Knowledge (XXG)

Spin wave

Source đź“ť

38: 1733:(SPEELS), very high energy surface magnons can be excited. This technique allows one to probe the dispersion of magnons in the ultrathin ferromagnetic films. The first experiment was performed for a 5 ML Fe film. With momentum resolution, the magnon dispersion was explored for an 8 ML fcc Co film on Cu(001) and an 8 ML hcp Co on W(110), respectively. The maximum magnon energy at the border of the surface Brillouin zone was 240 meV. 161: 1327: 169: 1253:, namely a superposition of states with one reduced spin. The exchange energy penalty associated with changing the orientation of one spin is reduced by spreading the disturbance over a long wavelength. The degree of misorientation of any two near-neighbor spins is thereby minimized. From this explanation one can see why the 878: 1508: 1674:
the energy loss of a beam of neutrons that excite a magnon is measured, typically as a function of scattering vector (or equivalently momentum transfer), temperature and external magnetic field. Inelastic neutron scattering measurements can determine the dispersion curve for magnons just as they can
1529:
The first term on the right hand side of the equation describes the precession of the magnetization under the influence of the applied field, while the above-mentioned final term describes how the magnetization vector "spirals in" towards the field direction as time progresses. In metals the damping
1261:
has no spin waves: the notion of spreading a disturbance in the spin lattice over a long wavelength makes no sense when spins have only two possible orientations. The existence of low-energy excitations is related to the fact that in the absence of an external field, the spin system has an infinite
342: 647: 1076: 1403: 213: 1521:
is the damping constant. The cross-products in this forbidding-looking equation show that the propagation of spin waves is governed by the torques generated by internal and external fields. (An equivalent form is the
465: 1721:, incident on a magnetic material, by spin waves, typically as a function of angle, temperature and applied field. Ferromagnetic resonance is a convenient laboratory method for determining the effect of 1742:
When magnetoelectronic devices are operated at high frequencies, the generation of spin waves can be an important energy loss mechanism. Spin wave generation limits the linewidths and therefore the
1164: 1388: 968: 636: 1757:
devices. The reciprocal of the lowest frequency of the characteristic spin waves of a magnetic material gives a time scale for the switching of a device based on that material.
873:{\displaystyle {\mathcal {H}}=-{\frac {1}{2}}J\sum _{i,j}S_{i}^{z}S_{j}^{z}-g\mu _{\rm {B}}H\sum _{i}S_{i}^{z}-{\frac {1}{4}}J\sum _{i,j}(S_{i}^{+}S_{j}^{-}+S_{i}^{-}S_{j}^{+})} 1312: 577: 201: 1288: 553: 519: 1239: 1199: 1796:
Plihal, M.; Mills, D. L.; Kirschner, J. (1999). "Spin wave signature in the spin polarized electron energy loss spectrum in ultrathin Fe film: theory and experiment".
1730: 1169:
but in fact this arrangement of spins is not an eigenstate. The reason is that such a state is transformed by the spin raising and lowering operators. The operator
1710:(usually at a convenient visible wavelength) reflected from or transmitted through a magnetic material. Brillouin spectroscopy is similar to the more widely known 1262:
number of degenerate ground states with infinitesimally different spin orientations. The existence of these ground states can be seen from the fact that the state
1726: 1700: 1503:{\displaystyle {\frac {d\mathbf {M} }{dt}}=-\gamma \mathbf {M} \times \mathbf {H} -{\frac {\lambda \mathbf {M} \times (\mathbf {M} \times \mathbf {H} )}{M^{2}}}} 979: 337:{\displaystyle {\mathcal {H}}=-{\frac {1}{2}}J\sum _{i,j}\mathbf {S} _{i}\cdot \mathbf {S} _{j}-g\mu _{\rm {B}}\sum _{i}\mathbf {H} \cdot \mathbf {S} _{i}} 1249:. The combined effect of the two operators is therefore to propagate the rotated spin to a new position, which is a hint that the correct eigenstate is a 1771: 1081:
where N is the total number of Bravais lattice sites. The proposition that the ground state is an eigenstate of the Hamiltonian is confirmed.
164:
An illustration of the precession of a spin wave with a wavelength that is eleven times the lattice constant about an applied magnetic field.
412: 59: 398:
is the internal field which includes the external field plus any "molecular" field. Note that in the classical continuum case and in
1932: 1909: 1890: 1833:"Spin-Polarized Electron Energy Loss Spectroscopy of High Energy, Large Wave Vector Spin Waves in Ultrathin fcc Co Films on Cu(001)" 1659: 81: 172:
The projection of the magnetization of the same spin wave along the chain direction as a function of distance along the spin chain.
1523: 1330:
An excitation in the middle of a grid of spins propagates by exchanging torque (and thus angular momentum) with its neighbours.
177: 1951: 1722: 1696: 1315: 1094: 1714:, but probes a lower energy and has a superior energy resolution in order to be able to detect the meV energy of magnons. 1671: 1639: 1340: 913: 52: 46: 1989: 403: 479: 1692: 139: 134:
excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a
63: 95: 585: 1663: 1587:
form is the third term of a Taylor expansion of a cosine term in the energy expression originating from the
1084:
One might guess that the first excited state of the Hamiltonian has one randomly selected spin at position
1684: 1615: 1847: 1805: 1647: 1397:
is the volume. The propagation of spin waves is described by the Landau-Lifshitz equation of motion:
1293: 558: 182: 1680: 1538: 579:
can be verified by rewriting it in terms of the spin-raising and spin-lowering operators given by:
111: 1265: 530: 496: 1212: 1172: 1968: 1947: 1928: 1905: 1886: 1863: 1258: 483: 372: 204: 1855: 1813: 1776: 1750: 1711: 1651: 1611: 1831:
Vollmer, R.; Etzkorn, M.; Kumar, P. S. Anil; Ibach, H.; Kirschner, J. (29 September 2003).
1832: 1071:{\displaystyle {\mathcal {H}}|0\rangle =\left(-Js^{2}-g\mu _{\rm {B}}Hs\right)N|0\rangle } 478:
dimensions this equation admits several integrable and non-integrable extensions like the
364: 352: 1851: 1809: 1994: 1743: 1578: 360: 135: 1983: 1921: 389: 144: 115: 1973: 127: 1859: 1717:
Ferromagnetic (or antiferromagnetic) resonance instead measures the absorption of
887:
has been taken as the direction of the magnetic field. The spin-lowering operator
110:
material. These low-lying collective excitations occur in magnetic lattices with
1817: 1607: 1254: 149: 1610:. The underlying reason for the difference in dispersion relation is that the 1541:. The dispersion relation for phonons is to first order linear in wavevector 1766: 1754: 1718: 1526:, which replaces the final term by a more "simple looking" equivalent one.) 168: 1867: 17: 1688: 1563:
is the velocity of sound. Magnons have a parabolic dispersion relation:
160: 1679:. Important inelastic neutron scattering facilities are present at the 1326: 460:{\displaystyle \mathbf {S} _{t}=\mathbf {S} \times \mathbf {S} _{xx}.} 1707: 1676: 131: 119: 107: 903:
annihilates the ground state with maximum spin projection along the
1537:
One important difference between phonons and magnons lies in their
1655: 1643: 1325: 167: 123: 893:
annihilates the state with minimum projection of spin along the
176:
The simplest way of understanding spin waves is to consider the
103: 521:
is that in which all spins are aligned parallel with the field
1614:(magnetization) for the ground-state in ferromagnets violates 1290:
does not have the full rotational symmetry of the Hamiltonian
31: 1927:(27. repr. ed.). New York: Holt, Rinehart and Winston. 1299: 985: 653: 564: 219: 188: 1706:
Brillouin scattering similarly measures the energy loss of
1638:
Spin waves are observed through four experimental methods:
1883:
Concepts in solids : lectures on the theory of solids
1658:
scattering), inelastic electron scattering (spin-resolved
1618:. Two adjacent spins in a solid with lattice constant 1406: 1343: 1296: 1268: 1215: 1209:
back to its low-energy orientation, but the operator
1175: 1097: 982: 916: 650: 588: 561: 533: 499: 415: 216: 185: 1159:{\displaystyle S_{i}^{z}|1\rangle =(s-1)|1\rangle ,} 1920: 1725:on the dispersion of spin waves. One group at the 1534:are in many cases dominated by the eddy currents. 1502: 1382: 1306: 1282: 1233: 1193: 1158: 1070: 962: 872: 630: 571: 547: 513: 459: 336: 195: 1946:(2nd ed.). Oxford: Oxford University Press. 27:Wave which propagates through a magnetic material 1731:spin polarized electron energy loss spectroscopy 1383:{\displaystyle M={\frac {N\mu _{\rm {B}}gs}{V}}} 142:. The energies of spin waves are typically only 1885:(Repr. ed.). Singapore: World Scientific. 963:{\displaystyle S_{i}^{z}|0\rangle =s|0\rangle } 1727:Max Planck Institute of Microstructure Physics 1701:National Institute of Standards and Technology 1976:performing Brillouin scattering measurements. 8: 1969:Spin waves - The Feynman Lectures on Physics 1919:Ashcroft, Neil W.; Mermin, N. David (1977). 1277: 1150: 1121: 1065: 998: 957: 940: 542: 508: 1622:that participate in a mode with wavevector 1902:Basic notions of condensed matter physics 1492: 1479: 1471: 1460: 1454: 1446: 1438: 1413: 1407: 1405: 1361: 1360: 1350: 1342: 1298: 1297: 1295: 1269: 1267: 1225: 1220: 1214: 1185: 1180: 1174: 1142: 1113: 1107: 1102: 1096: 1057: 1036: 1035: 1019: 990: 984: 983: 981: 973:for the maximally aligned state, we find 949: 932: 926: 921: 915: 861: 856: 846: 841: 828: 823: 813: 808: 789: 772: 763: 758: 748: 734: 733: 717: 712: 702: 697: 681: 664: 652: 651: 649: 622: 606: 593: 587: 563: 562: 560: 534: 532: 500: 498: 445: 440: 431: 422: 417: 414: 328: 323: 314: 308: 297: 296: 280: 275: 265: 260: 247: 230: 218: 217: 215: 187: 186: 184: 82:Learn how and when to remove this message 1904:. Cambridge, Mass.: Perseus Publishing. 631:{\displaystyle S^{\pm }=S^{x}\pm iS^{y}} 493:and the ground state of the Hamiltonian 159: 45:This article includes a list of general 1788: 1729:in Halle, Germany proved that by using 897:-axis, while the spin-raising operator 118:point of view, spin waves are known as 7: 1626:have an angle between them equal to 1245:-projection of the spin at position 1205:-projection of the spin at position 1362: 1037: 735: 298: 51:it lacks sufficient corresponding 25: 1772:Holstein–Primakoff transformation 1660:electron energy loss spectroscopy 1530:forces described by the constant 1524:Landau-Lifshitz-Gilbert equation 1480: 1472: 1461: 1447: 1439: 1414: 1334:In this model the magnetization 441: 432: 418: 324: 315: 276: 261: 36: 1314:, a phenomenon which is called 152:at room temperature and below. 130:that correspond roughly to the 1699:in Tennessee, USA, and at the 1517:is the gyromagnetic ratio and 1484: 1468: 1307:{\displaystyle {\mathcal {H}}} 1270: 1143: 1139: 1127: 1114: 1058: 991: 950: 933: 867: 801: 572:{\displaystyle {\mathcal {H}}} 535: 501: 196:{\displaystyle {\mathcal {H}}} 1: 1860:10.1103/PhysRevLett.91.147201 1723:magnetocrystalline anisotropy 1697:Oak Ridge National Laboratory 1316:spontaneous symmetry breaking 486:and so on. For a ferromagnet 1900:Anderson, Philip W. (1997). 1881:Anderson, Philip W. (1997). 1672:inelastic neutron scattering 1662:), and spin-wave resonance ( 1640:inelastic neutron scattering 1818:10.1103/PhysRevLett.82.2579 2011: 1942:Chikazumi, SĹŤshin (1997). 1283:{\displaystyle |0\rangle } 548:{\displaystyle |0\rangle } 514:{\displaystyle |0\rangle } 1944:Physics of ferromagnetism 1693:High Flux Isotope Reactor 1234:{\displaystyle S_{j}^{-}} 1194:{\displaystyle S_{i}^{+}} 140:spontaneous magnetization 1683:in Oxfordshire, UK, the 1634:Experimental observation 480:Landau-Lifshitz equation 148:in keeping with typical 96:condensed matter physics 1840:Physical Review Letters 1664:ferromagnetic resonance 104:propagating disturbance 66:more precise citations. 1738:Practical significance 1685:Institut Laue-Langevin 1616:time-reversal symmetry 1504: 1384: 1331: 1308: 1284: 1235: 1195: 1160: 1072: 964: 874: 632: 573: 549: 515: 461: 406:equation has the form 404:Heisenberg ferromagnet 338: 197: 173: 165: 114:. From the equivalent 1505: 1385: 1329: 1309: 1285: 1236: 1196: 1161: 1073: 965: 875: 633: 574: 550: 516: 462: 339: 198: 171: 163: 106:in the ordering of a 1648:Brillouin scattering 1573:where the parameter 1539:dispersion relations 1404: 1341: 1294: 1266: 1213: 1173: 1095: 980: 914: 648: 586: 559: 555:is an eigenstate of 531: 497: 413: 214: 183: 1923:Solid state physics 1852:2003PhRvL..91n7201V 1810:1999PhRvL..82.2579P 1753:components used in 1681:ISIS neutron source 1230: 1190: 1112: 931: 866: 851: 833: 818: 768: 722: 707: 112:continuous symmetry 1559:is frequency, and 1500: 1380: 1332: 1304: 1280: 1231: 1216: 1201:will increase the 1191: 1176: 1156: 1098: 1068: 960: 917: 870: 852: 837: 819: 804: 800: 754: 753: 708: 693: 692: 628: 569: 545: 511: 457: 334: 313: 258: 193: 174: 166: 1990:Magnetic ordering 1804:(12): 2579–2582. 1703:in Maryland, USA. 1498: 1427: 1378: 1259:discrete symmetry 785: 780: 744: 677: 672: 484:Ishimori equation 304: 243: 238: 92: 91: 84: 16:(Redirected from 2002: 1957: 1938: 1926: 1915: 1896: 1872: 1871: 1837: 1828: 1822: 1821: 1793: 1777:Spin engineering 1712:Raman scattering 1652:Raman scattering 1629: 1625: 1621: 1606: 1586: 1576: 1572: 1562: 1558: 1554: 1544: 1533: 1520: 1516: 1509: 1507: 1506: 1501: 1499: 1497: 1496: 1487: 1483: 1475: 1464: 1455: 1450: 1442: 1428: 1426: 1418: 1417: 1408: 1396: 1389: 1387: 1386: 1381: 1379: 1374: 1367: 1366: 1365: 1351: 1313: 1311: 1310: 1305: 1303: 1302: 1289: 1287: 1286: 1281: 1273: 1248: 1244: 1240: 1238: 1237: 1232: 1229: 1224: 1208: 1204: 1200: 1198: 1197: 1192: 1189: 1184: 1165: 1163: 1162: 1157: 1146: 1117: 1111: 1106: 1088:rotated so that 1087: 1077: 1075: 1074: 1069: 1061: 1053: 1049: 1042: 1041: 1040: 1024: 1023: 994: 989: 988: 969: 967: 966: 961: 953: 936: 930: 925: 906: 902: 896: 892: 886: 879: 877: 876: 871: 865: 860: 850: 845: 832: 827: 817: 812: 799: 781: 773: 767: 762: 752: 740: 739: 738: 721: 716: 706: 701: 691: 673: 665: 657: 656: 637: 635: 634: 629: 627: 626: 611: 610: 598: 597: 578: 576: 575: 570: 568: 567: 554: 552: 551: 546: 538: 526: 520: 518: 517: 512: 504: 492: 477: 473: 466: 464: 463: 458: 453: 452: 444: 435: 427: 426: 421: 401: 397: 387: 376: 370: 358: 355:, the operators 350: 343: 341: 340: 335: 333: 332: 327: 318: 312: 303: 302: 301: 285: 284: 279: 270: 269: 264: 257: 239: 231: 223: 222: 202: 200: 199: 194: 192: 191: 147: 87: 80: 76: 73: 67: 62:this article by 53:inline citations 40: 39: 32: 21: 2010: 2009: 2005: 2004: 2003: 2001: 2000: 1999: 1980: 1979: 1965: 1960: 1954: 1941: 1935: 1918: 1912: 1899: 1893: 1880: 1876: 1875: 1835: 1830: 1829: 1825: 1798:Phys. Rev. Lett 1795: 1794: 1790: 1785: 1763: 1744:quality factors 1740: 1636: 1627: 1623: 1619: 1612:order parameter 1605: 1596: 1588: 1582: 1574: 1564: 1560: 1556: 1546: 1542: 1531: 1518: 1514: 1488: 1456: 1419: 1409: 1402: 1401: 1394: 1356: 1352: 1339: 1338: 1324: 1292: 1291: 1264: 1263: 1246: 1242: 1241:will lower the 1211: 1210: 1206: 1202: 1171: 1170: 1093: 1092: 1085: 1031: 1015: 1008: 1004: 978: 977: 912: 911: 904: 898: 894: 888: 884: 729: 646: 645: 618: 602: 589: 584: 583: 557: 556: 529: 528: 522: 495: 494: 487: 475: 471: 439: 416: 411: 410: 402:dimensions the 399: 393: 386: 380: 374: 368: 365:Bravais lattice 356: 353:exchange energy 348: 322: 292: 274: 259: 212: 211: 181: 180: 158: 143: 88: 77: 71: 68: 58:Please help to 57: 41: 37: 28: 23: 22: 15: 12: 11: 5: 2008: 2006: 1998: 1997: 1992: 1982: 1981: 1978: 1977: 1971: 1964: 1963:External links 1961: 1959: 1958: 1952: 1939: 1933: 1916: 1910: 1897: 1891: 1877: 1874: 1873: 1846:(14): 147201. 1823: 1787: 1786: 1784: 1781: 1780: 1779: 1774: 1769: 1762: 1759: 1739: 1736: 1735: 1734: 1715: 1704: 1691:, France, the 1654:and inelastic 1635: 1632: 1601: 1592: 1579:spin stiffness 1577:represents a " 1511: 1510: 1495: 1491: 1486: 1482: 1478: 1474: 1470: 1467: 1463: 1459: 1453: 1449: 1445: 1441: 1437: 1434: 1431: 1425: 1422: 1416: 1412: 1391: 1390: 1377: 1373: 1370: 1364: 1359: 1355: 1349: 1346: 1323: 1320: 1301: 1279: 1276: 1272: 1228: 1223: 1219: 1188: 1183: 1179: 1167: 1166: 1155: 1152: 1149: 1145: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1116: 1110: 1105: 1101: 1079: 1078: 1067: 1064: 1060: 1056: 1052: 1048: 1045: 1039: 1034: 1030: 1027: 1022: 1018: 1014: 1011: 1007: 1003: 1000: 997: 993: 987: 971: 970: 959: 956: 952: 948: 945: 942: 939: 935: 929: 924: 920: 881: 880: 869: 864: 859: 855: 849: 844: 840: 836: 831: 826: 822: 816: 811: 807: 803: 798: 795: 792: 788: 784: 779: 776: 771: 766: 761: 757: 751: 747: 743: 737: 732: 728: 725: 720: 715: 711: 705: 700: 696: 690: 687: 684: 680: 676: 671: 668: 663: 660: 655: 639: 638: 625: 621: 617: 614: 609: 605: 601: 596: 592: 566: 544: 541: 537: 510: 507: 503: 468: 467: 456: 451: 448: 443: 438: 434: 430: 425: 420: 384: 359:represent the 345: 344: 331: 326: 321: 317: 311: 307: 300: 295: 291: 288: 283: 278: 273: 268: 263: 256: 253: 250: 246: 242: 237: 234: 229: 226: 221: 190: 157: 154: 90: 89: 44: 42: 35: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2007: 1996: 1993: 1991: 1988: 1987: 1985: 1975: 1972: 1970: 1967: 1966: 1962: 1955: 1949: 1945: 1940: 1936: 1934:0-03-083993-9 1930: 1925: 1924: 1917: 1913: 1911:0-201-32830-5 1907: 1903: 1898: 1894: 1892:981-02-3231-4 1888: 1884: 1879: 1878: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1834: 1827: 1824: 1819: 1815: 1811: 1807: 1803: 1799: 1792: 1789: 1782: 1778: 1775: 1773: 1770: 1768: 1765: 1764: 1760: 1758: 1756: 1752: 1748: 1745: 1737: 1732: 1728: 1724: 1720: 1716: 1713: 1709: 1705: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1673: 1669: 1668: 1667: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1633: 1631: 1617: 1613: 1609: 1604: 1600: 1595: 1591: 1585: 1580: 1571: 1567: 1553: 1549: 1540: 1535: 1527: 1525: 1493: 1489: 1476: 1465: 1457: 1451: 1443: 1435: 1432: 1429: 1423: 1420: 1410: 1400: 1399: 1398: 1375: 1371: 1368: 1357: 1353: 1347: 1344: 1337: 1336: 1335: 1328: 1322:Magnetization 1321: 1319: 1317: 1274: 1260: 1256: 1252: 1226: 1221: 1217: 1186: 1181: 1177: 1153: 1147: 1136: 1133: 1130: 1124: 1118: 1108: 1103: 1099: 1091: 1090: 1089: 1082: 1062: 1054: 1050: 1046: 1043: 1032: 1028: 1025: 1020: 1016: 1012: 1009: 1005: 1001: 995: 976: 975: 974: 954: 946: 943: 937: 927: 922: 918: 910: 909: 908: 907:-axis. Since 901: 891: 862: 857: 853: 847: 842: 838: 834: 829: 824: 820: 814: 809: 805: 796: 793: 790: 786: 782: 777: 774: 769: 764: 759: 755: 749: 745: 741: 730: 726: 723: 718: 713: 709: 703: 698: 694: 688: 685: 682: 678: 674: 669: 666: 661: 658: 644: 643: 642: 641:resulting in 623: 619: 615: 612: 607: 603: 599: 594: 590: 582: 581: 580: 539: 525: 505: 490: 485: 481: 454: 449: 446: 436: 428: 423: 409: 408: 407: 405: 396: 391: 390:Bohr magneton 383: 378: 366: 362: 354: 329: 319: 309: 305: 293: 289: 286: 281: 271: 266: 254: 251: 248: 244: 240: 235: 232: 227: 224: 210: 209: 208: 207:ferromagnet: 206: 179: 170: 162: 155: 153: 151: 146: 141: 137: 133: 129: 126:modes of the 125: 121: 117: 116:quasiparticle 113: 109: 105: 101: 97: 86: 83: 75: 72:December 2013 65: 61: 55: 54: 48: 43: 34: 33: 30: 19: 1974:List of labs 1943: 1922: 1901: 1882: 1843: 1839: 1826: 1801: 1797: 1791: 1746: 1741: 1646:scattering ( 1642:, inelastic 1637: 1602: 1598: 1593: 1589: 1583: 1569: 1565: 1551: 1547: 1536: 1528: 1512: 1392: 1333: 1257:magnet with 1250: 1168: 1083: 1080: 972: 899: 889: 882: 640: 523: 488: 472:1 + 1, 2 + 1 469: 394: 381: 346: 175: 150:Curie points 128:spin lattice 122:, which are 99: 93: 78: 69: 50: 29: 1608:dot product 1255:Ising model 178:Hamiltonian 136:ferromagnet 64:introducing 1984:Categories 1953:0191569852 1783:References 1719:microwaves 205:Heisenberg 47:references 18:Spin waves 1767:Magnonics 1755:microwave 1545:, namely 1477:× 1466:× 1458:λ 1452:− 1444:× 1436:γ 1433:− 1358:μ 1278:⟩ 1251:spin wave 1227:− 1151:⟩ 1134:− 1122:⟩ 1066:⟩ 1033:μ 1026:− 1010:− 999:⟩ 958:⟩ 941:⟩ 848:− 830:− 787:∑ 770:− 746:∑ 731:μ 724:− 679:∑ 662:− 613:± 595:± 543:⟩ 509:⟩ 437:× 320:⋅ 306:∑ 294:μ 287:− 272:⋅ 245:∑ 228:− 100:spin wave 1868:14611549 1761:See also 1689:Grenoble 1555:, where 367:points, 203:for the 108:magnetic 1848:Bibcode 1806:Bibcode 1751:ferrite 1708:photons 1677:phonons 1581:." The 527:. That 388:is the 377:-factor 371:is the 351:is the 124:bosonic 120:magnons 60:improve 1950:  1931:  1908:  1889:  1866:  1513:where 1393:where 883:where 491:> 0 482:, the 373:LandĂ© 347:where 156:Theory 132:phonon 49:, but 1995:Waves 1836:(PDF) 1656:X-ray 1644:light 476:3 + 1 400:1 + 1 361:spins 102:is a 1948:ISBN 1929:ISBN 1906:ISBN 1887:ISBN 1864:PMID 1675:for 1666:). 474:and 392:and 98:, a 1856:doi 1814:doi 1749:of 1695:at 1687:in 1670:In 470:In 363:at 145:ÎĽeV 138:'s 94:In 1986:: 1862:. 1854:. 1844:91 1842:. 1838:. 1812:. 1802:82 1800:. 1650:, 1630:. 1628:ka 1597:â‹… 1570:Ak 1568:= 1552:ck 1550:= 1318:. 379:, 1956:. 1937:. 1914:. 1895:. 1870:. 1858:: 1850:: 1820:. 1816:: 1808:: 1747:Q 1624:k 1620:a 1603:j 1599:S 1594:i 1590:S 1584:k 1575:A 1566:ĎŽ 1561:c 1557:ω 1548:ĎŽ 1543:k 1532:λ 1519:λ 1515:Îł 1494:2 1490:M 1485:) 1481:H 1473:M 1469:( 1462:M 1448:H 1440:M 1430:= 1424:t 1421:d 1415:M 1411:d 1395:V 1376:V 1372:s 1369:g 1363:B 1354:N 1348:= 1345:M 1300:H 1275:0 1271:| 1247:j 1243:z 1222:j 1218:S 1207:i 1203:z 1187:+ 1182:i 1178:S 1154:, 1148:1 1144:| 1140:) 1137:1 1131:s 1128:( 1125:= 1119:1 1115:| 1109:z 1104:i 1100:S 1086:i 1063:0 1059:| 1055:N 1051:) 1047:s 1044:H 1038:B 1029:g 1021:2 1017:s 1013:J 1006:( 1002:= 996:0 992:| 986:H 955:0 951:| 947:s 944:= 938:0 934:| 928:z 923:i 919:S 905:z 900:S 895:z 890:S 885:z 868:) 863:+ 858:j 854:S 843:i 839:S 835:+ 825:j 821:S 815:+ 810:i 806:S 802:( 797:j 794:, 791:i 783:J 778:4 775:1 765:z 760:i 756:S 750:i 742:H 736:B 727:g 719:z 714:j 710:S 704:z 699:i 695:S 689:j 686:, 683:i 675:J 670:2 667:1 659:= 654:H 624:y 620:S 616:i 608:x 604:S 600:= 591:S 565:H 540:0 536:| 524:H 506:0 502:| 489:J 455:. 450:x 447:x 442:S 433:S 429:= 424:t 419:S 395:H 385:B 382:ÎĽ 375:g 369:g 357:S 349:J 330:i 325:S 316:H 310:i 299:B 290:g 282:j 277:S 267:i 262:S 255:j 252:, 249:i 241:J 236:2 233:1 225:= 220:H 189:H 85:) 79:( 74:) 70:( 56:. 20:)

Index

Spin waves
references
inline citations
improve
introducing
Learn how and when to remove this message
condensed matter physics
propagating disturbance
magnetic
continuous symmetry
quasiparticle
magnons
bosonic
spin lattice
phonon
ferromagnet
spontaneous magnetization
ÎĽeV
Curie points


Hamiltonian
Heisenberg
exchange energy
spins
Bravais lattice
Landé g-factor
Bohr magneton
Heisenberg ferromagnet
Landau-Lifshitz equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑