotient of the 4-fold cover. Explicitly, the maximal compact connected subgroup of Spin( 9106:
Discrete subgroups of the spin group can be understood by relating them to discrete subgroups of the special orthogonal group (rotational
307: 7406:{\displaystyle \pi _{2}(S^{n-1})\rightarrow \pi _{1}({\text{SO}}(n-1))\rightarrow \pi _{1}({\text{SO}}(n))\rightarrow \pi _{1}(S^{n-1}).} 4344: 2909: 8688: 6834: 5372: 3358: 4527:. The (complexified) Clifford algebra acts naturally on this space; the (complexified) spin group corresponds to the length-preserving 2160:
being an even number. The restriction to the even subspace is key to the formation of two-component (Weyl) spinors, constructed below.
8830: 3905: 1134: 792: 302: 9682: 9617: 7937: 4274: 5787:), is not simply connected, thus it is not a universal cover. The fundamental group is most easily understood by considering the 6766: 5587: 4685: 2714: 9767: 9644: 4490:. It is straightforward to see that the spinors anti-commute, and that the product of a spinor and anti-spinor is a scalar. 718: 9071:
The tower is obtained by successively removing (killing) homotopy groups of increasing order. This is done by constructing
9580: 9157:) is multiplication by {±1}. These may be called "binary point groups"; most familiar is the 3-dimensional case, known as 1549: 1049: 785: 5425:
there are two connected components. As in definite signature, there are some accidental isomorphisms in low dimensions:
3116: 2390:. The Clifford algebra and the spin group have many interesting and curious properties, some of which are listed below. 1258: 9076: 8779: 2787: 6431: 6379: 5376: 1138: 402: 216: 2630: 3259:, that the multiplication is continuous, and the group axioms are satisfied with inversion being continuous, making 3169: 9550: 8680:
can be obtained from a spin group by quotienting out by a subgroup of the center, with the spin group then being a
5332: 3526: 8197: 6582: 5136: 4874: 6630: 5065: 3781: 3642: 2371: 7667: 9471: 9369: 6904: 5788: 4985: 4816:{\displaystyle \operatorname {Spin} ^{\mathbf {C} }(V)=\left(\operatorname {Spin} (V)\times S^{1}\right)/\sim } 1795: 1584: 1034: 837: 600: 334: 211: 99: 9175: 7620: 4503: 3262: 3035: 2598: 2401: 2398:
The spin groups can be constructed less explicitly but without appealing to Clifford algebras. As a manifold,
3222: 2674: 1874: 1807: 9542: 9403: 9158: 6655: 4899: 2877: 2433: 2206: 1839: 1166: 956: 4196: 2566:
is a set with two elements, and one can be chosen without loss of generality to be the identity. Call this
1149:(where one of a pair of entangled, virtual fermions falls past the event horizon, and the other does not). 3573: 750: 540: 9210: 7610:{\displaystyle 0\rightarrow \pi _{1}({\text{SO}}(n-1))\rightarrow \pi _{1}({\text{SO}}(n))\rightarrow 0,} 1761: 9407: 5654: 5520: 5504: 5261: 5059: 3958: 3067: 1620: 1045: 624: 7418: 6716: 2148:
is the subspace generated by elements that are the product of an even number of vectors. That is, Spin(
2066:{\displaystyle \operatorname {Spin} (V)=\operatorname {Pin} (V)\cap \operatorname {Cl} ^{\text{even}},} 6687: 6537: 5267: 5208: 9072: 5696: 5664: 5510: 5494: 5450: 5430: 4466: 4244: 856: 564: 552: 170: 104: 8490: 8318: 5915: 3865: 2370:. This anti-commutation turns out to be of importance in physics, as it captures the spirit of the 9762: 9709: 9461: 8774: 7069: 5807:), and noting that rather than being the product of the 2-fold covers (hence a 4-fold cover), Spin( 4434: 2524: 2383: 2327: 1407: 1106: 1097:. Its complexification, Spinc, is used to describe electrically charged fermions, most notably the 1078: 139: 34: 3000: 2569: 480: 455: 418: 6637: 5840: 5772: 4912: 1963: 1126: 950: 939:{\displaystyle 1\to \mathbb {Z} _{2}\to \operatorname {Spin} (n)\to \operatorname {SO} (n)\to 1.} 124: 96: 4531:. There is a natural grading on the exterior algebra: the product of an odd number of copies of 2301: 1930: 9422:
For point groups that reverse orientation, the situation is more complicated, as there are two
3683: 3314: 2166: 9739: 9678: 9650: 9640: 9613: 9584: 9554: 9502: 9441: 9130: 8766: 4071: 3345: 2269: 1146: 1118: 695: 529: 372: 266: 9164:
Concretely, every binary point group is either the preimage of a point group (hence denoted 2
3096: 2857: 9772: 9510: 9492: 9436: 9150: 8957: 8863: 7749: 7722: 7493: 7467: 6479: 5749: 5562: 5484: 5478: 5348: 5202: 5055: 4962: 4882: 4680: 4498: 4190: 4045: 4015: 3353: 1383: 1158: 1070: 1026: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 134: 8162: 6505: 5012: 4829: 3838: 9207:(since {±1} is central). As an example of these latter, given a cyclic group of odd order 9126: 8953: 8929: 6425: 5574: 5558: 1354: 1142: 1122: 1110: 1030: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 8152:{\displaystyle {\text{SO}}(n)\rightarrow {\text{SO}}(1,n)^{\uparrow }\rightarrow H^{n},} 4143: 9456: 9415: 9145:) is a rotational point group, and the preimage of a point group is a subgroup of Spin( 8826: 8681: 8677: 5352: 4908: 4567: 4561: 4534: 4324: 4224: 4123: 1529: 1509: 1173: 1130: 1102: 833: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 9756: 9451: 8239: 2387: 2379: 1114: 690: 612: 446: 319: 185: 9322:{\displaystyle \mathrm {C} _{4k+2}\cong \mathrm {Z} _{2k+1}\times \mathrm {Z} _{2},} 2200:, then the quotient above endows the space with a natural anti-commuting structure: 1732:{\displaystyle \operatorname {Cl} ^{2}={\mathfrak {spin}}(V)={\mathfrak {spin}}(n),} 9520: 9091: 8900:
In indefinite signature the covers and homotopy groups are more complicated – Spin(
8191: 4528: 2463: 1243:{\displaystyle \mathrm {T} V=\mathbb {R} \oplus V\oplus (V\otimes V)\oplus \cdots } 545: 244: 233: 180: 155: 150: 109: 80: 43: 8833:, with discrete fiber (the fiber being the kernel) – thus all homotopy groups for 1341:{\displaystyle \operatorname {Cl} (V)=\mathrm {T} V/\left(v\otimes v-q(v)\right),} 9669: 2378:. A precise formulation is out of scope, here, but it involves the creation of a 9426:, so there are two possible binary groups corresponding to a given point group. 9107: 8187: 4904: 4894: 4878: 4722:
of the Clifford algebra, and specifically, it is the subgroup generated by Spin(
4172: 1751: 1008: 993: 813: 3513:{\displaystyle \left(e_{i}e_{j}\cdots e_{k}\right)^{t}=e_{k}\cdots e_{j}e_{i}.} 8692: 7059:{\displaystyle {\text{SO}}(n-1)\rightarrow {\text{SO}}(n)\rightarrow S^{n-1}.} 5049: 4928: 3768:{\displaystyle \alpha \colon \operatorname {Cl} (V)\to \operatorname {Cl} (V)} 1184:
by a two-sided ideal. The tensor algebra (over the reals) may be written as
712: 440: 1048:
is denoted −1, which should not be confused with the orthogonal transform of
9654: 9484: 9423: 9411: 8075:{\displaystyle \pi ({\text{SO}}(1,n)^{\uparrow })\cong \pi ({\text{SO}}(n))} 6988: 2514:{\displaystyle p:\operatorname {Spin} (n)\rightarrow \operatorname {SO} (n)} 1802: 825: 533: 17: 9395:, with the alternating group being the (rotational) symmetry group of the 7927:{\displaystyle {\text{SO}}(3)\cong \mathbb {RP} ^{3}\cong S^{3}/\{\pm 1\}} 51: 4101:; this follows from the anti-commuting property of the Clifford algebra. 1098: 1066: 829: 70: 8687:
Quotienting out by the entire center yields the minimal such group, the
8684:
of the resulting quotient, and both groups having the same Lie algebra.
2462:. Its multiplication law can be defined by lifting as follows. Call the 5316: 3902:). With this notation, an explicit double covering is the homomorphism 2375: 1157:
Construction of the Spin group often starts with the construction of a
1094: 1090: 412: 326: 7845:{\displaystyle \pi _{1}({\text{SO}}(n))\cong \pi _{1}({\text{SO}}(3))} 3219:
It can then be shown that this definition is independent of the paths
9446: 8893:) is connected and has fundamental group equal to the center of Spin( 5468: 5460: 5440: 6241:, as it is a 2-fold quotient of a product of two universal covers. 4424:{\displaystyle \eta _{k}=\left(e_{2k-1}-ie_{2k}\right)/{\sqrt {2}}} 2990:{\displaystyle \gamma (t)=p(\gamma _{a}(t))\cdot p(\gamma _{b}(t))} 1758:, and in this way can be shown to be isomorphic to the Lie algebra 9466: 6896:{\displaystyle {\text{Stab}}_{{\text{SO}}(n)}(v)={\text{SO}}(n-1)} 3404:{\displaystyle t:\operatorname {Cl} (V)\to \operatorname {Cl} (V)} 4965:= {+1, −1}     the orthogonal group of dimension zero. 4175:
are constructed, given this formalism. Given a real vector space
4981: 3945:{\displaystyle \operatorname {Pin} (V)\to \operatorname {O} (V)} 1093:
to describe the symmetries of (electrically neutral, uncharged)
8710:
group in the sequence, and one has a sequence of three groups,
5308:
There are certain vestiges of these isomorphisms left over for
7989:{\displaystyle \pi _{1}({\text{SO}}(3))\cong \mathbb {Z} _{2}} 9141:) (rotational point groups): the image of a subgroup of Spin( 6978:{\displaystyle {\text{SO}}(n)/{\text{SO}}(n-1)\cong S^{n-1}.} 5756: > 2, so they are the universal coverings of SO( 4311:{\displaystyle V\otimes \mathbf {C} =W\oplus {\overline {W}}} 4097:
corresponds a reflection across the hyperplane orthogonal to
949:
The group multiplication law on the double cover is given by
7254:
and we concentrate on a section at the end of the sequence:
9720: 9713: 8651: 8437: 6209: 6824:{\displaystyle {\text{Orbit}}_{{\text{SO}}(n)}(v)=S^{n-1}} 6502:
as the three smallest have familiar underlying manifolds:
5639:{\displaystyle \pi _{1}(G)\subset \operatorname {Z} (G'),} 4715:{\displaystyle \operatorname {Cl} (V)\otimes \mathbf {C} } 2777:{\displaystyle \gamma _{a}(0)=\gamma _{b}(0)={\tilde {e}}} 9372:, corresponding to the 2-fold cover of symmetries of the 6244:
The maps on fundamental groups are given as follows. For
5569:
is a connected Lie group with a simple Lie algebra, with
4873:
This has important applications in 4-manifold theory and
5198:) the two-by-two matrices with quaternionic coefficients 9637:
Supersymmetry for mathematicians : an introduction
5737:) have the same Lie algebra and same fundamental group 1406:. The resulting space is finite dimensional, naturally 9249:), its preimage is a cyclic group of twice the order, 7068:
Then Theorem 4.41 in Hatcher tells us that there is a
6068: 5957: 5883: 5565:
Lie groups are classified by their Lie algebra. So if
4507: 27:
Double cover Lie group of the special orthogonal group
9255: 9213: 9178: 8969: 8782: 8266: 8200: 8165: 8088: 8009: 7940: 7861: 7778: 7752: 7725: 7670: 7623: 7522: 7496: 7470: 7421: 7260: 7080: 6996: 6913: 6837: 6769: 6719: 6690: 6658: 6585: 6540: 6508: 6482: 6434: 6382: 5868: 5699: 5667: 5590: 5270: 5257:) the four-by-four matrices with complex coefficients 5211: 5139: 5068: 5015: 4832: 4739: 4688: 4578: 4537: 4506: 4469: 4437: 4347: 4327: 4277: 4247: 4227: 4199: 4146: 4126: 4074: 4048: 4018: 3961: 3908: 3868: 3841: 3784: 3725: 3686: 3645: 3576: 3529: 3420: 3361: 3317: 3265: 3225: 3172: 3119: 3099: 3070: 3038: 3003: 2912: 2880: 2860: 2790: 2717: 2677: 2633: 2601: 2572: 2527: 2471: 2436: 2404: 2330: 2304: 2272: 2209: 2169: 2082: 2013: 1966: 1933: 1877: 1842: 1810: 1764: 1659: 1623: 1587: 1552: 1532: 1512: 1419: 1386: 1357: 1269: 1193: 959: 875: 483: 458: 421: 5133:
Spin(4) = SU(2) × SU(2), corresponding to
4221:. It can be written as the direct sum of a subspace 2196:
are an orthonormal basis of the (real) vector space
1574:{\displaystyle \operatorname {Cl} ^{0}=\mathbf {R} } 9639:. Providence, R.I.: American Mathematical Society. 9376:-simplex; this group can also be considered as the 5771:) is not necessarily connected, and in general the 1141:coordinates), which in turn provides a footing for 1125:; the spin connection can simplify calculations in 9321: 9237: 9199: 9079:for the homotopy group to be removed. Killing the 9060: 8815: 8661: 8230: 8178: 8151: 8074: 7988: 7926: 7844: 7764: 7737: 7709: 7656: 7609: 7508: 7482: 7456: 7405: 7244: 7058: 6977: 6895: 6823: 6755: 6705: 6676: 6621: 6571: 6526: 6494: 6468: 6416: 6215: 5709: 5677: 5638: 5351:in a similar way to standard spin groups. It is a 5296: 5237: 5178: 5107: 5028: 4838: 4815: 4714: 4668: 4543: 4519: 4482: 4455: 4423: 4333: 4310: 4260: 4233: 4213: 4155: 4132: 4089: 4060: 4030: 4001: 3944: 3890: 3854: 3824: 3767: 3708: 3669: 3624: 3559: 3512: 3403: 3336: 3283: 3251: 3208: 3159:{\displaystyle {\tilde {\gamma }}(0)={\tilde {e}}} 3158: 3105: 3085: 3056: 3024: 2989: 2898: 2866: 2846: 2776: 2703: 2663: 2619: 2587: 2558: 2513: 2454: 2422: 2362: 2316: 2287: 2258: 2188: 2140: 2065: 1994: 1952: 1916: 1860: 1828: 1786: 1731: 1642: 1606: 1573: 1538: 1518: 1495: 1398: 1372: 1340: 1242: 977: 938: 491: 466: 429: 9523:String(n) – the next group in the Whitehead tower 8829:of the cover and the quotient are related by the 8816:{\displaystyle {\mathfrak {so}}(n,\mathbf {R} ).} 2847:{\displaystyle \gamma _{a}(1)=a,\gamma _{b}(1)=b} 6469:{\displaystyle \pi _{1}(\operatorname {SO} (n))} 6417:{\displaystyle \pi _{1}(\operatorname {SO} (n))} 2664:{\displaystyle a,b\in \operatorname {Spin} (n)} 1868:'s Clifford group of all elements of the form 6424:can be more directly derived using results in 3567:by linearity. It is an antihomomorphism since 3209:{\displaystyle a\cdot b={\tilde {\gamma }}(1)} 1172:. The Clifford algebra is the quotient of the 3560:{\displaystyle a,b\in \operatorname {Cl} (V)} 793: 8: 9406:, corresponding to the 2-fold covers of the 8231:{\displaystyle {\text{SO}}(1,n)^{\uparrow }} 7921: 7912: 6622:{\displaystyle SO(3)\cong \mathbb {RP} ^{3}} 5693:entirely (note that it is not the case that 5179:{\displaystyle D_{2}\cong A_{1}\times A_{1}} 3331: 3318: 3311:) can be given explicitly, as follows. Let 2550: 2544: 2183: 2170: 1746:being a real vector space of real dimension 1410:(as a vector space), and can be written as 8257:, (complex and real) are given as follows: 5108:{\displaystyle B_{1}\cong C_{1}\cong A_{1}} 4171:It is worth reviewing how spinor space and 3825:{\displaystyle \alpha (v)=-v,\quad v\in V,} 3670:{\displaystyle a\in \operatorname {Cl} (V)} 9610:Riemannian Geometry and Geometric Analysis 8885:) is connected and has fundamental group Z 8242:(the proper orthochronous Lorentz group). 7710:{\displaystyle \pi _{1}({\text{SO}}(n-1))} 6642: 3064:is a double cover, there is a unique lift 1380:is the quadratic form applied to a vector 1129:. The spin connection in turn enables the 800: 786: 238: 64: 29: 9677:. Cambridge: Cambridge University Press. 9310: 9305: 9286: 9281: 9262: 9257: 9254: 9220: 9215: 9212: 9185: 9180: 9177: 9044: 9027: 9010: 8993: 8976: 8968: 8802: 8784: 8783: 8781: 8643: 8629: 8606: 8601: 8591: 8586: 8576: 8562: 8533: 8528: 8518: 8510: 8499: 8494: 8485: 8414: 8409: 8399: 8394: 8363: 8358: 8327: 8322: 8313: 8295: 8267: 8265: 8222: 8201: 8199: 8170: 8164: 8140: 8127: 8106: 8089: 8087: 8055: 8037: 8016: 8008: 7980: 7976: 7975: 7954: 7945: 7939: 7907: 7901: 7888: 7884: 7881: 7880: 7862: 7860: 7825: 7816: 7792: 7783: 7777: 7751: 7724: 7684: 7675: 7669: 7637: 7628: 7622: 7581: 7572: 7542: 7533: 7521: 7495: 7469: 7439: 7426: 7420: 7385: 7372: 7348: 7339: 7309: 7300: 7278: 7265: 7259: 7213: 7198: 7176: 7163: 7139: 7130: 7100: 7091: 7079: 7041: 7020: 6997: 6995: 6960: 6933: 6928: 6914: 6912: 6873: 6845: 6844: 6839: 6836: 6809: 6777: 6776: 6771: 6768: 6718: 6697: 6693: 6692: 6689: 6657: 6613: 6609: 6606: 6605: 6584: 6563: 6539: 6507: 6481: 6439: 6433: 6387: 6381: 6183: 6179: 6178: 6146: 6145: 6102: 6101: 6094: 6093: 6067: 6028: 6027: 5988: 5984: 5983: 5956: 5910: 5882: 5873: 5867: 5701: 5700: 5698: 5669: 5668: 5666: 5595: 5589: 5323:, these isomorphisms disappear entirely. 5288: 5275: 5269: 5229: 5216: 5210: 5170: 5157: 5144: 5138: 5099: 5086: 5073: 5067: 5020: 5014: 4831: 4805: 4794: 4745: 4744: 4738: 4707: 4687: 4605: 4604: 4591: 4586: 4577: 4536: 4508: 4505: 4470: 4468: 4436: 4414: 4409: 4395: 4370: 4352: 4346: 4326: 4298: 4284: 4276: 4248: 4246: 4226: 4206: 4198: 4145: 4125: 4073: 4047: 4017: 3990: 3960: 3907: 3882: 3867: 3846: 3840: 3783: 3724: 3694: 3685: 3644: 3613: 3603: 3590: 3575: 3528: 3501: 3491: 3478: 3465: 3454: 3441: 3431: 3419: 3360: 3325: 3316: 3264: 3243: 3230: 3224: 3186: 3185: 3171: 3145: 3144: 3121: 3120: 3118: 3098: 3072: 3071: 3069: 3037: 3002: 2969: 2938: 2911: 2879: 2859: 2823: 2795: 2789: 2763: 2762: 2744: 2722: 2716: 2695: 2682: 2676: 2632: 2600: 2574: 2573: 2571: 2532: 2526: 2470: 2435: 2403: 2354: 2341: 2329: 2303: 2271: 2250: 2240: 2224: 2214: 2208: 2177: 2168: 2126: 2113: 2100: 2087: 2081: 2054: 2012: 1977: 1965: 1938: 1932: 1905: 1892: 1882: 1876: 1841: 1809: 1766: 1765: 1763: 1702: 1701: 1674: 1673: 1664: 1658: 1625: 1624: 1622: 1607:{\displaystyle \operatorname {Cl} ^{1}=V} 1592: 1586: 1566: 1557: 1551: 1531: 1511: 1487: 1468: 1455: 1442: 1418: 1385: 1356: 1296: 1288: 1268: 1206: 1205: 1194: 1192: 958: 888: 884: 883: 874: 485: 484: 482: 460: 459: 457: 423: 422: 420: 9200:{\displaystyle \mathrm {C} _{2}\times G} 9090:), one obtains the infinite-dimensional 8238:is the identity component of the proper 7657:{\displaystyle \pi _{1}({\text{SO}}(n))} 4520:{\displaystyle \textstyle {\bigwedge }W} 3523:This can be extended to all elements of 3284:{\displaystyle \operatorname {Spin} (n)} 3057:{\displaystyle \operatorname {Spin} (n)} 2620:{\displaystyle \operatorname {Spin} (n)} 2423:{\displaystyle \operatorname {Spin} (n)} 2156:), given above, with the restriction to 9533: 4679:It is a multiplicative subgroup of the 4463:and the complex conjugate spinors span 4104:This gives a double covering of both O( 3775:which on degree 1 elements is given by 3252:{\displaystyle \gamma _{a},\gamma _{b}} 2704:{\displaystyle \gamma _{a},\gamma _{b}} 1917:{\displaystyle v_{1}v_{2}\cdots v_{k},} 1829:{\displaystyle \operatorname {Pin} (V)} 356: 122: 32: 9604: 9602: 9600: 9577:Dirac Operators in Riemannian Geometry 8003:The same argument can be used to show 6677:{\displaystyle \operatorname {SO} (n)} 5661:′. This inclusion and the Lie algebra 4931:and the general understanding that Cl( 4897:among the classical Lie groups called 4562:Spin structure § SpinC structures 3639:) can then be defined as all elements 2899:{\displaystyle \operatorname {SO} (n)} 2455:{\displaystyle \operatorname {SO} (n)} 2259:{\displaystyle e_{i}e_{j}=-e_{j}e_{i}} 1861:{\displaystyle \operatorname {Cl} (V)} 1085:Motivation and physical interpretation 978:{\displaystyle \operatorname {SO} (n)} 358:Classification of finite simple groups 4214:{\displaystyle V\otimes \mathbf {C} } 3898:, which is an antiautomorphism of Cl( 7: 9630: 9628: 8186:is the upper sheet of a two-sheeted 3625:{\displaystyle (ab)^{t}=b^{t}a^{t}.} 1077:). A distinct article discusses the 9414:, or equivalently of its dual, the 9378:double cover of the symmetric group 9364:Of particular note are two series: 9238:{\displaystyle \mathrm {Z} _{2k+1}} 8788: 8785: 8689:projective special orthogonal group 8250:The center of the spin groups, for 5702: 5670: 5373:connected component of the identity 4907:(and corresponding isomorphisms of 4730:. Alternately, it is the quotient 2595:. Then to define multiplication in 2004:The spin group is then defined as 1787:{\displaystyle {\mathfrak {so}}(n)} 1770: 1767: 1742:where the last is a short-hand for 1712: 1709: 1706: 1703: 1684: 1681: 1678: 1675: 1635: 1632: 1629: 1626: 1011:with the special orthogonal group. 9719:Grothendieck's "torsion index" is 9306: 9282: 9258: 9216: 9181: 8831:long exact sequence of a fibration 8602: 8587: 8529: 8495: 8445: 8410: 8395: 8359: 8323: 8271: 5613: 4645: 4587: 4002:{\displaystyle \rho (a)v=ava^{*},} 3927: 3086:{\displaystyle {\tilde {\gamma }}} 2152:) consists of all elements of Pin( 1643:{\displaystyle {\mathfrak {spin}}} 1289: 1195: 1069:of the invertible elements in the 25: 7457:{\displaystyle \pi _{k}(S^{n})=0} 6756:{\displaystyle v=(1,0,\cdots ,0)} 4566:The Spin group is defined by the 4140:gives the same transformation as 8803: 8296: 7415:Corollary 4.9 in Hatcher states 6706:{\displaystyle \mathbb {R} ^{n}} 6636:The proof uses known results in 6572:{\displaystyle SO(2)\cong S^{1}} 5839:This allows us to calculate the 5297:{\displaystyle D_{3}\cong A_{3}} 5238:{\displaystyle B_{2}\cong C_{2}} 4746: 4708: 4606: 4285: 4207: 1567: 1145:, as well as a formalization of 50: 6987:Geometrically, this provides a 5710:{\displaystyle {\mathfrak {g}}} 5678:{\displaystyle {\mathfrak {g}}} 4947:) and so on, one then has that 4911:) of the different families of 4483:{\displaystyle {\overline {W}}} 4261:{\displaystyle {\overline {W}}} 3809: 1044:The non-trivial element of the 9738:. Springer. pp. 210–214. 9055: 9049: 9041: 9038: 9032: 9024: 9021: 9015: 9007: 9004: 8998: 8990: 8987: 8981: 8973: 8807: 8793: 8475: 8472: 8460: 8451: 8303: 8300: 8286: 8277: 8223: 8219: 8206: 8133: 8128: 8124: 8111: 8103: 8100: 8094: 8069: 8066: 8060: 8052: 8043: 8038: 8034: 8021: 8013: 7968: 7965: 7959: 7951: 7873: 7867: 7839: 7836: 7830: 7822: 7806: 7803: 7797: 7789: 7704: 7701: 7689: 7681: 7651: 7648: 7642: 7634: 7598: 7595: 7592: 7586: 7578: 7565: 7562: 7559: 7547: 7539: 7526: 7445: 7432: 7397: 7378: 7365: 7362: 7359: 7353: 7345: 7332: 7329: 7326: 7314: 7306: 7293: 7290: 7271: 7236: 7233: 7230: 7218: 7210: 7191: 7188: 7169: 7156: 7153: 7150: 7144: 7136: 7123: 7120: 7117: 7105: 7097: 7084: 7034: 7031: 7025: 7017: 7014: 7002: 6950: 6938: 6925: 6919: 6890: 6878: 6867: 6861: 6856: 6850: 6799: 6793: 6788: 6782: 6763:. The orbit of this vector is 6750: 6726: 6713:, in particular on the vector 6671: 6665: 6598: 6592: 6553: 6547: 6521: 6515: 6463: 6460: 6454: 6445: 6411: 6408: 6402: 6393: 6138: 6126: 6120: 6108: 6086: 6074: 6064: 6052: 6046: 6034: 5975: 5963: 5953: 5941: 5935: 5923: 5904: 5901: 5889: 5879: 5763:In indefinite signature, Spin( 5630: 5619: 5607: 5601: 5319:for more details). For higher 4784: 4778: 4761: 4755: 4701: 4695: 4660: 4657: 4651: 4639: 4633: 4624: 4621: 4615: 4597: 4582: 4084: 4078: 3971: 3965: 3939: 3933: 3924: 3921: 3915: 3891:{\displaystyle \alpha (a)^{t}} 3879: 3872: 3794: 3788: 3762: 3756: 3747: 3744: 3738: 3664: 3658: 3587: 3577: 3554: 3548: 3398: 3392: 3383: 3380: 3374: 3278: 3272: 3203: 3197: 3191: 3150: 3138: 3132: 3126: 3077: 3051: 3045: 3013: 3007: 2984: 2981: 2975: 2962: 2953: 2950: 2944: 2931: 2922: 2916: 2893: 2887: 2835: 2829: 2807: 2801: 2768: 2756: 2750: 2734: 2728: 2658: 2652: 2614: 2608: 2579: 2553: 2541: 2508: 2502: 2493: 2490: 2484: 2449: 2443: 2417: 2411: 2044: 2038: 2026: 2020: 1983: 1970: 1855: 1849: 1823: 1817: 1781: 1775: 1723: 1717: 1695: 1689: 1432: 1426: 1367: 1361: 1327: 1321: 1282: 1276: 1231: 1219: 972: 966: 930: 927: 921: 912: 909: 903: 894: 879: 719:Infinite dimensional Lie group 1: 9581:American Mathematical Society 9077:Eilenberg–MacLane space 8082:, by considering a fibration 7516:, the exact sequence becomes 6652:First consider the action of 5729:entirely; for instance SL(2, 5009:. Corresponds to the abelian 4893:In low dimensions, there are 4456:{\displaystyle 1\leq k\leq m} 3166:. Then define the product as 2559:{\displaystyle p^{-1}(\{e\})} 2363:{\displaystyle v=e_{i}+e_{j}} 2298:which follows by considering 1754:; it has a natural action on 1050:reflection through the origin 8952:The spin group appears in a 8730:splitting by parity yields: 6428:. In particular we can find 6255:, this implies that the map 5744:The definite signature Spin( 4475: 4303: 4253: 3719:Now define the automorphism 3025:{\displaystyle \gamma (0)=e} 2588:{\displaystyle {\tilde {e}}} 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 9635:Varadarajan, V. S. (2004). 6907:one obtains an isomorphism 6372:Fundamental groups of SO(n) 5741:, but are not isomorphic). 5377:indefinite orthogonal group 4943:) is a short-hand for Spin( 1995:{\displaystyle q(v_{i})=1.} 855:, such that there exists a 217:List of group theory topics 9789: 9575:Friedrich, Thomas (2000), 9551:Princeton University Press 9133:between subgroups of Spin( 6831:, while the stabilizer is 6237:the fundamental group is Z 5554:Topological considerations 5304:.     dim = 15 5245:.     dim = 10 4559: 4341:is spanned by the spinors 4241:of spinors and a subspace 3303:, a double covering of SO( 2317:{\displaystyle v\otimes v} 1953:{\displaystyle v_{i}\in V} 1121:on a spinor bundle is the 1089:The spin group is used in 1065:) can be constructed as a 1029:and so coincides with the 9612:, (2002) Springer Verlag 9370:binary tetrahedral groups 6631:axis-angle representation 5186:.     dim = 6 5115:.     dim = 3 5036:.     dim = 1 4996:by double phase rotation 4958:Pin(1) = {+i, −i, +1, −1} 4935:) is a short-hand for Cl( 4923:for the complex numbers, 4726:) and the unit circle in 3709:{\displaystyle aa^{t}=1.} 3337:{\displaystyle \{e_{i}\}} 2372:Pauli exclusion principle 2189:{\displaystyle \{e_{i}\}} 1161:over a real vector space 9543:Michelsohn, Marie-Louise 9472:Orientation entanglement 9404:binary octahedral groups 9159:binary polyhedral groups 6905:orbit-stabilizer theorem 5789:maximal compact subgroup 5581:, there is an inclusion 4900:exceptional isomorphisms 4889:Exceptional isomorphisms 4090:{\displaystyle \rho (a)} 2288:{\displaystyle i\neq j,} 1796:special orthogonal group 1253:The Clifford algebra Cl( 1109:: the spin group is the 838:special orthogonal group 335:Elementary abelian group 212:Glossary of group theory 9668:Hatcher, Allen (2002). 9345:maps isomorphically to 9113:Given the double cover 9086:homotopy group in Spin( 6534:is the point manifold, 6376:The fundamental groups 6312:, this map is given by 5347:is constructed through 3106:{\displaystyle \gamma } 2867:{\displaystyle \gamma } 2430:is the double cover of 1167:definite quadratic form 992:) therefore shares its 9768:Topology of Lie groups 9509:) – two-fold cover of 9491:) – two-fold cover of 9323: 9239: 9201: 9168:, for the point group 9137:) and subgroups of SO( 9062: 8817: 8663: 8232: 8180: 8153: 8076: 7990: 7928: 7846: 7766: 7765:{\displaystyle n>3} 7739: 7738:{\displaystyle n>3} 7711: 7658: 7611: 7510: 7509:{\displaystyle n>3} 7484: 7483:{\displaystyle k<n} 7458: 7407: 7246: 7060: 6979: 6897: 6825: 6757: 6707: 6678: 6623: 6573: 6528: 6496: 6495:{\displaystyle n>3} 6470: 6418: 6217: 5711: 5679: 5640: 5298: 5239: 5180: 5109: 5030: 4840: 4826:where the equivalence 4817: 4716: 4670: 4545: 4521: 4484: 4457: 4425: 4335: 4312: 4262: 4235: 4215: 4157: 4134: 4091: 4062: 4061:{\displaystyle a\in V} 4032: 4031:{\displaystyle v\in V} 4003: 3946: 3892: 3856: 3826: 3769: 3710: 3671: 3626: 3561: 3514: 3405: 3338: 3299:For a quadratic space 3285: 3253: 3210: 3160: 3107: 3087: 3058: 3026: 2991: 2900: 2868: 2854:. These define a path 2848: 2778: 2705: 2665: 2621: 2589: 2560: 2515: 2456: 2424: 2394:Geometric construction 2364: 2318: 2289: 2260: 2190: 2142: 2067: 1996: 1954: 1918: 1862: 1830: 1788: 1733: 1644: 1608: 1575: 1540: 1520: 1497: 1400: 1399:{\displaystyle v\in V} 1374: 1342: 1244: 979: 953:the multiplication on 940: 751:Linear algebraic group 493: 468: 431: 9734:Karoubi, Max (2008). 9408:hyperoctahedral group 9324: 9240: 9202: 9153:on subgroups of Spin( 9073:short exact sequences 9063: 8818: 8757:+1) = PSO(2 8664: 8233: 8181: 8179:{\displaystyle H^{n}} 8154: 8077: 7991: 7929: 7847: 7767: 7740: 7712: 7659: 7612: 7511: 7485: 7459: 7408: 7247: 7061: 6980: 6898: 6826: 6758: 6708: 6679: 6624: 6574: 6529: 6527:{\displaystyle SO(1)} 6497: 6471: 6419: 6218: 5835:)/{(1, 1), (−1, −1)}. 5712: 5680: 5641: 5299: 5240: 5181: 5110: 5031: 5029:{\displaystyle D_{1}} 4875:Seiberg–Witten theory 4841: 4839:{\displaystyle \sim } 4818: 4717: 4671: 4546: 4522: 4485: 4458: 4426: 4336: 4313: 4263: 4236: 4216: 4158: 4135: 4092: 4063: 4033: 4004: 3947: 3893: 3857: 3855:{\displaystyle a^{*}} 3827: 3770: 3711: 3672: 3627: 3562: 3515: 3406: 3339: 3286: 3254: 3211: 3161: 3108: 3088: 3059: 3027: 2992: 2901: 2869: 2849: 2779: 2706: 2666: 2622: 2590: 2561: 2516: 2457: 2425: 2365: 2319: 2290: 2261: 2191: 2143: 2068: 1997: 1955: 1919: 1863: 1831: 1789: 1734: 1645: 1609: 1576: 1541: 1521: 1498: 1401: 1375: 1343: 1245: 1052:, generally denoted − 988:As a Lie group, Spin( 980: 941: 494: 469: 432: 9253: 9211: 9176: 8967: 8780: 8765:which are the three 8753:+1) → SO(2 8706:), then Spin is the 8264: 8198: 8163: 8086: 8007: 7938: 7859: 7776: 7750: 7723: 7668: 7621: 7520: 7494: 7468: 7419: 7258: 7078: 6994: 6911: 6835: 6767: 6717: 6688: 6656: 6583: 6538: 6506: 6480: 6432: 6380: 5866: 5697: 5665: 5588: 5333:indefinite signature 5327:Indefinite signature 5268: 5209: 5137: 5066: 5013: 4830: 4737: 4686: 4576: 4535: 4504: 4467: 4435: 4345: 4325: 4275: 4245: 4225: 4197: 4189:an even number, its 4144: 4124: 4072: 4046: 4016: 3959: 3906: 3866: 3839: 3782: 3723: 3684: 3643: 3574: 3527: 3418: 3359: 3315: 3263: 3223: 3170: 3117: 3097: 3068: 3036: 3001: 2910: 2878: 2858: 2788: 2715: 2675: 2631: 2599: 2570: 2525: 2469: 2434: 2402: 2328: 2302: 2270: 2207: 2167: 2080: 2011: 1964: 1931: 1875: 1840: 1808: 1762: 1657: 1621: 1585: 1550: 1530: 1526:is the dimension of 1510: 1417: 1384: 1373:{\displaystyle q(v)} 1355: 1267: 1191: 1137:(effectively in the 1107:Riemannian manifolds 1079:spin representations 957: 873: 859:of Lie groups (when 857:short exact sequence 481: 456: 419: 9710:essential dimension 9541:Lawson, H. Blaine; 9462:Table of Lie groups 9410:(symmetries of the 8881:is trivial), so SO( 8775:compact Lie algebra 8742:) → PSO(2 7072:of homotopy groups 7070:long exact sequence 6327:. And finally, for 5264:, corresponding to 5205:, corresponding to 5062:, corresponding to 4977:the complex numbers 4913:simple Lie algebras 4042:has degree 1 (i.e. 2384:Minkowski spacetime 1960:is of unit length: 1135:in curved spacetime 125:Group homomorphisms 35:Algebraic structure 9712:of spin groups is 9671:Algebraic topology 9319: 9235: 9197: 9102:Discrete subgroups 9058: 8813: 8767:compact real forms 8738:) → SO(2 8722:) → PSO( 8659: 8657: 8650: 8436: 8228: 8176: 8149: 8072: 7986: 7924: 7842: 7762: 7735: 7707: 7654: 7607: 7506: 7480: 7454: 7403: 7242: 7056: 6975: 6893: 6821: 6753: 6703: 6674: 6638:algebraic topology 6619: 6569: 6524: 6492: 6466: 6414: 6213: 6208: 6072: 5961: 5887: 5841:fundamental groups 5773:identity component 5707: 5675: 5636: 5413:is connected; for 5294: 5235: 5176: 5105: 5026: 4836: 4813: 4712: 4666: 4541: 4517: 4516: 4497:is defined as the 4480: 4453: 4421: 4331: 4308: 4258: 4231: 4211: 4156:{\displaystyle -a} 4153: 4130: 4087: 4058: 4028: 3999: 3942: 3888: 3852: 3822: 3765: 3706: 3667: 3622: 3557: 3510: 3401: 3334: 3281: 3249: 3206: 3156: 3103: 3083: 3054: 3022: 2987: 2896: 2864: 2844: 2774: 2701: 2661: 2617: 2585: 2556: 2511: 2452: 2420: 2360: 2314: 2285: 2256: 2186: 2138: 2063: 1992: 1950: 1914: 1858: 1826: 1784: 1729: 1640: 1604: 1571: 1536: 1516: 1493: 1396: 1370: 1338: 1240: 1127:general relativity 975: 936: 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 9745:978-3-540-79889-7 9590:978-0-8218-2055-1 9560:978-0-691-08542-5 9503:Metaplectic group 9442:Clifford analysis 9329:and the subgroup 9131:Galois connection 9075:starting with an 9047: 9030: 9013: 8996: 8979: 8718:) → SO( 8646: 8632: 8579: 8565: 8521: 8513: 8204: 8109: 8092: 8058: 8019: 8001: 8000: 7957: 7865: 7828: 7795: 7687: 7640: 7584: 7545: 7351: 7312: 7216: 7142: 7103: 7023: 7000: 6936: 6917: 6876: 6848: 6842: 6780: 6774: 6629:(shown using the 6071: 5960: 5886: 5803:) × SO( 5349:Clifford algebras 5335:, the spin group 4544:{\displaystyle W} 4478: 4419: 4334:{\displaystyle W} 4306: 4268:of anti-spinors: 4256: 4234:{\displaystyle W} 4133:{\displaystyle a} 3635:Observe that Pin( 3346:orthonormal basis 3194: 3153: 3129: 3080: 2771: 2582: 2090: 2057: 1836:is a subgroup of 1539:{\displaystyle V} 1519:{\displaystyle n} 1147:Hawking radiation 1119:affine connection 828:whose underlying 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 9780: 9749: 9696: 9695: 9693: 9691: 9676: 9665: 9659: 9658: 9632: 9623: 9621:(See Chapter 1.) 9606: 9595: 9593: 9572: 9566: 9564: 9538: 9511:symplectic group 9493:orthogonal group 9437:Clifford algebra 9394: 9360: 9344: 9328: 9326: 9325: 9320: 9315: 9314: 9309: 9300: 9299: 9285: 9276: 9275: 9261: 9244: 9242: 9241: 9236: 9234: 9233: 9219: 9206: 9204: 9203: 9198: 9190: 9189: 9184: 9151:closure operator 9124: 9082: 9067: 9065: 9064: 9059: 9048: 9045: 9031: 9028: 9014: 9011: 8997: 8994: 8980: 8977: 8958:orthogonal group 8956:anchored by the 8943: 8927: 8880: 8864:simply connected 8857: 8840:are equal, but π 8839: 8822: 8820: 8819: 8814: 8806: 8792: 8791: 8772: 8705: 8668: 8666: 8665: 8660: 8658: 8654: 8653: 8647: 8644: 8633: 8630: 8611: 8610: 8605: 8596: 8595: 8590: 8580: 8577: 8566: 8563: 8538: 8537: 8532: 8522: 8519: 8514: 8511: 8504: 8503: 8498: 8440: 8439: 8419: 8418: 8413: 8404: 8403: 8398: 8368: 8367: 8362: 8332: 8331: 8326: 8299: 8256: 8237: 8235: 8234: 8229: 8227: 8226: 8205: 8202: 8185: 8183: 8182: 8177: 8175: 8174: 8158: 8156: 8155: 8150: 8145: 8144: 8132: 8131: 8110: 8107: 8093: 8090: 8081: 8079: 8078: 8073: 8059: 8056: 8042: 8041: 8020: 8017: 7995: 7993: 7992: 7987: 7985: 7984: 7979: 7958: 7955: 7950: 7949: 7933: 7931: 7930: 7925: 7911: 7906: 7905: 7893: 7892: 7887: 7866: 7863: 7851: 7849: 7848: 7843: 7829: 7826: 7821: 7820: 7796: 7793: 7788: 7787: 7771: 7769: 7768: 7763: 7744: 7742: 7741: 7736: 7716: 7714: 7713: 7708: 7688: 7685: 7680: 7679: 7663: 7661: 7660: 7655: 7641: 7638: 7633: 7632: 7616: 7614: 7613: 7608: 7585: 7582: 7577: 7576: 7546: 7543: 7538: 7537: 7515: 7513: 7512: 7507: 7489: 7487: 7486: 7481: 7463: 7461: 7460: 7455: 7444: 7443: 7431: 7430: 7412: 7410: 7409: 7404: 7396: 7395: 7377: 7376: 7352: 7349: 7344: 7343: 7313: 7310: 7305: 7304: 7289: 7288: 7270: 7269: 7251: 7249: 7248: 7243: 7217: 7214: 7209: 7208: 7187: 7186: 7168: 7167: 7143: 7140: 7135: 7134: 7104: 7101: 7096: 7095: 7065: 7063: 7062: 7057: 7052: 7051: 7024: 7021: 7001: 6998: 6984: 6982: 6981: 6976: 6971: 6970: 6937: 6934: 6932: 6918: 6915: 6903:. Thus from the 6902: 6900: 6899: 6894: 6877: 6874: 6860: 6859: 6849: 6846: 6843: 6840: 6830: 6828: 6827: 6822: 6820: 6819: 6792: 6791: 6781: 6778: 6775: 6772: 6762: 6760: 6759: 6754: 6712: 6710: 6709: 6704: 6702: 6701: 6696: 6683: 6681: 6680: 6675: 6643: 6628: 6626: 6625: 6620: 6618: 6617: 6612: 6578: 6576: 6575: 6570: 6568: 6567: 6533: 6531: 6530: 6525: 6501: 6499: 6498: 6493: 6475: 6473: 6472: 6467: 6444: 6443: 6423: 6421: 6420: 6415: 6392: 6391: 6367: 6363: 6359: 6348: 6337: 6326: 6311: 6300: 6289: 6282: 6254: 6236: 6222: 6220: 6219: 6214: 6212: 6211: 6188: 6187: 6182: 6149: 6105: 6097: 6073: 6069: 6031: 5993: 5992: 5987: 5962: 5958: 5888: 5884: 5878: 5877: 5750:simply connected 5716: 5714: 5713: 5708: 5706: 5705: 5684: 5682: 5681: 5676: 5674: 5673: 5645: 5643: 5642: 5637: 5629: 5600: 5599: 5563:simply connected 5549: 5424: 5412: 5400: 5389: 5370: 5346: 5314: 5303: 5301: 5300: 5295: 5293: 5292: 5280: 5279: 5244: 5242: 5241: 5236: 5234: 5233: 5221: 5220: 5185: 5183: 5182: 5177: 5175: 5174: 5162: 5161: 5149: 5148: 5114: 5112: 5111: 5106: 5104: 5103: 5091: 5090: 5078: 5077: 5035: 5033: 5032: 5027: 5025: 5024: 5008: 4988:, which acts on 4955:the real numbers 4939:) and that Spin( 4883:electromagnetism 4869: 4857: 4845: 4843: 4842: 4837: 4822: 4820: 4819: 4814: 4809: 4804: 4800: 4799: 4798: 4751: 4750: 4749: 4721: 4719: 4718: 4713: 4711: 4681:complexification 4675: 4673: 4672: 4667: 4611: 4610: 4609: 4596: 4595: 4590: 4550: 4548: 4547: 4542: 4526: 4524: 4523: 4518: 4512: 4499:exterior algebra 4489: 4487: 4486: 4481: 4479: 4471: 4462: 4460: 4459: 4454: 4430: 4428: 4427: 4422: 4420: 4415: 4413: 4408: 4404: 4403: 4402: 4384: 4383: 4357: 4356: 4340: 4338: 4337: 4332: 4317: 4315: 4314: 4309: 4307: 4299: 4288: 4267: 4265: 4264: 4259: 4257: 4249: 4240: 4238: 4237: 4232: 4220: 4218: 4217: 4212: 4210: 4191:complexification 4188: 4162: 4160: 4159: 4154: 4139: 4137: 4136: 4131: 4096: 4094: 4093: 4088: 4067: 4065: 4064: 4059: 4037: 4035: 4034: 4029: 4008: 4006: 4005: 4000: 3995: 3994: 3951: 3949: 3948: 3943: 3897: 3895: 3894: 3889: 3887: 3886: 3861: 3859: 3858: 3853: 3851: 3850: 3831: 3829: 3828: 3823: 3774: 3772: 3771: 3766: 3715: 3713: 3712: 3707: 3699: 3698: 3676: 3674: 3673: 3668: 3631: 3629: 3628: 3623: 3618: 3617: 3608: 3607: 3595: 3594: 3566: 3564: 3563: 3558: 3519: 3517: 3516: 3511: 3506: 3505: 3496: 3495: 3483: 3482: 3470: 3469: 3464: 3460: 3459: 3458: 3446: 3445: 3436: 3435: 3410: 3408: 3407: 3402: 3354:antiautomorphism 3343: 3341: 3340: 3335: 3330: 3329: 3290: 3288: 3287: 3282: 3258: 3256: 3255: 3250: 3248: 3247: 3235: 3234: 3215: 3213: 3212: 3207: 3196: 3195: 3187: 3165: 3163: 3162: 3157: 3155: 3154: 3146: 3131: 3130: 3122: 3112: 3110: 3109: 3104: 3092: 3090: 3089: 3084: 3082: 3081: 3073: 3063: 3061: 3060: 3055: 3031: 3029: 3028: 3023: 2996: 2994: 2993: 2988: 2974: 2973: 2943: 2942: 2905: 2903: 2902: 2897: 2873: 2871: 2870: 2865: 2853: 2851: 2850: 2845: 2828: 2827: 2800: 2799: 2783: 2781: 2780: 2775: 2773: 2772: 2764: 2749: 2748: 2727: 2726: 2710: 2708: 2707: 2702: 2700: 2699: 2687: 2686: 2670: 2668: 2667: 2662: 2626: 2624: 2623: 2618: 2594: 2592: 2591: 2586: 2584: 2583: 2575: 2565: 2563: 2562: 2557: 2540: 2539: 2520: 2518: 2517: 2512: 2461: 2459: 2458: 2453: 2429: 2427: 2426: 2421: 2369: 2367: 2366: 2361: 2359: 2358: 2346: 2345: 2323: 2321: 2320: 2315: 2294: 2292: 2291: 2286: 2265: 2263: 2262: 2257: 2255: 2254: 2245: 2244: 2229: 2228: 2219: 2218: 2195: 2193: 2192: 2187: 2182: 2181: 2147: 2145: 2144: 2139: 2131: 2130: 2118: 2117: 2105: 2104: 2092: 2091: 2088: 2072: 2070: 2069: 2064: 2059: 2058: 2055: 2001: 1999: 1998: 1993: 1982: 1981: 1959: 1957: 1956: 1951: 1943: 1942: 1923: 1921: 1920: 1915: 1910: 1909: 1897: 1896: 1887: 1886: 1867: 1865: 1864: 1859: 1835: 1833: 1832: 1827: 1793: 1791: 1790: 1785: 1774: 1773: 1738: 1736: 1735: 1730: 1716: 1715: 1688: 1687: 1669: 1668: 1649: 1647: 1646: 1641: 1639: 1638: 1613: 1611: 1610: 1605: 1597: 1596: 1580: 1578: 1577: 1572: 1570: 1562: 1561: 1545: 1543: 1542: 1537: 1525: 1523: 1522: 1517: 1502: 1500: 1499: 1494: 1492: 1491: 1473: 1472: 1460: 1459: 1447: 1446: 1405: 1403: 1402: 1397: 1379: 1377: 1376: 1371: 1347: 1345: 1344: 1339: 1334: 1330: 1300: 1292: 1259:quotient algebra 1249: 1247: 1246: 1241: 1209: 1198: 1159:Clifford algebra 1071:Clifford algebra 1057: 1027:simply connected 1020: 1006: 984: 982: 981: 976: 945: 943: 942: 937: 893: 892: 887: 865: 854: 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 65: 54: 41: 30: 21: 9788: 9787: 9783: 9782: 9781: 9779: 9778: 9777: 9753: 9752: 9746: 9733: 9730: 9728:Further reading 9705: 9700: 9699: 9689: 9687: 9685: 9674: 9667: 9666: 9662: 9647: 9634: 9633: 9626: 9607: 9598: 9591: 9574: 9573: 9569: 9561: 9540: 9539: 9535: 9530: 9481: 9476: 9432: 9393: 9387: 9381: 9354: 9346: 9338: 9330: 9304: 9280: 9256: 9251: 9250: 9214: 9209: 9208: 9179: 9174: 9173: 9127:lattice theorem 9114: 9104: 9085: 9080: 8965: 8964: 8954:Whitehead tower 8950: 8948:Whitehead tower 8933: 8930:component group 8909: 8888: 8879: 8875: 8871: 8867: 8852: 8847: 8843: 8834: 8827:homotopy groups 8778: 8777: 8770: 8700: 8678:Quotient groups 8675: 8673:Quotient groups 8656: 8655: 8649: 8648: 8631: and  8612: 8600: 8585: 8582: 8581: 8564: and  8539: 8527: 8524: 8523: 8505: 8493: 8486: 8478: 8442: 8441: 8435: 8434: 8420: 8408: 8393: 8390: 8389: 8369: 8357: 8354: 8353: 8333: 8321: 8314: 8306: 8262: 8261: 8251: 8248: 8218: 8196: 8195: 8166: 8161: 8160: 8136: 8123: 8084: 8083: 8033: 8005: 8004: 7974: 7941: 7936: 7935: 7897: 7879: 7857: 7856: 7812: 7779: 7774: 7773: 7748: 7747: 7721: 7720: 7717:are isomorphic 7671: 7666: 7665: 7624: 7619: 7618: 7568: 7529: 7518: 7517: 7492: 7491: 7466: 7465: 7435: 7422: 7417: 7416: 7381: 7368: 7335: 7296: 7274: 7261: 7256: 7255: 7194: 7172: 7159: 7126: 7087: 7076: 7075: 7037: 6992: 6991: 6956: 6909: 6908: 6838: 6833: 6832: 6805: 6770: 6765: 6764: 6715: 6714: 6691: 6686: 6685: 6654: 6653: 6604: 6581: 6580: 6559: 6536: 6535: 6504: 6503: 6478: 6477: 6435: 6430: 6429: 6426:homotopy theory 6383: 6378: 6377: 6374: 6365: 6361: 6350: 6339: 6328: 6325: 6313: 6302: 6299: 6295: 6291: 6288: 6284: 6272: 6260: 6256: 6245: 6240: 6227: 6207: 6206: 6189: 6177: 6174: 6173: 6150: 6142: 6141: 6106: 6090: 6089: 6032: 6024: 6023: 5994: 5982: 5979: 5978: 5921: 5911: 5869: 5864: 5863: 5799:), which is SO( 5778: 5720: 5695: 5694: 5663: 5662: 5622: 5591: 5586: 5585: 5575:universal cover 5556: 5531: 5414: 5402: 5391: 5379: 5360: 5356: 5336: 5329: 5309: 5284: 5271: 5266: 5265: 5225: 5212: 5207: 5206: 5166: 5153: 5140: 5135: 5134: 5095: 5082: 5069: 5064: 5063: 5016: 5011: 5010: 4997: 4919:for the reals, 4909:Dynkin diagrams 4891: 4859: 4847: 4828: 4827: 4790: 4771: 4767: 4740: 4735: 4734: 4684: 4683: 4600: 4585: 4574: 4573: 4564: 4558: 4533: 4532: 4502: 4501: 4465: 4464: 4433: 4432: 4391: 4366: 4365: 4361: 4348: 4343: 4342: 4323: 4322: 4273: 4272: 4243: 4242: 4223: 4222: 4195: 4194: 4180: 4169: 4142: 4141: 4122: 4121: 4070: 4069: 4044: 4043: 4014: 4013: 3986: 3957: 3956: 3904: 3903: 3878: 3864: 3863: 3842: 3837: 3836: 3780: 3779: 3721: 3720: 3690: 3682: 3681: 3641: 3640: 3609: 3599: 3586: 3572: 3571: 3525: 3524: 3497: 3487: 3474: 3450: 3437: 3427: 3426: 3422: 3421: 3416: 3415: 3357: 3356: 3321: 3313: 3312: 3297: 3295:Double covering 3261: 3260: 3239: 3226: 3221: 3220: 3168: 3167: 3115: 3114: 3095: 3094: 3066: 3065: 3034: 3033: 2999: 2998: 2965: 2934: 2908: 2907: 2876: 2875: 2856: 2855: 2819: 2791: 2786: 2785: 2740: 2718: 2713: 2712: 2691: 2678: 2673: 2672: 2629: 2628: 2597: 2596: 2568: 2567: 2528: 2523: 2522: 2467: 2466: 2432: 2431: 2400: 2399: 2396: 2350: 2337: 2326: 2325: 2300: 2299: 2268: 2267: 2246: 2236: 2220: 2210: 2205: 2204: 2173: 2165: 2164: 2122: 2109: 2096: 2083: 2078: 2077: 2050: 2009: 2008: 1973: 1962: 1961: 1934: 1929: 1928: 1901: 1888: 1878: 1873: 1872: 1838: 1837: 1806: 1805: 1760: 1759: 1660: 1655: 1654: 1619: 1618: 1588: 1583: 1582: 1553: 1548: 1547: 1528: 1527: 1508: 1507: 1483: 1464: 1451: 1438: 1415: 1414: 1382: 1381: 1353: 1352: 1305: 1301: 1265: 1264: 1189: 1188: 1155: 1143:quantum gravity 1123:spin connection 1111:structure group 1103:spin structures 1087: 1053: 1031:universal cover 1015: 997: 955: 954: 882: 871: 870: 860: 840: 820:, denoted Spin( 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 479: 478: 454: 453: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 9786: 9784: 9776: 9775: 9770: 9765: 9755: 9754: 9751: 9750: 9744: 9729: 9726: 9725: 9724: 9717: 9704: 9703:External links 9701: 9698: 9697: 9683: 9660: 9645: 9624: 9596: 9589: 9567: 9559: 9532: 9531: 9529: 9526: 9525: 9524: 9518: 9500: 9480: 9479:Related groups 9477: 9475: 9474: 9469: 9464: 9459: 9457:Spin structure 9454: 9449: 9444: 9439: 9433: 9431: 9428: 9420: 9419: 9416:cross-polytope 9400: 9389: 9383: 9348: 9332: 9318: 9313: 9308: 9303: 9298: 9295: 9292: 9289: 9284: 9279: 9274: 9271: 9268: 9265: 9260: 9232: 9229: 9226: 9223: 9218: 9196: 9193: 9188: 9183: 9103: 9100: 9083: 9069: 9068: 9057: 9054: 9051: 9043: 9040: 9037: 9034: 9026: 9023: 9020: 9017: 9009: 9006: 9003: 9000: 8992: 8989: 8986: 8983: 8975: 8972: 8949: 8946: 8886: 8877: 8873: 8869: 8845: 8841: 8812: 8809: 8805: 8801: 8798: 8795: 8790: 8787: 8763: 8762: 8747: 8728: 8727: 8682:covering group 8674: 8671: 8670: 8669: 8652: 8642: 8639: 8636: 8628: 8625: 8622: 8619: 8616: 8613: 8609: 8604: 8599: 8594: 8589: 8584: 8583: 8575: 8572: 8569: 8561: 8558: 8555: 8552: 8549: 8546: 8543: 8540: 8536: 8531: 8526: 8525: 8517: 8512: or  8509: 8506: 8502: 8497: 8492: 8491: 8489: 8484: 8481: 8479: 8477: 8474: 8471: 8468: 8465: 8462: 8459: 8456: 8453: 8450: 8447: 8444: 8443: 8438: 8433: 8430: 8427: 8424: 8421: 8417: 8412: 8407: 8402: 8397: 8392: 8391: 8388: 8385: 8382: 8379: 8376: 8373: 8370: 8366: 8361: 8356: 8355: 8352: 8349: 8346: 8343: 8340: 8337: 8334: 8330: 8325: 8320: 8319: 8317: 8312: 8309: 8307: 8305: 8302: 8298: 8294: 8291: 8288: 8285: 8282: 8279: 8276: 8273: 8270: 8269: 8247: 8244: 8225: 8221: 8217: 8214: 8211: 8208: 8173: 8169: 8148: 8143: 8139: 8135: 8130: 8126: 8122: 8119: 8116: 8113: 8105: 8102: 8099: 8096: 8071: 8068: 8065: 8062: 8054: 8051: 8048: 8045: 8040: 8036: 8032: 8029: 8026: 8023: 8015: 8012: 7999: 7998: 7983: 7978: 7973: 7970: 7967: 7964: 7961: 7953: 7948: 7944: 7923: 7920: 7917: 7914: 7910: 7904: 7900: 7896: 7891: 7886: 7883: 7878: 7875: 7872: 7869: 7841: 7838: 7835: 7832: 7824: 7819: 7815: 7811: 7808: 7805: 7802: 7799: 7791: 7786: 7782: 7761: 7758: 7755: 7734: 7731: 7728: 7706: 7703: 7700: 7697: 7694: 7691: 7683: 7678: 7674: 7653: 7650: 7647: 7644: 7636: 7631: 7627: 7606: 7603: 7600: 7597: 7594: 7591: 7588: 7580: 7575: 7571: 7567: 7564: 7561: 7558: 7555: 7552: 7549: 7541: 7536: 7532: 7528: 7525: 7505: 7502: 7499: 7479: 7476: 7473: 7453: 7450: 7447: 7442: 7438: 7434: 7429: 7425: 7402: 7399: 7394: 7391: 7388: 7384: 7380: 7375: 7371: 7367: 7364: 7361: 7358: 7355: 7347: 7342: 7338: 7334: 7331: 7328: 7325: 7322: 7319: 7316: 7308: 7303: 7299: 7295: 7292: 7287: 7284: 7281: 7277: 7273: 7268: 7264: 7241: 7238: 7235: 7232: 7229: 7226: 7223: 7220: 7212: 7207: 7204: 7201: 7197: 7193: 7190: 7185: 7182: 7179: 7175: 7171: 7166: 7162: 7158: 7155: 7152: 7149: 7146: 7138: 7133: 7129: 7125: 7122: 7119: 7116: 7113: 7110: 7107: 7099: 7094: 7090: 7086: 7083: 7055: 7050: 7047: 7044: 7040: 7036: 7033: 7030: 7027: 7019: 7016: 7013: 7010: 7007: 7004: 6974: 6969: 6966: 6963: 6959: 6955: 6952: 6949: 6946: 6943: 6940: 6931: 6927: 6924: 6921: 6892: 6889: 6886: 6883: 6880: 6872: 6869: 6866: 6863: 6858: 6855: 6852: 6818: 6815: 6812: 6808: 6804: 6801: 6798: 6795: 6790: 6787: 6784: 6752: 6749: 6746: 6743: 6740: 6737: 6734: 6731: 6728: 6725: 6722: 6700: 6695: 6673: 6670: 6667: 6664: 6661: 6648: 6647: 6616: 6611: 6608: 6603: 6600: 6597: 6594: 6591: 6588: 6566: 6562: 6558: 6555: 6552: 6549: 6546: 6543: 6523: 6520: 6517: 6514: 6511: 6491: 6488: 6485: 6465: 6462: 6459: 6456: 6453: 6450: 6447: 6442: 6438: 6413: 6410: 6407: 6404: 6401: 6398: 6395: 6390: 6386: 6373: 6370: 6323: 6297: 6293: 6286: 6270: 6258: 6238: 6224: 6223: 6210: 6205: 6202: 6199: 6196: 6193: 6190: 6186: 6181: 6176: 6175: 6172: 6169: 6166: 6163: 6160: 6157: 6154: 6151: 6148: 6144: 6143: 6140: 6137: 6134: 6131: 6128: 6125: 6122: 6119: 6116: 6113: 6110: 6107: 6104: 6100: 6096: 6092: 6091: 6088: 6085: 6082: 6079: 6076: 6070: or  6066: 6063: 6060: 6057: 6054: 6051: 6048: 6045: 6042: 6039: 6036: 6033: 6030: 6026: 6025: 6022: 6019: 6016: 6013: 6010: 6007: 6004: 6001: 5998: 5995: 5991: 5986: 5981: 5980: 5977: 5974: 5971: 5968: 5965: 5959: or  5955: 5952: 5949: 5946: 5943: 5940: 5937: 5934: 5931: 5928: 5925: 5922: 5920: 5917: 5916: 5914: 5909: 5906: 5903: 5900: 5897: 5894: 5891: 5881: 5876: 5872: 5837: 5836: 5776: 5718: 5704: 5672: 5647: 5646: 5635: 5632: 5628: 5625: 5621: 5618: 5615: 5612: 5609: 5606: 5603: 5598: 5594: 5555: 5552: 5528: 5527: 5517: 5507: 5501: 5491: 5481: 5475: 5457: 5447: 5437: 5358: 5328: 5325: 5306: 5305: 5291: 5287: 5283: 5278: 5274: 5258: 5247: 5246: 5232: 5228: 5224: 5219: 5215: 5199: 5188: 5187: 5173: 5169: 5165: 5160: 5156: 5152: 5147: 5143: 5131: 5117: 5116: 5102: 5098: 5094: 5089: 5085: 5081: 5076: 5072: 5052: 5038: 5037: 5023: 5019: 4978: 4967: 4966: 4959: 4956: 4890: 4887: 4835: 4824: 4823: 4812: 4808: 4803: 4797: 4793: 4789: 4786: 4783: 4780: 4777: 4774: 4770: 4766: 4763: 4760: 4757: 4754: 4748: 4743: 4710: 4706: 4703: 4700: 4697: 4694: 4691: 4677: 4676: 4665: 4662: 4659: 4656: 4653: 4650: 4647: 4644: 4641: 4638: 4635: 4632: 4629: 4626: 4623: 4620: 4617: 4614: 4608: 4603: 4599: 4594: 4589: 4584: 4581: 4568:exact sequence 4560:Main article: 4557: 4554: 4540: 4515: 4511: 4477: 4474: 4452: 4449: 4446: 4443: 4440: 4418: 4412: 4407: 4401: 4398: 4394: 4390: 4387: 4382: 4379: 4376: 4373: 4369: 4364: 4360: 4355: 4351: 4330: 4319: 4318: 4305: 4302: 4297: 4294: 4291: 4287: 4283: 4280: 4255: 4252: 4230: 4209: 4205: 4202: 4168: 4165: 4152: 4149: 4129: 4086: 4083: 4080: 4077: 4057: 4054: 4051: 4027: 4024: 4021: 4010: 4009: 3998: 3993: 3989: 3985: 3982: 3979: 3976: 3973: 3970: 3967: 3964: 3941: 3938: 3935: 3932: 3929: 3926: 3923: 3920: 3917: 3914: 3911: 3885: 3881: 3877: 3874: 3871: 3849: 3845: 3833: 3832: 3821: 3818: 3815: 3812: 3808: 3805: 3802: 3799: 3796: 3793: 3790: 3787: 3764: 3761: 3758: 3755: 3752: 3749: 3746: 3743: 3740: 3737: 3734: 3731: 3728: 3717: 3716: 3705: 3702: 3697: 3693: 3689: 3666: 3663: 3660: 3657: 3654: 3651: 3648: 3633: 3632: 3621: 3616: 3612: 3606: 3602: 3598: 3593: 3589: 3585: 3582: 3579: 3556: 3553: 3550: 3547: 3544: 3541: 3538: 3535: 3532: 3521: 3520: 3509: 3504: 3500: 3494: 3490: 3486: 3481: 3477: 3473: 3468: 3463: 3457: 3453: 3449: 3444: 3440: 3434: 3430: 3425: 3400: 3397: 3394: 3391: 3388: 3385: 3382: 3379: 3376: 3373: 3370: 3367: 3364: 3333: 3328: 3324: 3320: 3296: 3293: 3280: 3277: 3274: 3271: 3268: 3246: 3242: 3238: 3233: 3229: 3205: 3202: 3199: 3193: 3190: 3184: 3181: 3178: 3175: 3152: 3149: 3143: 3140: 3137: 3134: 3128: 3125: 3102: 3079: 3076: 3053: 3050: 3047: 3044: 3041: 3021: 3018: 3015: 3012: 3009: 3006: 2986: 2983: 2980: 2977: 2972: 2968: 2964: 2961: 2958: 2955: 2952: 2949: 2946: 2941: 2937: 2933: 2930: 2927: 2924: 2921: 2918: 2915: 2895: 2892: 2889: 2886: 2883: 2863: 2843: 2840: 2837: 2834: 2831: 2826: 2822: 2818: 2815: 2812: 2809: 2806: 2803: 2798: 2794: 2770: 2767: 2761: 2758: 2755: 2752: 2747: 2743: 2739: 2736: 2733: 2730: 2725: 2721: 2698: 2694: 2690: 2685: 2681: 2660: 2657: 2654: 2651: 2648: 2645: 2642: 2639: 2636: 2616: 2613: 2610: 2607: 2604: 2581: 2578: 2555: 2552: 2549: 2546: 2543: 2538: 2535: 2531: 2510: 2507: 2504: 2501: 2498: 2495: 2492: 2489: 2486: 2483: 2480: 2477: 2474: 2451: 2448: 2445: 2442: 2439: 2419: 2416: 2413: 2410: 2407: 2395: 2392: 2357: 2353: 2349: 2344: 2340: 2336: 2333: 2313: 2310: 2307: 2296: 2295: 2284: 2281: 2278: 2275: 2253: 2249: 2243: 2239: 2235: 2232: 2227: 2223: 2217: 2213: 2185: 2180: 2176: 2172: 2137: 2134: 2129: 2125: 2121: 2116: 2112: 2108: 2103: 2099: 2095: 2086: 2074: 2073: 2062: 2053: 2049: 2046: 2043: 2040: 2037: 2034: 2031: 2028: 2025: 2022: 2019: 2016: 1991: 1988: 1985: 1980: 1976: 1972: 1969: 1949: 1946: 1941: 1937: 1925: 1924: 1913: 1908: 1904: 1900: 1895: 1891: 1885: 1881: 1857: 1854: 1851: 1848: 1845: 1825: 1822: 1819: 1816: 1813: 1783: 1780: 1777: 1772: 1769: 1740: 1739: 1728: 1725: 1722: 1719: 1714: 1711: 1708: 1705: 1700: 1697: 1694: 1691: 1686: 1683: 1680: 1677: 1672: 1667: 1663: 1650:is defined as 1637: 1634: 1631: 1628: 1603: 1600: 1595: 1591: 1569: 1565: 1560: 1556: 1535: 1515: 1504: 1503: 1490: 1486: 1482: 1479: 1476: 1471: 1467: 1463: 1458: 1454: 1450: 1445: 1441: 1437: 1434: 1431: 1428: 1425: 1422: 1395: 1392: 1389: 1369: 1366: 1363: 1360: 1349: 1348: 1337: 1333: 1329: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1304: 1299: 1295: 1291: 1287: 1284: 1281: 1278: 1275: 1272: 1257:) is then the 1251: 1250: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1208: 1204: 1201: 1197: 1174:tensor algebra 1154: 1151: 1133:to be written 1131:Dirac equation 1086: 1083: 974: 971: 968: 965: 962: 947: 946: 935: 932: 929: 926: 923: 920: 917: 914: 911: 908: 905: 902: 899: 896: 891: 886: 881: 878: 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 9785: 9774: 9771: 9769: 9766: 9764: 9761: 9760: 9758: 9747: 9741: 9737: 9732: 9731: 9727: 9722: 9718: 9715: 9711: 9707: 9706: 9702: 9686: 9684:9780521795401 9680: 9673: 9672: 9664: 9661: 9656: 9652: 9648: 9642: 9638: 9631: 9629: 9625: 9622: 9619: 9618:3-540-42627-2 9615: 9611: 9608:Jürgen Jost, 9605: 9603: 9601: 9597: 9592: 9586: 9582: 9578: 9571: 9568: 9562: 9556: 9552: 9548: 9547:Spin Geometry 9544: 9537: 9534: 9527: 9522: 9519: 9516: 9512: 9508: 9504: 9501: 9498: 9494: 9490: 9486: 9483: 9482: 9478: 9473: 9470: 9468: 9465: 9463: 9460: 9458: 9455: 9453: 9452:Spinor bundle 9450: 9448: 9445: 9443: 9440: 9438: 9435: 9434: 9429: 9427: 9425: 9417: 9413: 9409: 9405: 9401: 9398: 9392: 9386: 9379: 9375: 9371: 9367: 9366: 9365: 9362: 9358: 9352: 9342: 9336: 9316: 9311: 9301: 9296: 9293: 9290: 9287: 9277: 9272: 9269: 9266: 9263: 9248: 9230: 9227: 9224: 9221: 9194: 9191: 9186: 9171: 9167: 9162: 9160: 9156: 9152: 9148: 9144: 9140: 9136: 9132: 9129:, there is a 9128: 9122: 9118: 9111: 9109: 9101: 9099: 9097: 9093: 9089: 9078: 9074: 9052: 9035: 9018: 9001: 8984: 8970: 8963: 8962: 8961: 8959: 8955: 8947: 8945: 8941: 8937: 8931: 8925: 8921: 8917: 8913: 8907: 8903: 8898: 8896: 8892: 8884: 8865: 8861: 8855: 8849: 8837: 8832: 8828: 8823: 8810: 8799: 8796: 8776: 8768: 8760: 8756: 8752: 8748: 8745: 8741: 8737: 8733: 8732: 8731: 8725: 8721: 8717: 8713: 8712: 8711: 8709: 8703: 8698: 8694: 8690: 8685: 8683: 8679: 8672: 8640: 8637: 8634: 8626: 8623: 8620: 8617: 8614: 8607: 8597: 8592: 8573: 8570: 8567: 8559: 8556: 8553: 8550: 8547: 8544: 8541: 8534: 8515: 8507: 8500: 8487: 8482: 8480: 8469: 8466: 8463: 8457: 8454: 8448: 8431: 8428: 8425: 8422: 8415: 8405: 8400: 8386: 8383: 8380: 8377: 8374: 8371: 8364: 8350: 8347: 8344: 8341: 8338: 8335: 8328: 8315: 8310: 8308: 8292: 8289: 8283: 8280: 8274: 8260: 8259: 8258: 8254: 8245: 8243: 8241: 8240:Lorentz group 8215: 8212: 8209: 8193: 8189: 8171: 8167: 8146: 8141: 8137: 8120: 8117: 8114: 8097: 8063: 8049: 8046: 8030: 8027: 8024: 8010: 7997: 7981: 7971: 7962: 7946: 7942: 7918: 7915: 7908: 7902: 7898: 7894: 7889: 7876: 7870: 7853: 7833: 7817: 7813: 7809: 7800: 7784: 7780: 7759: 7756: 7753: 7745: 7732: 7729: 7726: 7698: 7695: 7692: 7676: 7672: 7645: 7629: 7625: 7604: 7601: 7589: 7573: 7569: 7556: 7553: 7550: 7534: 7530: 7523: 7503: 7500: 7497: 7477: 7474: 7471: 7451: 7448: 7440: 7436: 7427: 7423: 7413: 7400: 7392: 7389: 7386: 7382: 7373: 7369: 7356: 7340: 7336: 7323: 7320: 7317: 7301: 7297: 7285: 7282: 7279: 7275: 7266: 7262: 7252: 7239: 7227: 7224: 7221: 7205: 7202: 7199: 7195: 7183: 7180: 7177: 7173: 7164: 7160: 7147: 7131: 7127: 7114: 7111: 7108: 7092: 7088: 7081: 7073: 7071: 7066: 7053: 7048: 7045: 7042: 7038: 7028: 7011: 7008: 7005: 6990: 6985: 6972: 6967: 6964: 6961: 6957: 6953: 6947: 6944: 6941: 6929: 6922: 6906: 6887: 6884: 6881: 6870: 6864: 6853: 6816: 6813: 6810: 6806: 6802: 6796: 6785: 6747: 6744: 6741: 6738: 6735: 6732: 6729: 6723: 6720: 6698: 6668: 6662: 6659: 6650: 6649: 6645: 6644: 6641: 6639: 6634: 6632: 6614: 6601: 6595: 6589: 6586: 6564: 6560: 6556: 6550: 6544: 6541: 6518: 6512: 6509: 6489: 6486: 6483: 6457: 6451: 6448: 6440: 6436: 6427: 6405: 6399: 6396: 6388: 6384: 6371: 6369: 6358: 6354: 6347: 6343: 6335: 6331: 6321: 6317: 6309: 6305: 6280: 6276: 6268: 6264: 6252: 6248: 6242: 6234: 6230: 6203: 6200: 6197: 6194: 6191: 6184: 6170: 6167: 6164: 6161: 6158: 6155: 6152: 6135: 6132: 6129: 6123: 6117: 6114: 6111: 6098: 6083: 6080: 6077: 6061: 6058: 6055: 6049: 6043: 6040: 6037: 6020: 6017: 6014: 6011: 6008: 6005: 6002: 5999: 5996: 5989: 5972: 5969: 5966: 5950: 5947: 5944: 5938: 5932: 5929: 5926: 5918: 5912: 5907: 5898: 5895: 5892: 5874: 5870: 5862: 5861: 5860: 5858: 5854: 5850: 5846: 5842: 5834: 5830: 5826: 5825: 5824: 5822: 5818: 5814: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5782: 5774: 5770: 5766: 5761: 5759: 5755: 5751: 5747: 5742: 5740: 5736: 5733:) and PSL(2, 5732: 5728: 5724: 5692: 5688: 5660: 5656: 5652: 5633: 5626: 5623: 5616: 5610: 5604: 5596: 5592: 5584: 5583: 5582: 5580: 5576: 5572: 5568: 5564: 5560: 5553: 5551: 5547: 5543: 5539: 5535: 5526: 5524: 5519:Spin(6, 2) = 5518: 5516: 5514: 5509:Spin(3, 3) = 5508: 5506: 5503:Spin(4, 2) = 5502: 5500: 5498: 5493:Spin(5, 1) = 5492: 5490: 5488: 5483:Spin(3, 2) = 5482: 5480: 5477:Spin(4, 1) = 5476: 5474: 5472: 5466: 5464: 5459:Spin(2, 2) = 5458: 5456: 5454: 5449:Spin(3, 1) = 5448: 5446: 5444: 5439:Spin(2, 1) = 5438: 5436: 5434: 5429:Spin(1, 1) = 5428: 5427: 5426: 5422: 5418: 5410: 5406: 5398: 5394: 5387: 5383: 5378: 5374: 5368: 5364: 5354: 5350: 5344: 5340: 5334: 5326: 5324: 5322: 5318: 5312: 5289: 5285: 5281: 5276: 5272: 5263: 5259: 5256: 5252: 5251: 5250: 5230: 5226: 5222: 5217: 5213: 5204: 5200: 5197: 5193: 5192: 5191: 5171: 5167: 5163: 5158: 5154: 5150: 5145: 5141: 5132: 5130: 5126: 5122: 5121: 5120: 5100: 5096: 5092: 5087: 5083: 5079: 5074: 5070: 5061: 5057: 5053: 5051: 5047: 5043: 5042: 5041: 5021: 5017: 5007: 5004: 5000: 4995: 4991: 4987: 4983: 4979: 4976: 4972: 4971: 4970: 4964: 4960: 4957: 4954: 4950: 4949: 4948: 4946: 4942: 4938: 4934: 4930: 4926: 4922: 4918: 4914: 4910: 4906: 4902: 4901: 4896: 4888: 4886: 4884: 4880: 4876: 4871: 4867: 4863: 4855: 4851: 4833: 4810: 4806: 4801: 4795: 4791: 4787: 4781: 4775: 4772: 4768: 4764: 4758: 4752: 4741: 4733: 4732: 4731: 4729: 4725: 4704: 4698: 4692: 4689: 4682: 4663: 4654: 4648: 4642: 4636: 4630: 4627: 4618: 4612: 4601: 4592: 4579: 4572: 4571: 4570: 4569: 4563: 4555: 4553: 4538: 4530: 4529:endomorphisms 4513: 4509: 4500: 4496: 4491: 4472: 4450: 4447: 4444: 4441: 4438: 4416: 4410: 4405: 4399: 4396: 4392: 4388: 4385: 4380: 4377: 4374: 4371: 4367: 4362: 4358: 4353: 4349: 4328: 4300: 4295: 4292: 4289: 4281: 4278: 4271: 4270: 4269: 4250: 4228: 4203: 4200: 4192: 4187: 4183: 4179:of dimension 4178: 4174: 4166: 4164: 4150: 4147: 4127: 4119: 4115: 4111: 4107: 4102: 4100: 4081: 4075: 4055: 4052: 4049: 4041: 4025: 4022: 4019: 3996: 3991: 3987: 3983: 3980: 3977: 3974: 3968: 3962: 3955: 3954: 3953: 3936: 3930: 3918: 3912: 3909: 3901: 3883: 3875: 3869: 3847: 3843: 3819: 3816: 3813: 3810: 3806: 3803: 3800: 3797: 3791: 3785: 3778: 3777: 3776: 3759: 3753: 3750: 3741: 3735: 3732: 3729: 3726: 3703: 3700: 3695: 3691: 3687: 3680: 3679: 3678: 3661: 3655: 3652: 3649: 3646: 3638: 3619: 3614: 3610: 3604: 3600: 3596: 3591: 3583: 3580: 3570: 3569: 3568: 3551: 3545: 3542: 3539: 3536: 3533: 3530: 3507: 3502: 3498: 3492: 3488: 3484: 3479: 3475: 3471: 3466: 3461: 3455: 3451: 3447: 3442: 3438: 3432: 3428: 3423: 3414: 3413: 3412: 3395: 3389: 3386: 3377: 3371: 3368: 3365: 3362: 3355: 3352:. Define an 3351: 3347: 3326: 3322: 3310: 3306: 3302: 3294: 3292: 3291:a Lie group. 3275: 3269: 3266: 3244: 3240: 3236: 3231: 3227: 3217: 3200: 3188: 3182: 3179: 3176: 3173: 3147: 3141: 3135: 3123: 3100: 3074: 3048: 3042: 3039: 3019: 3016: 3010: 3004: 2978: 2970: 2966: 2959: 2956: 2947: 2939: 2935: 2928: 2925: 2919: 2913: 2890: 2884: 2881: 2861: 2841: 2838: 2832: 2824: 2820: 2816: 2813: 2810: 2804: 2796: 2792: 2765: 2759: 2753: 2745: 2741: 2737: 2731: 2723: 2719: 2696: 2692: 2688: 2683: 2679: 2671:choose paths 2655: 2649: 2646: 2643: 2640: 2637: 2634: 2611: 2605: 2602: 2576: 2547: 2536: 2533: 2529: 2505: 2499: 2496: 2487: 2481: 2478: 2475: 2472: 2465: 2446: 2440: 2437: 2414: 2408: 2405: 2393: 2391: 2389: 2388:supersymmetry 2385: 2381: 2380:spinor bundle 2377: 2373: 2355: 2351: 2347: 2342: 2338: 2334: 2331: 2311: 2308: 2305: 2282: 2279: 2276: 2273: 2251: 2247: 2241: 2237: 2233: 2230: 2225: 2221: 2215: 2211: 2203: 2202: 2201: 2199: 2178: 2174: 2161: 2159: 2155: 2151: 2135: 2132: 2127: 2123: 2119: 2114: 2110: 2106: 2101: 2097: 2093: 2084: 2060: 2051: 2047: 2041: 2035: 2032: 2029: 2023: 2017: 2014: 2007: 2006: 2005: 2002: 1989: 1986: 1978: 1974: 1967: 1947: 1944: 1939: 1935: 1911: 1906: 1902: 1898: 1893: 1889: 1883: 1879: 1871: 1870: 1869: 1852: 1846: 1843: 1820: 1814: 1811: 1804: 1799: 1797: 1778: 1757: 1753: 1749: 1745: 1726: 1720: 1698: 1692: 1670: 1665: 1661: 1653: 1652: 1651: 1617: 1601: 1598: 1593: 1589: 1563: 1558: 1554: 1533: 1513: 1488: 1484: 1480: 1477: 1474: 1469: 1465: 1461: 1456: 1452: 1448: 1443: 1439: 1435: 1429: 1423: 1420: 1413: 1412: 1411: 1409: 1393: 1390: 1387: 1364: 1358: 1335: 1331: 1324: 1318: 1315: 1312: 1309: 1306: 1302: 1297: 1293: 1285: 1279: 1273: 1270: 1263: 1262: 1261: 1260: 1256: 1237: 1234: 1228: 1225: 1222: 1216: 1213: 1210: 1202: 1199: 1187: 1186: 1185: 1183: 1179: 1175: 1171: 1168: 1164: 1160: 1152: 1150: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1115:spinor bundle 1112: 1108: 1104: 1100: 1096: 1092: 1084: 1082: 1080: 1076: 1072: 1068: 1064: 1059: 1056: 1051: 1047: 1042: 1040: 1038: 1032: 1028: 1024: 1018: 1012: 1010: 1004: 1000: 995: 991: 986: 969: 963: 960: 952: 933: 924: 918: 915: 906: 900: 897: 889: 876: 869: 868: 867: 863: 858: 852: 848: 844: 839: 835: 831: 827: 823: 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 31: 19: 9735: 9721:OEIS:A096336 9714:OEIS:A280191 9688:. Retrieved 9670: 9663: 9636: 9620: 9609: 9576: 9570: 9546: 9536: 9521:String group 9514: 9506: 9496: 9488: 9421: 9396: 9390: 9384: 9373: 9363: 9356: 9350: 9340: 9334: 9246: 9169: 9165: 9163: 9154: 9146: 9142: 9138: 9134: 9120: 9116: 9112: 9108:point groups 9105: 9095: 9092:string group 9087: 9070: 8951: 8939: 8935: 8923: 8919: 8915: 8911: 8905: 8901: 8899: 8894: 8890: 8882: 8859: 8853: 8850: 8848:may differ. 8835: 8824: 8769:(or two, if 8764: 8758: 8754: 8750: 8743: 8739: 8735: 8729: 8723: 8719: 8715: 8707: 8701: 8696: 8686: 8676: 8252: 8249: 8192:contractible 8002: 7854: 7718: 7414: 7253: 7074: 7067: 6986: 6651: 6635: 6375: 6356: 6352: 6345: 6341: 6333: 6329: 6319: 6315: 6307: 6303: 6283:is given by 6278: 6274: 6266: 6262: 6250: 6246: 6243: 6232: 6228: 6225: 5856: 5852: 5848: 5844: 5838: 5832: 5828: 5820: 5816: 5812: 5808: 5804: 5800: 5796: 5792: 5784: 5780: 5768: 5764: 5762: 5757: 5753: 5745: 5743: 5738: 5734: 5730: 5726: 5725:) determine 5722: 5690: 5686: 5658: 5650: 5648: 5578: 5570: 5566: 5557: 5545: 5541: 5537: 5533: 5529: 5522: 5512: 5496: 5486: 5470: 5462: 5452: 5442: 5432: 5420: 5416: 5408: 5404: 5396: 5392: 5385: 5381: 5366: 5362: 5353:double cover 5342: 5338: 5330: 5320: 5310: 5307: 5254: 5253:Cl(6)= M(4, 5248: 5195: 5194:Cl(5)= M(2, 5189: 5128: 5124: 5118: 5045: 5039: 5005: 5002: 4998: 4993: 4989: 4974: 4968: 4952: 4944: 4940: 4936: 4932: 4924: 4920: 4916: 4905:root systems 4898: 4895:isomorphisms 4892: 4872: 4865: 4861: 4853: 4849: 4825: 4727: 4723: 4678: 4565: 4556:Complex case 4495:spinor space 4494: 4492: 4320: 4185: 4181: 4176: 4173:Weyl spinors 4170: 4167:Spinor space 4117: 4113: 4112:) and of SO( 4109: 4105: 4103: 4098: 4039: 4011: 3899: 3834: 3718: 3636: 3634: 3522: 3349: 3308: 3304: 3300: 3298: 3218: 2464:covering map 2397: 2297: 2197: 2162: 2157: 2153: 2149: 2075: 2003: 1926: 1800: 1755: 1747: 1743: 1741: 1616:spin algebra 1615: 1505: 1350: 1254: 1252: 1181: 1177: 1169: 1162: 1156: 1153:Construction 1105:on (pseudo-) 1088: 1074: 1062: 1060: 1054: 1043: 1036: 1022: 1016: 1013: 1002: 998: 989: 987: 948: 861: 850: 846: 842: 834:double cover 821: 817: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 18:Spin algebra 9690:24 February 9149:), and the 8691:, which is 8190:, which is 8188:hyperboloid 7719:as long as 6364:is sent to 6349:is sent to 5050:quaternions 4929:quaternions 4879:gauge group 4846:identifies 2997:satisfying 2711:satisfying 2163:If the set 1927:where each 1752:Lie algebra 1750:. It is a 1009:Lie algebra 814:mathematics 530:Topological 369:alternating 9763:Lie groups 9757:Categories 9646:0821835742 9528:References 9424:pin groups 9339:< Spin( 8889:while PSO( 8693:centerless 8645: even 8578: even 7855:And since 7772:, we have 6318:→ (1,1) ∈ 6292:(1, 1) ∈ Z 6226:Thus once 5851:), taking 5748:) are all 5689:determine 5530:Note that 5423:) = (1, 1) 5260:Spin(6) = 5201:Spin(5) = 5054:Spin(3) = 4980:Spin(2) = 4961:Spin(1) = 4915:. Writing 4321:The space 4120:) because 4116:) by Spin( 3677:for which 3307:) by Spin( 1007:, and its 818:spin group 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 9485:Pin group 9412:hypercube 9399:-simplex. 9302:× 9278:≅ 9192:× 9125:, by the 9042:→ 9025:→ 9008:→ 8991:→ 8978:Fivebrane 8974:→ 8971:… 8773:) of the 8699:) is for 8598:⊕ 8520: odd 8458:⁡ 8449:⁡ 8406:⊕ 8284:⁡ 8275:⁡ 8224:↑ 8134:→ 8129:↑ 8104:→ 8050:π 8047:≅ 8039:↑ 8011:π 7972:≅ 7943:π 7934:, we get 7916:± 7895:≅ 7877:≅ 7814:π 7810:≅ 7781:π 7746:, so for 7696:− 7673:π 7626:π 7599:→ 7570:π 7566:→ 7554:− 7531:π 7527:→ 7490:. So for 7424:π 7390:− 7370:π 7366:→ 7337:π 7333:→ 7321:− 7298:π 7294:→ 7283:− 7263:π 7240:⋯ 7237:→ 7225:− 7203:− 7196:π 7192:→ 7181:− 7161:π 7157:→ 7128:π 7124:→ 7112:− 7089:π 7085:→ 7082:⋯ 7046:− 7035:→ 7018:→ 7009:− 6989:fibration 6965:− 6954:≅ 6945:− 6885:− 6814:− 6742:⋯ 6663:⁡ 6602:≅ 6557:≅ 6452:⁡ 6437:π 6400:⁡ 6385:π 6340:(1, 0) ∈ 6290:going to 6099:× 5871:π 5831:) × Spin( 5617:⁡ 5611:⊂ 5593:π 5559:Connected 5540:) = Spin( 5521:SU(2, 2, 5282:≅ 5223:≅ 5164:× 5151:≅ 5093:≅ 5080:≅ 4834:∼ 4811:∼ 4788:× 4776:⁡ 4753:⁡ 4705:⊗ 4693:⁡ 4661:→ 4649:⁡ 4643:× 4631:⁡ 4625:→ 4613:⁡ 4598:→ 4583:→ 4510:⋀ 4476:¯ 4448:≤ 4442:≤ 4386:− 4378:− 4350:η 4304:¯ 4296:⊕ 4282:⊗ 4254:¯ 4204:⊗ 4148:− 4108:) by Pin( 4076:ρ 4053:∈ 4023:∈ 3992:∗ 3963:ρ 3952:given by 3931:⁡ 3925:→ 3913:⁡ 3870:α 3848:∗ 3814:∈ 3801:− 3786:α 3754:⁡ 3748:→ 3736:⁡ 3730:: 3727:α 3656:⁡ 3650:∈ 3546:⁡ 3540:∈ 3485:⋯ 3448:⋯ 3390:⁡ 3384:→ 3372:⁡ 3270:⁡ 3241:γ 3228:γ 3192:~ 3189:γ 3177:⋅ 3151:~ 3127:~ 3124:γ 3101:γ 3078:~ 3075:γ 3043:⁡ 3005:γ 2967:γ 2957:⋅ 2936:γ 2914:γ 2885:⁡ 2862:γ 2821:γ 2793:γ 2769:~ 2742:γ 2720:γ 2693:γ 2680:γ 2650:⁡ 2644:∈ 2606:⁡ 2580:~ 2534:− 2500:⁡ 2494:→ 2482:⁡ 2441:⁡ 2409:⁡ 2309:⊗ 2277:≠ 2234:− 2136:⋯ 2133:⊕ 2120:⊕ 2107:⊕ 2048:∩ 2036:⁡ 2018:⁡ 1945:∈ 1899:⋯ 1847:⁡ 1815:⁡ 1803:pin group 1481:⊕ 1478:⋯ 1475:⊕ 1462:⊕ 1449:⊕ 1424:⁡ 1391:∈ 1316:− 1310:⊗ 1274:⁡ 1238:⋯ 1235:⊕ 1226:⊗ 1217:⊕ 1211:⊕ 994:dimension 964:⁡ 931:→ 919:⁡ 913:→ 901:⁡ 895:→ 880:→ 826:Lie group 701:Conformal 589:Euclidean 196:nilpotent 9736:K-Theory 9655:55487352 9545:(1989). 9430:See also 9355:< SO( 8928:and the 8771:SO = PSO 6351:(1,1) ∈ 5627:′ 5505:SU(2, 2) 5479:Sp(1, 1) 5123:Cl(4) = 5044:Cl(3) = 4973:Cl(2) = 4951:Cl(1) = 4927:for the 3835:and let 3032:. Since 2906:defined 2376:fermions 1099:electron 1095:fermions 1067:subgroup 830:manifold 824:), is a 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 9773:Spinors 9594:page 15 9565:page 14 9402:higher 9368:higher 9119:) → SO( 9094:String( 8918:) ⊂ SO( 8914:) × SO( 8858:, Spin( 8708:maximal 6366:(1, −1) 5653:′) the 5649:with Z( 5375:of the 5317:Spin(8) 4038:. When 3862:denote 2521:. Then 2076:where 1794:of the 1165:with a 1091:physics 1021:, Spin( 951:lifting 845:) = SO( 836:of the 832:is the 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 9742:  9681:  9653:  9643:  9616:  9587:  9557:  9513:, Sp(2 9447:Spinor 9245:in SO( 8995:String 8856:> 2 8838:> 1 8749:Spin(2 8734:Spin(2 8704:> 2 8246:Center 8194:, and 8159:where 7617:hence 6646:Proof 6579:, and 6362:(0, 1) 6310:> 2 6301:. For 6269:)) → π 6261:(Spin( 6253:> 2 6235:> 2 5843:of SO( 5791:of SO( 5775:, Spin 5655:center 5573:′ the 5511:SL(4, 5495:SL(2, 5485:Sp(4, 5469:SL(2, 5461:SL(2, 5451:SL(2, 5441:SL(2, 5431:GL(1, 5399:> 2 5390:. For 5371:, the 5313:= 7, 8 4012:where 3344:be an 2784:, and 2627:, for 1614:. The 1506:where 1408:graded 1351:where 1139:tetrad 1117:. The 1046:kernel 1019:> 2 1005:− 1)/2 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 9675:(PDF) 9467:Anyon 9115:Spin( 8934:Spin( 8862:) is 8844:and π 8714:Spin( 6773:Orbit 6306:= 2, 6285:1 ∈ Z 5827:Spin( 5823:) is 5717:and π 5532:Spin( 5403:Spin( 5337:Spin( 5315:(see 5262:SU(4) 5203:Sp(2) 5060:SU(2) 5056:Sp(1) 4986:SO(2) 4858:with 3113:with 1113:of a 1061:Spin( 1025:) is 730:Sp(∞) 727:SU(∞) 140:image 9740:ISBN 9708:The 9692:2023 9679:ISBN 9651:OCLC 9641:ISBN 9614:ISBN 9585:ISBN 9555:ISBN 9505:Mp(2 9495:, O( 9487:Pin( 9012:Spin 8851:For 8825:The 8761:+1), 8455:Spin 8281:Spin 7757:> 7730:> 7664:and 7501:> 7475:< 7464:for 6841:Stab 6487:> 6476:for 6360:and 6314:1 ∈ 6273:(SO( 6201:> 6156:> 6000:> 5752:for 5561:and 5048:the 4982:U(1) 4963:O(1) 4773:Spin 4742:Spin 4602:Spin 4493:The 4431:for 3348:for 3267:Spin 3040:Spin 2647:Spin 2603:Spin 2479:Spin 2406:Spin 2374:for 2324:for 2266:for 2089:even 2056:even 2015:Spin 1801:The 1581:and 1014:For 898:Spin 816:the 724:O(∞) 713:Loop 532:and 9388:→ A 9382:2⋅A 9110:). 9098:). 8932:of 8910:SO( 8897:). 8876:= Z 8872:= π 8255:≥ 3 7852:. 6684:on 6633:). 6336:= 2 6322:× Z 6296:× Z 5819:, 5811:, 5795:, 5783:, 5760:). 5685:of 5657:of 5577:of 5380:SO( 5355:of 5331:In 5249:-- 5190:-- 5119:-- 5040:-- 4992:in 4969:-- 4881:of 4864:, − 4193:is 4184:= 2 4068:), 3910:Pin 3411:by 3093:of 2874:in 2382:on 2033:Pin 1812:Pin 1180:of 1073:Cl( 1035:SO( 1033:of 864:≠ 2 841:SO( 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 9759:: 9649:. 9627:^ 9599:^ 9583:, 9579:, 9553:. 9549:. 9418:). 9380:, 9361:. 9353:+1 9337:+1 9161:. 9029:SO 8960:: 8944:. 8938:, 8922:, 8904:, 8746:), 8726:), 8203:SO 8108:SO 8091:SO 8057:SO 8018:SO 7996:. 7956:SO 7864:SO 7827:SO 7794:SO 7686:SO 7639:SO 7583:SO 7544:SO 7350:SO 7311:SO 7215:SO 7141:SO 7102:SO 7022:SO 6999:SO 6935:SO 6916:SO 6875:SO 6847:SO 6779:SO 6660:SO 6640:. 6449:SO 6397:SO 6368:. 6355:× 6344:× 6338:, 6332:= 6281:)) 6277:, 6265:, 6249:, 6231:, 5885:SO 5859:: 5855:≥ 5847:, 5767:, 5550:. 5544:, 5536:, 5467:× 5419:, 5407:, 5401:, 5395:+ 5384:, 5365:, 5357:SO 5341:, 5127:⊕ 5058:= 5001:↦ 4984:= 4885:. 4870:. 4860:(− 4852:, 4690:Cl 4664:1. 4628:SO 4163:. 3751:Cl 3733:Cl 3704:1. 3653:Cl 3543:Cl 3387:Cl 3369:Cl 3216:. 2882:SO 2497:SO 2438:SO 2124:Cl 2111:Cl 2098:Cl 2085:Cl 2052:Cl 1990:1. 1844:Cl 1798:. 1662:Cl 1590:Cl 1555:Cl 1546:, 1485:Cl 1466:Cl 1453:Cl 1440:Cl 1421:Cl 1271:Cl 1081:. 1058:. 1041:. 996:, 985:. 961:SO 934:1. 916:SO 866:) 849:, 615:U( 591:E( 579:O( 37:→ 9748:. 9723:. 9716:. 9694:. 9657:. 9563:. 9517:) 9515:n 9507:n 9499:) 9497:n 9489:n 9397:n 9391:n 9385:n 9374:n 9359:) 9357:n 9351:k 9349:2 9347:Z 9343:) 9341:n 9335:k 9333:2 9331:Z 9317:, 9312:2 9307:Z 9297:1 9294:+ 9291:k 9288:2 9283:Z 9273:2 9270:+ 9267:k 9264:4 9259:C 9247:n 9231:1 9228:+ 9225:k 9222:2 9217:Z 9195:G 9187:2 9182:C 9170:G 9166:G 9155:n 9147:n 9143:n 9139:n 9135:n 9123:) 9121:n 9117:n 9096:n 9088:n 9084:3 9081:π 9056:) 9053:n 9050:( 9046:O 9039:) 9036:n 9033:( 9022:) 9019:n 9016:( 9005:) 9002:n 8999:( 8988:) 8985:n 8982:( 8942:) 8940:q 8936:p 8926:) 8924:q 8920:p 8916:q 8912:p 8906:q 8902:p 8895:n 8891:n 8887:2 8883:n 8878:1 8874:1 8870:0 8868:π 8866:( 8860:n 8854:n 8846:1 8842:0 8836:k 8811:. 8808:) 8804:R 8800:, 8797:n 8794:( 8789:o 8786:s 8759:n 8755:n 8751:n 8744:n 8740:n 8736:n 8724:n 8720:n 8716:n 8702:n 8697:n 8641:q 8638:, 8635:p 8627:, 8624:k 8621:4 8618:= 8615:n 8608:2 8603:Z 8593:2 8588:Z 8574:q 8571:, 8568:p 8560:, 8557:2 8554:+ 8551:k 8548:4 8545:= 8542:n 8535:4 8530:Z 8516:q 8508:p 8501:2 8496:Z 8488:{ 8483:= 8476:) 8473:) 8470:q 8467:, 8464:p 8461:( 8452:( 8446:Z 8432:k 8429:4 8426:= 8423:n 8416:2 8411:Z 8401:2 8396:Z 8387:2 8384:+ 8381:k 8378:4 8375:= 8372:n 8365:4 8360:Z 8351:1 8348:+ 8345:k 8342:2 8339:= 8336:n 8329:2 8324:Z 8316:{ 8311:= 8304:) 8301:) 8297:C 8293:, 8290:n 8287:( 8278:( 8272:Z 8253:n 8220:) 8216:n 8213:, 8210:1 8207:( 8172:n 8168:H 8147:, 8142:n 8138:H 8125:) 8121:n 8118:, 8115:1 8112:( 8101:) 8098:n 8095:( 8070:) 8067:) 8064:n 8061:( 8053:( 8044:) 8035:) 8031:n 8028:, 8025:1 8022:( 8014:( 7982:2 7977:Z 7969:) 7966:) 7963:3 7960:( 7952:( 7947:1 7922:} 7919:1 7913:{ 7909:/ 7903:3 7899:S 7890:3 7885:P 7882:R 7874:) 7871:3 7868:( 7840:) 7837:) 7834:3 7831:( 7823:( 7818:1 7807:) 7804:) 7801:n 7798:( 7790:( 7785:1 7760:3 7754:n 7733:3 7727:n 7705:) 7702:) 7699:1 7693:n 7690:( 7682:( 7677:1 7652:) 7649:) 7646:n 7643:( 7635:( 7630:1 7605:, 7602:0 7596:) 7593:) 7590:n 7587:( 7579:( 7574:1 7563:) 7560:) 7557:1 7551:n 7548:( 7540:( 7535:1 7524:0 7504:3 7498:n 7478:n 7472:k 7452:0 7449:= 7446:) 7441:n 7437:S 7433:( 7428:k 7401:. 7398:) 7393:1 7387:n 7383:S 7379:( 7374:1 7363:) 7360:) 7357:n 7354:( 7346:( 7341:1 7330:) 7327:) 7324:1 7318:n 7315:( 7307:( 7302:1 7291:) 7286:1 7280:n 7276:S 7272:( 7267:2 7234:) 7231:) 7228:1 7222:n 7219:( 7211:( 7206:1 7200:k 7189:) 7184:1 7178:n 7174:S 7170:( 7165:k 7154:) 7151:) 7148:n 7145:( 7137:( 7132:k 7121:) 7118:) 7115:1 7109:n 7106:( 7098:( 7093:k 7054:. 7049:1 7043:n 7039:S 7032:) 7029:n 7026:( 7015:) 7012:1 7006:n 7003:( 6973:. 6968:1 6962:n 6958:S 6951:) 6948:1 6942:n 6939:( 6930:/ 6926:) 6923:n 6920:( 6891:) 6888:1 6882:n 6879:( 6871:= 6868:) 6865:v 6862:( 6857:) 6854:n 6851:( 6817:1 6811:n 6807:S 6803:= 6800:) 6797:v 6794:( 6789:) 6786:n 6783:( 6751:) 6748:0 6745:, 6739:, 6736:0 6733:, 6730:1 6727:( 6724:= 6721:v 6699:n 6694:R 6672:) 6669:n 6666:( 6615:3 6610:P 6607:R 6599:) 6596:3 6593:( 6590:O 6587:S 6565:1 6561:S 6554:) 6551:2 6548:( 6545:O 6542:S 6522:) 6519:1 6516:( 6513:O 6510:S 6490:3 6484:n 6464:) 6461:) 6458:n 6455:( 6446:( 6441:1 6412:) 6409:) 6406:n 6403:( 6394:( 6389:1 6357:Z 6353:Z 6346:Z 6342:Z 6334:q 6330:p 6324:2 6320:Z 6316:Z 6308:q 6304:p 6298:2 6294:2 6287:2 6279:q 6275:p 6271:1 6267:q 6263:p 6259:1 6257:π 6251:q 6247:p 6239:2 6233:q 6229:p 6204:2 6198:q 6195:, 6192:p 6185:2 6180:Z 6171:2 6168:= 6165:q 6162:, 6159:2 6153:p 6147:Z 6139:) 6136:2 6133:, 6130:2 6127:( 6124:= 6121:) 6118:q 6115:, 6112:p 6109:( 6103:Z 6095:Z 6087:) 6084:1 6081:, 6078:2 6075:( 6065:) 6062:0 6059:, 6056:2 6053:( 6050:= 6047:) 6044:q 6041:, 6038:p 6035:( 6029:Z 6021:1 6018:, 6015:0 6012:= 6009:q 6006:, 6003:2 5997:p 5990:2 5985:Z 5976:) 5973:0 5970:, 5967:1 5964:( 5954:) 5951:1 5948:, 5945:1 5942:( 5939:= 5936:) 5933:q 5930:, 5927:p 5924:( 5919:0 5913:{ 5908:= 5905:) 5902:) 5899:q 5896:, 5893:p 5890:( 5880:( 5875:1 5857:q 5853:p 5849:q 5845:p 5833:q 5829:p 5821:q 5817:p 5813:q 5809:p 5805:q 5801:p 5797:q 5793:p 5785:q 5781:p 5779:( 5777:0 5769:q 5765:p 5758:n 5754:n 5746:n 5739:Z 5735:R 5731:R 5727:G 5723:G 5721:( 5719:1 5703:g 5691:G 5687:G 5671:g 5659:G 5651:G 5634:, 5631:) 5624:G 5620:( 5614:Z 5608:) 5605:G 5602:( 5597:1 5579:G 5571:G 5567:G 5548:) 5546:p 5542:q 5538:q 5534:p 5525:) 5523:H 5515:) 5513:R 5499:) 5497:H 5489:) 5487:R 5473:) 5471:R 5465:) 5463:R 5455:) 5453:C 5445:) 5443:R 5435:) 5433:R 5421:q 5417:p 5415:( 5411:) 5409:q 5405:p 5397:q 5393:p 5388:) 5386:q 5382:p 5369:) 5367:q 5363:p 5361:( 5359:0 5345:) 5343:q 5339:p 5321:n 5311:n 5290:3 5286:A 5277:3 5273:D 5255:C 5231:2 5227:C 5218:2 5214:B 5196:H 5172:1 5168:A 5159:1 5155:A 5146:2 5142:D 5129:H 5125:H 5101:1 5097:A 5088:1 5084:C 5075:1 5071:B 5046:H 5022:1 5018:D 5006:z 5003:u 4999:z 4994:R 4990:z 4975:C 4953:R 4945:R 4941:n 4937:R 4933:n 4925:H 4921:C 4917:R 4868:) 4866:u 4862:a 4856:) 4854:u 4850:a 4848:( 4807:/ 4802:) 4796:1 4792:S 4785:) 4782:V 4779:( 4769:( 4765:= 4762:) 4759:V 4756:( 4747:C 4728:C 4724:V 4709:C 4702:) 4699:V 4696:( 4658:) 4655:1 4652:( 4646:U 4640:) 4637:n 4634:( 4622:) 4619:n 4616:( 4607:C 4593:2 4588:Z 4580:1 4539:W 4514:W 4473:W 4451:m 4445:k 4439:1 4417:2 4411:/ 4406:) 4400:k 4397:2 4393:e 4389:i 4381:1 4375:k 4372:2 4368:e 4363:( 4359:= 4354:k 4329:W 4301:W 4293:W 4290:= 4286:C 4279:V 4251:W 4229:W 4208:C 4201:V 4186:m 4182:n 4177:V 4151:a 4128:a 4118:V 4114:V 4110:V 4106:V 4099:a 4085:) 4082:a 4079:( 4056:V 4050:a 4040:a 4026:V 4020:v 3997:, 3988:a 3984:v 3981:a 3978:= 3975:v 3972:) 3969:a 3966:( 3940:) 3937:V 3934:( 3928:O 3922:) 3919:V 3916:( 3900:V 3884:t 3880:) 3876:a 3873:( 3844:a 3820:, 3817:V 3811:v 3807:, 3804:v 3798:= 3795:) 3792:v 3789:( 3763:) 3760:V 3757:( 3745:) 3742:V 3739:( 3701:= 3696:t 3692:a 3688:a 3665:) 3662:V 3659:( 3647:a 3637:V 3620:. 3615:t 3611:a 3605:t 3601:b 3597:= 3592:t 3588:) 3584:b 3581:a 3578:( 3555:) 3552:V 3549:( 3537:b 3534:, 3531:a 3508:. 3503:i 3499:e 3493:j 3489:e 3480:k 3476:e 3472:= 3467:t 3462:) 3456:k 3452:e 3443:j 3439:e 3433:i 3429:e 3424:( 3399:) 3396:V 3393:( 3381:) 3378:V 3375:( 3366:: 3363:t 3350:V 3332:} 3327:i 3323:e 3319:{ 3309:V 3305:V 3301:V 3279:) 3276:n 3273:( 3245:b 3237:, 3232:a 3204:) 3201:1 3198:( 3183:= 3180:b 3174:a 3148:e 3142:= 3139:) 3136:0 3133:( 3052:) 3049:n 3046:( 3020:e 3017:= 3014:) 3011:0 3008:( 2985:) 2982:) 2979:t 2976:( 2971:b 2963:( 2960:p 2954:) 2951:) 2948:t 2945:( 2940:a 2932:( 2929:p 2926:= 2923:) 2920:t 2917:( 2894:) 2891:n 2888:( 2842:b 2839:= 2836:) 2833:1 2830:( 2825:b 2817:, 2814:a 2811:= 2808:) 2805:1 2802:( 2797:a 2766:e 2760:= 2757:) 2754:0 2751:( 2746:b 2738:= 2735:) 2732:0 2729:( 2724:a 2697:b 2689:, 2684:a 2659:) 2656:n 2653:( 2641:b 2638:, 2635:a 2615:) 2612:n 2609:( 2577:e 2554:) 2551:} 2548:e 2545:{ 2542:( 2537:1 2530:p 2509:) 2506:n 2503:( 2491:) 2488:n 2485:( 2476:: 2473:p 2450:) 2447:n 2444:( 2418:) 2415:n 2412:( 2356:j 2352:e 2348:+ 2343:i 2339:e 2335:= 2332:v 2312:v 2306:v 2283:, 2280:j 2274:i 2252:i 2248:e 2242:j 2238:e 2231:= 2226:j 2222:e 2216:i 2212:e 2198:V 2184:} 2179:i 2175:e 2171:{ 2158:k 2154:V 2150:V 2128:4 2115:2 2102:0 2094:= 2061:, 2045:) 2042:V 2039:( 2030:= 2027:) 2024:V 2021:( 1987:= 1984:) 1979:i 1975:v 1971:( 1968:q 1948:V 1940:i 1936:v 1912:, 1907:k 1903:v 1894:2 1890:v 1884:1 1880:v 1856:) 1853:V 1850:( 1824:) 1821:V 1818:( 1782:) 1779:n 1776:( 1771:o 1768:s 1756:V 1748:n 1744:V 1727:, 1724:) 1721:n 1718:( 1713:n 1710:i 1707:p 1704:s 1699:= 1696:) 1693:V 1690:( 1685:n 1682:i 1679:p 1676:s 1671:= 1666:2 1636:n 1633:i 1630:p 1627:s 1602:V 1599:= 1594:1 1568:R 1564:= 1559:0 1534:V 1514:n 1489:n 1470:2 1457:1 1444:0 1436:= 1433:) 1430:V 1427:( 1394:V 1388:v 1368:) 1365:v 1362:( 1359:q 1336:, 1332:) 1328:) 1325:v 1322:( 1319:q 1313:v 1307:v 1303:( 1298:/ 1294:V 1290:T 1286:= 1283:) 1280:V 1277:( 1255:V 1232:) 1229:V 1223:V 1220:( 1214:V 1207:R 1203:= 1200:V 1196:T 1182:V 1178:V 1176:T 1170:q 1163:V 1075:n 1063:n 1055:I 1039:) 1037:n 1023:n 1017:n 1003:n 1001:( 999:n 990:n 973:) 970:n 967:( 928:) 925:n 922:( 910:) 907:n 904:( 890:2 885:Z 877:1 862:n 853:) 851:R 847:n 843:n 822:n 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Spin algebra
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.