Knowledge (XXG)

Spontaneous symmetry breaking

Source 📝

31: 3512: 2006:, the order parameter is zero, which is spatially invariant, and there is no symmetry breaking. Below the Curie temperature, however, the magnetization acquires a constant nonvanishing value, which points in a certain direction (in the idealized situation where we have full equilibrium; otherwise, translational symmetry gets broken as well). The residual rotational symmetries which leave the orientation of this vector invariant remain unbroken, unlike the other rotations which do not and are thus spontaneously broken. 61: 1577: 4573: 3767: 1172: 2111:; their equations predict that certain measurements will be the same at any point in the field. For instance, field equations might predict that the mass of two quarks is constant. Solving the equations to find the mass of each quark might give two solutions. In one solution, quark A is heavier than quark B. In the second solution, quark B is heavier than quark A 3779: 2466:
phonons, are associated with slow density fluctuations of the crystal's atoms. The associated Goldstone mode for magnets are oscillating waves of spin known as spin-waves. For symmetry-breaking states, whose order parameter is not a conserved quantity, Nambu–Goldstone modes are typically massless and propagate at a constant velocity.
1533:, if two outcomes are considered, the probability distributions of a pair of outcomes can be different. For example in an electric field, the forces on a charged particle are different in different directions, so the rotational symmetry is explicitly broken by the electric field which does not have this symmetry. 2339:.) In dynamical gauge symmetry breaking, however, no unstable Higgs particle operates in the theory, but the bound states of the system itself provide the unstable fields that render the phase transition. For example, Bardeen, Hill, and Lindner published a paper that attempts to replace the conventional 2031:
model, as explained earlier, a component of the Higgs field provides the order parameter breaking the electroweak gauge symmetry to the electromagnetic gauge symmetry. Like the ferromagnetic example, there is a phase transition at the electroweak temperature. The same comment about us not tending to
2377:
Most phases of matter can be understood through the lens of spontaneous symmetry breaking. For example, crystals are periodic arrays of atoms that are not invariant under all translations (only under a small subset of translations by a lattice vector). Magnets have north and south poles that are
2500:
with respect to these outcomes. However, if the system is sampled (i.e. if the system is actually used or interacted with in any way), a specific outcome must occur. Though the system as a whole is symmetric, it is never encountered with this symmetry, but only in one specific asymmetric state.
2469:
An important theorem, due to Mermin and Wagner, states that, at finite temperature, thermally activated fluctuations of Nambu–Goldstone modes destroy the long-range order, and prevent spontaneous symmetry breaking in one- and two-dimensional systems. Similarly, quantum fluctuations of the order
2042:
Take a thin cylindrical plastic rod and push both ends together. Before buckling, the system is symmetric under rotation, and so visibly cylindrically symmetric. But after buckling, it looks different, and asymmetric. Nevertheless, features of the cylindrical symmetry are still there: ignoring
2465:
Spontaneous breaking of a continuous symmetry is inevitably accompanied by gapless (meaning that these modes do not cost any energy to excite) Nambu–Goldstone modes associated with slow, long-wavelength fluctuations of the order parameter. For example, vibrational modes in a crystal, known as
1522:
transformation (such as translation or rotation), so that any pair of outcomes differing only by that transformation have the same probability distribution. For example if measurements of an observable at any two different positions have the same probability distribution, the observable has
2249:
states that local gauge symmetries can never be spontaneously broken. Rather, after gauge fixing, the global symmetry (or redundancy) can be broken in a manner formally resembling spontaneous symmetry breaking. One important consequence of the distinction between true symmetries and
2254:, is that the massless Nambu–Goldstone resulting from spontaneous breaking of a gauge symmetry are absorbed in the description of the gauge vector field, providing massive vector field modes, like the plasma mode in a superconductor, or the Higgs mode observed in particle physics. 2501:
Hence, the symmetry is said to be spontaneously broken in that theory. Nevertheless, the fact that each outcome is equally likely is a reflection of the underlying symmetry, which is thus often dubbed "hidden symmetry", and has crucial formal consequences. (See the article on the
2470:
parameter prevent most types of continuous symmetry breaking in one-dimensional systems even at zero temperature. (An important exception is ferromagnets, whose order parameter, magnetization, is an exactly conserved quantity and does not have any quantum fluctuations.)
1547:
Typically, when spontaneous symmetry breaking occurs, the observable properties of the system change in multiple ways. For example the density, compressibility, coefficient of thermal expansion, and specific heat will be expected to change when a liquid becomes a solid.
2043:
friction, it would take no force to freely spin the rod around, displacing the ground state in time, and amounting to an oscillation of vanishing frequency, unlike the radial oscillations in the direction of the buckle. This spinning mode is effectively the requisite
2347:
by a DSB that is driven by a bound state of top-antitop quarks. (Such models, in which a composite particle plays the role of the Higgs boson, are often referred to as "Composite Higgs models".) Dynamical breaking of gauge symmetries is often due to creation of a
2024:, the mean 4-velocity field defined by averaging over the velocities of the galaxies (the galaxies act like gas particles at cosmological scales) acts as an order parameter breaking this symmetry. Similar comments can be made about the cosmic microwave background. 2089:
is an example of spontaneous symmetry breaking when both balloons are initially inflated to the local maximum pressure. When some air flows from one balloon into the other, the pressure in both balloons will drop, making the system more stable in the asymmetric
2520:. From this point on, the theory can be treated as if this element actually is distinct, with the proviso that any results found in this way must be resymmetrized, by taking the average of each of the elements of the group being the distinct one. 2054:
over an infinite horizontal plane. This system has all the symmetries of the Euclidean plane. But now heat the bottom surface uniformly so that it becomes much hotter than the upper surface. When the temperature gradient becomes large enough,
2118:
An actual measurement reflects only one solution, representing a breakdown in the symmetry of the underlying theory. "Hidden" is a better term than "broken", because the symmetry is always there in these equations. This phenomenon is called
1572:
this symmetry by rolling down the dome into the trough, a point of lowest energy. Afterward, the ball has come to a rest at some fixed point on the perimeter. The dome and the ball retain their individual symmetry, but the system does not.
2461:
Spontaneously-symmetry-broken phases of matter are characterized by an order parameter that describes the quantity which breaks the symmetry under consideration. For example, in a magnet, the order parameter is the local magnetization.
2481:, have been shown to break translational and rotational symmetries. It was shown, in the presence of a symmetric Hamiltonian, and in the limit of infinite volume, the system spontaneously adopts a chiral configuration — i.e., breaks 1719: 2323:
Dynamical breaking of a global symmetry is a spontaneous symmetry breaking, which happens not at the (classical) tree level (i.e., at the level of the bare action), but due to quantum corrections (i.e., at the level of the
2617:
of CP symmetry in the weak interactions. This origin is ultimately reliant on the Higgs mechanism, but, so far understood as a "just so" feature of Higgs couplings, not a spontaneously broken symmetry phenomenon.
45:), the overall "rules" remain symmetric, but the symmetric "sombrero" enforces an asymmetric outcome, since eventually the ball must rest at some random spot on the bottom, "spontaneously", and not all others. 2082:
from the center. Initially, the system is symmetric with respect to the diameter, yet after passing the critical velocity, the bead ends up in one of the two new equilibrium points, thus breaking the symmetry.
1567:
Consider a symmetric upward dome with a trough circling the bottom. If a ball is put at the very peak of the dome, the system is symmetric with respect to a rotation around the center axis. But the ball may
2368:
is the paradigmatic example from the condensed matter side, where phonon-mediated attractions lead electrons to become bound in pairs and then condense, thereby breaking the electromagnetic gauge symmetry.
2315:
Dynamical symmetry breaking (DSB) is a special form of spontaneous symmetry breaking in which the ground state of the system has reduced symmetry properties compared to its theoretical description (i.e.,
2306:
of metals is a condensed-matter analog of the Higgs phenomena, in which a condensate of Cooper pairs of electrons spontaneously breaks the U(1) gauge symmetry associated with light and electromagnetism.
2129:(that we know of) breaks the symmetry in the equations. By the nature of spontaneous symmetry breaking, different portions of the early Universe would break symmetry in different directions, leading to 2215:, whose mass is an order of magnitude lighter than the mass of the nucleons. It served as the prototype and significant ingredient of the Higgs mechanism underlying the electroweak symmetry breaking. 1855: 2538:, and the symmetry is spontaneously broken. This is because other subsystems interact with the order parameter, which specifies a "frame of reference" to be measured against. In that case, the 2021: 1932: 2397:. These states do not break any symmetry, but are distinct phases of matter. Unlike the case of spontaneous symmetry breaking, there is not a general framework for describing such states. 1981:
would have exactly the same energy, and the defining equations respect the symmetry but the ground state (vacuum) of the theory breaks the symmetry, implying the existence of a massless
3397: 1502:. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. 3817: 3349:
Guralnik, G S; Hagen, C R and Kibble, T W B (1967). Broken Symmetries and the Goldstone Theorem. Advances in Physics, vol. 2 Interscience Publishers, New York. pp. 567–708
2911:
Muñoz-Vega, R.; García-Quiroz, A.; López-Chåvez, Ernesto; Salinas-Hernåndez, Encarnación (2012). "Spontaneous symmetry breakdown in non-relativistic quantum mechanics".
3344:
International Journal of Modern Physics A: The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles
1764: 1611: 2281:
predicts that, at lower energies, this symmetry is broken so that the photon and the massive W and Z bosons emerge. In addition, fermions develop mass consistently.
4370: 1643: 1458: 3541: 1147: 3048:
Jeannerot, Rachel; Rocher, Jonathan; Sakellariadou, Mairi (24 November 2003). "How generic is cosmic string formation in supersymmetric grand unified theories".
2389:
There are several known examples of matter that cannot be described by spontaneous symmetry breaking, including: topologically ordered phases of matter, such as
4018: 3649: 2292:) would then be predicted to be massless, when, in reality, they are observed to have mass. To overcome this, spontaneous symmetry breaking is augmented by the 2565:), such as the rotational symmetry of space. However, if the system contains only a single spatial dimension, then only discrete symmetries may be broken in a 2742:
Note that (as in fundamental Higgs driven spontaneous gauge symmetry breaking) the term "symmetry breaking" is a misnomer when applied to gauge symmetries.
1252: 230: 2496:
For spontaneous symmetry breaking to occur, there must be a system in which there are several equally likely outcomes. The system as a whole is therefore
2628: 1653: 4541: 3526: 2245:
of metals and the origin of particle masses in the standard model of particle physics. The term "spontaneous symmetry breaking" is a misnomer here as
1985:, the mode running around the circle at the minimum of this potential, and indicating there is some memory of the original symmetry in the Lagrangian. 2709: 270: 2261:
gauge symmetry associated with the electro-weak force generates masses for several particles, and separates the electromagnetic and weak forces. The
4553: 3867: 2078:). At a certain critical rotational velocity, this point will become unstable and the bead will jump to one of two other newly created equilibria, 3390: 2597:, won half of the prize for the discovery of the mechanism of spontaneous broken symmetry in the context of the strong interactions, specifically 4237: 3810: 4171: 3644: 3032: 2153:
and the dynamics of the theory. For example, Higgs symmetry breaking may have created primordial cosmic strings as a byproduct. Hypothetical
3307:
For a pedagogic introduction to electroweak symmetry breaking with step by step derivations, not found in texts, of many key relations, see
4094: 1005: 3727: 3333: 1451: 3215:
Kohlstedt, K.L.; Vernizzi, G.; Solis, F.J.; Olvera de la Cruz, M. (2007). "Spontaneous Chirality via Long-range Electrostatic Forces".
2512:, but requires that one element of the group be distinct, then spontaneous symmetry breaking has occurred. The theory must not dictate 1286: 3383: 1140: 3783: 2161:, creating difficulties for GUT unless monopoles (along with any GUT domain walls) are expelled from our observable Universe through 3840: 3803: 3551: 3355: 2825: 2798: 2725: 2582: 1294: 1214: 775: 2382:. In addition to these examples, there are a whole host of other symmetry-breaking phases of matter — including nematic phases of 3950: 3732: 2331:
Dynamical breaking of a gauge symmetry is subtler. In conventional spontaneous gauge symmetry breaking, there exists an unstable
4217: 4212: 2039:, there is a condensed-matter collective field ψ, which acts as the order parameter breaking the electromagnetic gauge symmetry. 4612: 4508: 3935: 3162:(2010). "Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order". 73: 4192: 1562: 30: 4520: 3692: 2771: 2390: 2115:. The symmetry of the equations is not reflected by the individual solutions, but it is reflected by the range of solutions. 1541: 1444: 3339:
The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles
1526:
Spontaneous symmetry breaking occurs when this relation breaks down, while the underlying physical laws remain symmetrical.
338: 4602: 4498: 4275: 4197: 3980: 3850: 3583: 3328: 2704: 1778: 1133: 147: 4232: 1219: 4597: 4166: 4161: 4132: 3845: 3742: 2602: 875: 805: 177: 4207: 2458:
when the Hamiltonian becomes invariant under the inversion transformation, but the expectation value is not invariant.
1204: 333: 4300: 2546:
in which it would be a singlet), and, instead changes under the (hidden) symmetry, now implemented in the (nonlinear)
2274: 1617:
In the simplest idealized relativistic model, the spontaneously broken symmetry is summarized through an illustrative
1209: 275: 4117: 1886: 1224: 1540:
can be described by spontaneous symmetry breaking. Notable exceptions include topological phases of matter like the
4576: 4338: 4146: 2614: 1530: 985: 182: 4069: 4000: 2694: 2502: 2288:
of elementary particle interactions requires the existence of a number of particles. However, some particles (the
2208: 323: 4360: 4227: 4151: 4112: 4043: 3893: 3697: 2405:
The ferromagnet is the canonical system that spontaneously breaks the continuous symmetry of the spins below the
2317: 2120: 1622: 1491: 4427: 4407: 4397: 4387: 4343: 3918: 3702: 2653: 2638: 2598: 2528: 2357: 2174: 1278: 810: 440: 285: 250: 3616: 800: 4622: 4607: 4536: 4122: 4084: 4048: 3771: 3484: 3474: 3217: 2678: 2336: 2075: 1340: 1262: 1186: 1085: 555: 363: 358: 220: 4447: 4222: 4202: 4127: 4038: 3995: 3489: 3462: 2586: 2361: 2188: 2158: 2142: 2086: 955: 935: 435: 368: 280: 245: 127: 4472: 3985: 3965: 3737: 3611: 3578: 2594: 2527:. If there is a field (often a background field) which acquires an expectation value (not necessarily a 2241:, the spontaneous symmetry breaking of gauge symmetries, is an important component in understanding the 1357: 1163: 845: 705: 401: 265: 3888: 3279: 1998:
materials, the underlying laws are invariant under spatial rotations. Here, the order parameter is the
1970:
symmetry. However, once the system falls into a specific stable vacuum state (amounting to a choice of
4503: 4432: 4377: 4107: 3930: 3687: 3626: 3621: 3595: 3442: 3236: 3181: 3124: 3067: 2987: 2930: 2877: 2720: 2663: 2349: 2278: 2246: 2192: 2154: 1645:, which essentially dictates how a system behaves, can be split up into kinetic and potential terms, 1486:
state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the
1400: 1090: 870: 406: 260: 172: 52: 2965: 4488: 4457: 4402: 4382: 4290: 4247: 4102: 4028: 3955: 3945: 3857: 3654: 3106: 2394: 2379: 2184: 2146: 2067: 1618: 1515: 1487: 1475: 1395: 1385: 1197: 1100: 815: 545: 430: 3343: 3313: 3308: 720: 595: 4417: 4315: 4023: 3970: 3862: 3682: 3452: 3371:
University of Cambridge, David Tong: Lectures on Quantum Field Theory for masters level students.
3260: 3226: 3197: 3171: 3102: 3057: 3003: 2977: 2946: 2920: 2893: 2688: 2633: 2497: 2228: 2130: 2032:
notice broken symmetries suggests why it took so long for us to discover electroweak unification.
1536:
Phases of matter, such as crystals, magnets, and conventional superconductors, as well as simple
1519: 1499: 1483: 1270: 1110: 1035: 965: 850: 835: 765: 730: 485: 445: 235: 197: 152: 140: 117: 112: 4548: 3365: 680: 4617: 4558: 4467: 4437: 4365: 4328: 4323: 4305: 4270: 4260: 3975: 3940: 3923: 3826: 3568: 3351: 3252: 3140: 3115: 3028: 2850: 2821: 2815: 2794: 2788: 2767: 2715: 2606: 2570: 2474: 2473:
Other long-range interacting systems, such as cylindrical curved surfaces interacting via the
2421: 2406: 2365: 2303: 2242: 2071: 2036: 2003: 1767: 1740: 1587: 1576: 1511: 1479: 1420: 1362: 1065: 995: 880: 785: 725: 660: 630: 600: 460: 455: 300: 225: 215: 107: 3092:
A Brief History of Time, Stephen Hawking, Bantam; 10th anniversary edition (1998). pp. 73–74.
2761: 2542:
does not obey the initial symmetry (which would keep it invariant, in the linearly realized
2277:. At energies much greater than 100 GeV, all these particles behave in a similar manner. The 2195:
describing these interactions, and is responsible for the bulk of the mass (over 99%) of the
17: 4285: 4280: 4137: 4033: 3747: 3494: 3479: 3420: 3244: 3189: 3132: 3075: 2995: 2938: 2885: 2699: 2610: 2478: 2353: 2325: 2266: 2162: 2100: 1537: 1415: 1390: 1239: 1105: 1020: 1000: 970: 920: 745: 740: 735: 620: 605: 535: 240: 167: 157: 92: 1628: 1510:
By definition, spontaneous symmetry breaking requires the existence of physical laws (e.g.
4515: 4442: 4422: 4392: 4355: 4350: 4255: 4079: 3669: 3536: 3110: 2683: 2668: 2658: 2551: 2534:) which is not invariant under the symmetry in question, we say that the system is in the 2524: 2340: 2293: 2238: 2224: 2180: 2056: 2044: 2010: 1982: 1495: 1405: 1367: 1347: 1050: 1045: 1015: 1010: 980: 940: 910: 890: 795: 690: 685: 650: 635: 610: 590: 570: 500: 490: 411: 373: 290: 255: 87: 65: 60: 2999: 3240: 3185: 3128: 3071: 2991: 2934: 2881: 41:), the ball settles in the center, and the result is symmetric. At lower energy levels ( 4493: 4462: 4452: 4074: 4064: 3898: 3707: 3406: 2590: 2509: 2383: 2344: 2332: 2289: 2285: 2262: 2234: 2150: 2138: 2108: 1410: 1317: 1229: 1181: 1075: 1025: 945: 930: 915: 895: 865: 860: 855: 840: 830: 825: 790: 780: 710: 645: 615: 550: 515: 505: 480: 351: 318: 192: 2179:
Chiral symmetry breaking is an example of spontaneous symmetry breaking affecting the
4591: 4412: 4265: 4156: 3990: 3960: 3913: 3677: 3636: 3348: 3159: 3007: 2950: 2897: 2843: 2535: 2104: 1999: 1967: 1080: 1070: 1060: 1055: 975: 960: 760: 755: 585: 580: 540: 510: 475: 465: 396: 391: 3264: 3201: 4295: 3908: 3903: 3659: 3590: 3499: 3457: 3447: 2643: 2566: 2539: 2482: 2296:
to give these particles mass. It also suggests the presence of a new particle, the
2233:
The strong, weak, and electromagnetic forces can all be understood as arising from
2134: 1714:{\displaystyle {\mathcal {L}}=\partial ^{\mu }\phi \partial _{\mu }\phi -V(\phi ).} 1430: 1171: 1115: 1040: 925: 900: 885: 820: 700: 695: 575: 565: 560: 525: 520: 495: 450: 328: 295: 122: 102: 3248: 2787:
Arodz, Henryk; Dziarmaga, Jacek; Zurek, Wojciech Hubert, eds. (30 November 2003).
3370: 3022: 4333: 3573: 3467: 3435: 3430: 3323: 3024:
Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature
2673: 2558: 2297: 2257:
In the standard model of particle physics, spontaneous symmetry breaking of the
2079: 2028: 2014: 1995: 1425: 1327: 1322: 1312: 1095: 1030: 990: 950: 905: 770: 675: 670: 655: 640: 625: 3193: 3079: 3334:
History of Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism on Scholarpedia
2648: 2070:
is increased gradually from rest, the bead will initially stay at its initial
750: 665: 530: 470: 162: 97: 3366:
The Royal Society Publishing: Spontaneous symmetry breaking in gauge theories
3318: 3136: 2424:, the energy of the system is invariant under inversion of the magnetization 4187: 3883: 2562: 3256: 3144: 2589:
to three scientists for their work in subatomic physics symmetry breaking.
1766:
that the symmetry breaking is triggered. An example of a potential, due to
3360: 3324:
In CERN Courier, Steven Weinberg reflects on spontaneous symmetry breaking
3752: 2485: 2196: 2063: 1581: 1352: 715: 2335:
in the theory, which drives the vacuum to a symmetry-broken phase (i.e,
3425: 3062: 2889: 2613:, shared the other half of the prize for discovering the origin of the 2204: 1875: 2942: 3113:(1990). "Minimal dynamical symmetry breaking of the standard model". 2270: 2200: 3795: 3361:
Spontaneous Symmetry Breaking in Gauge Theories: a Historical Survey
2865: 2062:
Consider a bead on a circular hoop that is rotated about a vertical
1974:), this symmetry will appear to be lost, or "spontaneously broken". 3329:
Englert–Brout–Higgs–Guralnik–Hagen–Kibble Mechanism on Scholarpedia
2982: 3338: 3231: 3176: 2925: 2212: 2051: 1575: 1234: 29: 3375: 2573:, although a classical solution may break a continuous symmetry. 2199:, and thus of all common matter, as it converts very light bound 2013:, but the solid itself spontaneously breaks this group down to a 2386:, charge- and spin-density waves, superfluids, and many others. 2237:, which is a redundancy in the description of the symmetry. The 2017:. The displacement and the orientation are the order parameters. 1959:. The system also has an unstable vacuum state corresponding to 3799: 3379: 3309:
http://www.quantumfieldtheory.info/Electroweak_Sym_breaking.pdf
2550:. Normally, in the absence of the Higgs mechanism, massless 1659: 3319:
Physical Review Letters – 50th Anniversary Milestone Papers
2107:
particles are normally specified by field equations with
2009:
The laws describing a solid are invariant under the full
2002:, which measures the magnetic dipole density. Above the 2211:
in this spontaneous symmetry breaking process are the
2074:
at the bottom of the hoop (intuitively stable, lowest
2845:
Bright Air, Brilliant Fire: On the Matter of the Mind
2763:
Dynamical Symmetry Breaking in Quantum Field Theories
1889: 1781: 1743: 1656: 1631: 1590: 1850:{\displaystyle V(\phi )=-5|\phi |^{2}+|\phi |^{4}\,} 4529: 4481: 4314: 4246: 4180: 4093: 4057: 4011: 3876: 3833: 3720: 3668: 3635: 3604: 3561: 3550: 3519: 3413: 2817:
Bubbles, Voids and Bumps in Time: The New Cosmology
2866:"Field theories with " Superconductor " solutions" 2842: 2020:General relativity has a Lorentz symmetry, but in 1926: 1874:This potential has an infinite number of possible 1849: 1758: 1713: 1637: 1605: 2557:The symmetry group can be discrete, such as the 2523:The crucial concept in physics theories is the 1927:{\displaystyle \phi ={\sqrt {5/2}}e^{i\theta }} 3542:Mathematical formulation of the Standard Model 2265:are the elementary particles that mediate the 3811: 3391: 2508:When a theory is symmetric with respect to a 1452: 1141: 8: 2820:. Cambridge University Press. p. 125. 2378:oriented in a specific direction, breaking 2284:Without spontaneous symmetry breaking, the 2059:will form, breaking the Euclidean symmetry. 3818: 3804: 3796: 3558: 3398: 3384: 3376: 2966:"History of electroweak symmetry breaking" 2629:Autocatalytic reactions and order creation 2451:. The symmetry is spontaneously broken as 2420:is the external magnetic field. Below the 1459: 1445: 1170: 1159: 1148: 1134: 59: 48: 27:Symmetry breaking through the vacuum state 3230: 3175: 3061: 2981: 2924: 2710:Spontaneous absolute asymmetric synthesis 2187:in particle physics. It is a property of 1915: 1901: 1896: 1888: 1846: 1840: 1835: 1826: 1817: 1812: 1803: 1780: 1770:is illustrated in the graph at the left. 1742: 1684: 1671: 1658: 1657: 1655: 1630: 1589: 35:Spontaneous symmetry breaking illustrated 2814:Cornell, James, ed. (21 November 1991). 2752: 2203:into 100 times heavier constituents of 2157:symmetry-breaking generically produces 1494:obey symmetries, but the lowest-energy 1162: 51: 2970:Journal of Physics: Conference Series 2561:of a crystal, or continuous (e.g., a 2358:dynamical breaking of chiral symmetry 7: 3778: 3027:. Knopf Doubleday Publishing Group. 1880: 1772: 1647: 1368:Grand potential / Landau free energy 2492:Generalisation and technical usage 1681: 1668: 1482:, by which a physical system in a 25: 3280:"The Nobel Prize in Physics 2008" 3021:Steven Weinberg (20 April 2011). 2726:1964 PRL symmetry breaking papers 2583:Royal Swedish Academy of Sciences 4572: 4571: 3777: 3766: 3765: 3510: 2849:. New York: BasicBooks. p.  2766:. World Scientific. p. 15. 2125:symmetry breaking (SSB) because 2391:fractional quantum Hall liquids 4521:Relativistic quantum mechanics 3693:Causal dynamical triangulation 3000:10.1088/1742-6596/626/1/012001 2760:Miransky, Vladimir A. (1993). 2516:member is distinct, only that 1836: 1827: 1813: 1804: 1791: 1785: 1753: 1747: 1705: 1699: 1600: 1594: 1542:fractional quantum Hall effect 1: 4499:Quantum statistical mechanics 4276:Quantum differential calculus 4198:Delayed-choice quantum eraser 3981:Symmetry in quantum mechanics 3532:Spontaneous symmetry breaking 3314:Spontaneous symmetry breaking 3249:10.1103/PhysRevLett.99.030602 2790:Patterns of Symmetry Breaking 2705:Second-order phase transition 1977:In fact, any other choice of 1737:It is in this potential term 1472:Spontaneous symmetry breaking 188:Spontaneous symmetry breaking 148:Symmetry in quantum mechanics 18:Spontaneously broken symmetry 3158:Chen, Xie; Gu, Zheng-Cheng; 2356:, which is connected to the 2149:, depending on the relevant 2050:Consider a uniform layer of 4301:Quantum stochastic calculus 4291:Quantum measurement problem 4213:Mach–Zehnder interferometer 2913:American Journal of Physics 2841:Edelman, Gerald M. (1992). 2691:of chiral symmetry breaking 2373:In condensed matter physics 2311:Dynamical symmetry breaking 2275:electromagnetic interaction 1210:Indistinguishable particles 4639: 3194:10.1103/physrevb.82.155138 3080:10.1103/PhysRevD.68.103514 2222: 2172: 2133:, such as two-dimensional 1563:Coleman–Weinberg potential 1560: 1531:explicit symmetry breaking 183:Explicit symmetry breaking 4567: 4361:Quantum complexity theory 4339:Quantum cellular automata 4044:Path integral formulation 3761: 3698:Canonical quantum gravity 3508: 2793:. Springer. p. 141. 1878:(vacuum states) given by 1498:do not exhibit that same 339:Bargmann–Wigner equations 37:: At high energy levels ( 4428:Quantum machine learning 4408:Quantum key distribution 4398:Quantum image processing 4388:Quantum error correction 4238:Wheeler's delayed choice 3703:Superfluid vacuum theory 3137:10.1103/PhysRevD.41.1647 2654:Gauge gravitation theory 2639:Chiral symmetry breaking 2599:chiral symmetry breaking 2581:On October 7, 2008, the 2337:electroweak interactions 2175:Chiral symmetry breaking 1759:{\displaystyle V(\phi )} 1606:{\displaystyle V(\phi )} 1523:translational symmetry. 4344:Quantum finite automata 3485:Quantum electrodynamics 3475:Electroweak interaction 3218:Physical Review Letters 2964:Kibble, T W B. (2015). 2679:Higgs field (classical) 2076:gravitational potential 2022:FRW cosmological models 1253:Thermodynamic ensembles 1205:Spin–statistics theorem 364:Electroweak interaction 359:Quantum electrodynamics 334:Wheeler–DeWitt equation 221:Background field method 4613:Quantum chromodynamics 4448:Quantum neural network 3463:Quantum chromodynamics 3278:The Nobel Foundation. 2864:Goldstone, J. (1961). 2587:Nobel Prize in Physics 2362:quantum chromodynamics 2209:Nambu–Goldstone bosons 2189:quantum chromodynamics 2087:two-balloon experiment 1928: 1851: 1760: 1715: 1639: 1614: 1607: 1580:Graph of Goldstone's " 369:Quantum chromodynamics 246:Effective field theory 46: 4473:Quantum teleportation 4001:Wave–particle duality 3579:Cosmological constant 2695:Mermin–Wagner theorem 2595:University of Chicago 2279:Weinberg–Salam theory 2045:Nambu–Goldstone boson 1983:Nambu–Goldstone boson 1929: 1852: 1761: 1716: 1640: 1638:{\displaystyle \phi } 1608: 1584:" potential function 1579: 1358:Helmholtz free energy 1287:Isoenthalpic–isobaric 1164:Statistical mechanics 324:Klein–Gordon equation 266:LSZ reduction formula 33: 4603:Quantum field theory 4504:Quantum field theory 4433:Quantum metamaterial 4378:Quantum cryptography 4108:Consistent histories 3688:Loop quantum gravity 3627:Theory of everything 3622:Grand Unified Theory 3596:Neutrino oscillation 3443:Quantum field theory 2721:Tachyon condensation 2664:Grand unified theory 2548:Nambu–Goldstone mode 2350:fermionic condensate 2300:, detected in 2012. 2193:quantum field theory 1887: 1779: 1741: 1654: 1629: 1588: 407:Theory of everything 261:Lattice field theory 231:Correlation function 53:Quantum field theory 4598:Theoretical physics 4489:Quantum fluctuation 4458:Quantum programming 4418:Quantum logic gates 4403:Quantum information 4383:Quantum electronics 3858:Classical mechanics 3655:Split supersymmetry 3617:Kaluza–Klein theory 3490:Fermi's interaction 3241:2007PhRvL..99c0602K 3186:2010PhRvB..82o5138C 3129:1990PhRvD..41.1647B 3107:Christopher T. Hill 3072:2003PhRvD..68j3514J 2992:2015JPhCS.626a2001K 2935:2012AmJPh..80..891M 2882:1961NCim...19..154G 2401:Continuous symmetry 2380:rotational symmetry 2185:strong interactions 2141:, zero-dimensional 2131:topological defects 2095:In particle physics 2068:rotational velocity 1966:. This state has a 1619:scalar field theory 1570:spontaneously break 1488:equations of motion 1476:spontaneous process 1295:Isothermal–isobaric 1198:Particle statistics 386:Incomplete theories 4542:in popular culture 4324:Quantum algorithms 4172:Von Neumann–Wigner 4152:Objective collapse 3863:Old quantum theory 3683:Superstring theory 3453:Strong interaction 3103:William A. Bardeen 2890:10.1007/BF02812722 2689:Magnetic catalysis 2634:Catastrophe theory 2229:Yukawa interaction 2207:. The approximate 2137:, one-dimensional 2113:by the same amount 1924: 1847: 1756: 1711: 1635: 1625:of a scalar field 1615: 1603: 1557:Sombrero potential 1235:Anyonic statistics 271:Partition function 198:Topological charge 118:General relativity 113:Special relativity 47: 4585: 4584: 4559:Quantum mysticism 4537:Schrödinger's cat 4468:Quantum simulator 4438:Quantum metrology 4366:Quantum computing 4329:Quantum amplifier 4306:Quantum spacetime 4271:Quantum cosmology 4261:Quantum chemistry 3976:Scattering theory 3924:Zero-point energy 3919:Degenerate levels 3827:Quantum mechanics 3793: 3792: 3716: 3715: 3591:Strong CP problem 3569:Hierarchy problem 3116:Physical Review D 3050:Physical Review D 3034:978-0-307-78786-6 2943:10.1119/1.4739927 2716:Symmetry breaking 2615:explicit breaking 2607:Toshihide Maskawa 2585:awarded the 2008 2532:expectation value 2475:Coulomb potential 2422:Curie temperature 2407:Curie temperature 2366:superconductivity 2304:Superconductivity 2247:Elitzur's theorem 2243:superconductivity 2072:equilibrium point 2004:Curie temperature 1949: 1948: 1909: 1872: 1871: 1768:Jeffrey Goldstone 1735: 1734: 1538:phase transitions 1512:quantum mechanics 1480:symmetry breaking 1469: 1468: 1363:Gibbs free energy 1215:Maxwell–Boltzmann 1158: 1157: 251:Expectation value 226:BRST quantization 173:PoincarĂ© symmetry 128:Yang–Mills theory 108:Quantum mechanics 16:(Redirected from 4630: 4575: 4574: 4286:Quantum geometry 4281:Quantum dynamics 4138:Superdeterminism 4034:Matrix mechanics 3889:Bra–ket notation 3820: 3813: 3806: 3797: 3781: 3780: 3769: 3768: 3559: 3514: 3513: 3495:Weak hypercharge 3480:Weak interaction 3421:Particle physics 3400: 3393: 3386: 3377: 3295: 3294: 3292: 3290: 3275: 3269: 3268: 3234: 3212: 3206: 3205: 3179: 3155: 3149: 3148: 3123:(5): 1647–1660. 3099: 3093: 3090: 3084: 3083: 3065: 3045: 3039: 3038: 3018: 3012: 3011: 2985: 2961: 2955: 2954: 2928: 2908: 2902: 2901: 2870:Il Nuovo Cimento 2861: 2855: 2854: 2848: 2838: 2832: 2831: 2811: 2805: 2804: 2784: 2778: 2777: 2757: 2741: 2611:Kyoto University 2603:Makoto Kobayashi 2552:Goldstone bosons 2479:Yukawa potential 2457: 2450: 2415: 2354:quark condensate 2326:effective action 2267:weak interaction 2260: 2252:gauge symmetries 2235:gauge symmetries 2163:cosmic inflation 2101:particle physics 2057:convection cells 1965: 1943: 1933: 1931: 1930: 1925: 1923: 1922: 1910: 1905: 1897: 1881: 1866: 1856: 1854: 1853: 1848: 1845: 1844: 1839: 1830: 1822: 1821: 1816: 1807: 1773: 1765: 1763: 1762: 1757: 1729: 1720: 1718: 1717: 1712: 1689: 1688: 1676: 1675: 1663: 1662: 1648: 1644: 1642: 1641: 1636: 1612: 1610: 1609: 1604: 1496:vacuum solutions 1461: 1454: 1447: 1240:Braid statistics 1174: 1160: 1150: 1143: 1136: 241:Effective action 168:Lorentz symmetry 93:Electromagnetism 63: 49: 21: 4638: 4637: 4633: 4632: 4631: 4629: 4628: 4627: 4588: 4587: 4586: 4581: 4563: 4549:Wigner's friend 4525: 4516:Quantum gravity 4477: 4463:Quantum sensing 4443:Quantum network 4423:Quantum machine 4393:Quantum imaging 4356:Quantum circuit 4351:Quantum channel 4310: 4256:Quantum biology 4242: 4218:Elitzur–Vaidman 4193:Davisson–Germer 4176: 4128:Hidden-variable 4118:de Broglie–Bohm 4095:Interpretations 4089: 4053: 4007: 3894:Complementarity 3872: 3829: 3824: 3794: 3789: 3757: 3712: 3670:Quantum gravity 3664: 3631: 3600: 3553: 3546: 3537:Higgs mechanism 3515: 3511: 3506: 3409: 3404: 3304: 3299: 3298: 3288: 3286: 3277: 3276: 3272: 3214: 3213: 3209: 3157: 3156: 3152: 3111:Manfred Lindner 3101: 3100: 3096: 3091: 3087: 3047: 3046: 3042: 3035: 3020: 3019: 3015: 2963: 2962: 2958: 2919:(10): 891–897. 2910: 2909: 2905: 2863: 2862: 2858: 2840: 2839: 2835: 2828: 2813: 2812: 2808: 2801: 2786: 2785: 2781: 2774: 2759: 2758: 2754: 2749: 2738: 2735: 2730: 2684:Irreversibility 2669:Higgs mechanism 2659:Goldstone boson 2624: 2579: 2525:order parameter 2503:Goldstone boson 2494: 2452: 2433: 2410: 2403: 2384:liquid crystals 2375: 2364:. Conventional 2341:Higgs mechanism 2313: 2294:Higgs mechanism 2258: 2239:Higgs mechanism 2231: 2225:Higgs mechanism 2223:Main articles: 2221: 2219:Higgs mechanism 2181:chiral symmetry 2177: 2171: 2169:Chiral symmetry 2097: 2037:superconductors 2011:Euclidean group 1991: 1960: 1955:between 0 and 2 1941: 1911: 1885: 1884: 1864: 1834: 1811: 1777: 1776: 1739: 1738: 1727: 1680: 1667: 1652: 1651: 1627: 1626: 1621:. The relevant 1586: 1585: 1565: 1559: 1554: 1529:Conversely, in 1508: 1465: 1436: 1435: 1381: 1373: 1372: 1348:Internal energy 1343: 1333: 1332: 1308: 1300: 1299: 1279:Grand canonical 1255: 1245: 1244: 1200: 1154: 1125: 1124: 1123: 1121: 425: 417: 416: 412:Quantum gravity 387: 379: 378: 374:Higgs mechanism 354: 344: 343: 329:Proca equations 314: 306: 305: 291:Renormalization 256:Feynman diagram 211: 203: 202: 143: 133: 132: 83: 68: 66:Feynman diagram 28: 23: 22: 15: 12: 11: 5: 4636: 4634: 4626: 4625: 4623:Quantum phases 4620: 4615: 4610: 4608:Standard Model 4605: 4600: 4590: 4589: 4583: 4582: 4580: 4579: 4568: 4565: 4564: 4562: 4561: 4556: 4551: 4546: 4545: 4544: 4533: 4531: 4527: 4526: 4524: 4523: 4518: 4513: 4512: 4511: 4501: 4496: 4494:Casimir effect 4491: 4485: 4483: 4479: 4478: 4476: 4475: 4470: 4465: 4460: 4455: 4453:Quantum optics 4450: 4445: 4440: 4435: 4430: 4425: 4420: 4415: 4410: 4405: 4400: 4395: 4390: 4385: 4380: 4375: 4374: 4373: 4363: 4358: 4353: 4348: 4347: 4346: 4336: 4331: 4326: 4320: 4318: 4312: 4311: 4309: 4308: 4303: 4298: 4293: 4288: 4283: 4278: 4273: 4268: 4263: 4258: 4252: 4250: 4244: 4243: 4241: 4240: 4235: 4230: 4228:Quantum eraser 4225: 4220: 4215: 4210: 4205: 4200: 4195: 4190: 4184: 4182: 4178: 4177: 4175: 4174: 4169: 4164: 4159: 4154: 4149: 4144: 4143: 4142: 4141: 4140: 4125: 4120: 4115: 4110: 4105: 4099: 4097: 4091: 4090: 4088: 4087: 4082: 4077: 4072: 4067: 4061: 4059: 4055: 4054: 4052: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4015: 4013: 4009: 4008: 4006: 4005: 4004: 4003: 3998: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3953: 3948: 3943: 3938: 3933: 3928: 3927: 3926: 3921: 3916: 3911: 3901: 3899:Density matrix 3896: 3891: 3886: 3880: 3878: 3874: 3873: 3871: 3870: 3865: 3860: 3855: 3854: 3853: 3843: 3837: 3835: 3831: 3830: 3825: 3823: 3822: 3815: 3808: 3800: 3791: 3790: 3788: 3787: 3775: 3762: 3759: 3758: 3756: 3755: 3750: 3745: 3740: 3735: 3730: 3724: 3722: 3718: 3717: 3714: 3713: 3711: 3710: 3708:Twistor theory 3705: 3700: 3695: 3690: 3685: 3680: 3674: 3672: 3666: 3665: 3663: 3662: 3657: 3652: 3647: 3641: 3639: 3633: 3632: 3630: 3629: 3624: 3619: 3614: 3608: 3606: 3602: 3601: 3599: 3598: 3593: 3588: 3587: 3586: 3576: 3571: 3565: 3563: 3556: 3554:Standard Model 3548: 3547: 3545: 3544: 3539: 3534: 3529: 3523: 3521: 3517: 3516: 3509: 3507: 3505: 3504: 3503: 3502: 3497: 3492: 3487: 3482: 3472: 3471: 3470: 3465: 3460: 3450: 3445: 3440: 3439: 3438: 3433: 3428: 3417: 3415: 3411: 3410: 3407:Standard Model 3405: 3403: 3402: 3395: 3388: 3380: 3374: 3373: 3368: 3363: 3358: 3346: 3341: 3336: 3331: 3326: 3321: 3316: 3311: 3303: 3302:External links 3300: 3297: 3296: 3284:nobelprize.org 3270: 3207: 3170:(15): 155138. 3160:Wen, Xiao-Gang 3150: 3094: 3085: 3063:hep-ph/0308134 3056:(10): 103514. 3040: 3033: 3013: 2956: 2903: 2876:(1): 154–164. 2856: 2833: 2826: 2806: 2799: 2779: 2772: 2751: 2750: 2748: 2745: 2744: 2743: 2734: 2731: 2729: 2728: 2723: 2718: 2713: 2707: 2702: 2697: 2692: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2625: 2623: 2620: 2591:Yoichiro Nambu 2578: 2575: 2571:quantum theory 2510:symmetry group 2493: 2490: 2402: 2399: 2374: 2371: 2345:standard model 2333:Higgs particle 2312: 2309: 2290:W and Z bosons 2286:Standard Model 2263:W and Z bosons 2220: 2217: 2173:Main article: 2170: 2167: 2151:homotopy group 2139:cosmic strings 2109:gauge symmetry 2096: 2093: 2092: 2091: 2083: 2060: 2048: 2040: 2033: 2025: 2018: 2007: 1990: 1989:Other examples 1987: 1947: 1946: 1937: 1935: 1921: 1918: 1914: 1908: 1904: 1900: 1895: 1892: 1870: 1869: 1860: 1858: 1843: 1838: 1833: 1829: 1825: 1820: 1815: 1810: 1806: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1755: 1752: 1749: 1746: 1733: 1732: 1723: 1721: 1710: 1707: 1704: 1701: 1698: 1695: 1692: 1687: 1683: 1679: 1674: 1670: 1666: 1661: 1634: 1602: 1599: 1596: 1593: 1558: 1555: 1553: 1550: 1507: 1504: 1467: 1466: 1464: 1463: 1456: 1449: 1441: 1438: 1437: 1434: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1382: 1379: 1378: 1375: 1374: 1371: 1370: 1365: 1360: 1355: 1350: 1344: 1339: 1338: 1335: 1334: 1331: 1330: 1325: 1320: 1315: 1309: 1306: 1305: 1302: 1301: 1298: 1297: 1289: 1281: 1273: 1265: 1263:Microcanonical 1256: 1251: 1250: 1247: 1246: 1243: 1242: 1237: 1232: 1230:Parastatistics 1227: 1222: 1217: 1212: 1207: 1201: 1196: 1195: 1192: 1191: 1190: 1189: 1187:Kinetic theory 1184: 1182:Thermodynamics 1176: 1175: 1167: 1166: 1156: 1155: 1153: 1152: 1145: 1138: 1130: 1127: 1126: 1119: 1118: 1113: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1003: 998: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 943: 938: 933: 928: 923: 918: 913: 908: 903: 898: 893: 888: 883: 878: 873: 868: 863: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 608: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 503: 498: 493: 488: 483: 478: 473: 468: 463: 458: 453: 448: 443: 438: 433: 427: 426: 423: 422: 419: 418: 415: 414: 409: 404: 399: 394: 388: 385: 384: 381: 380: 377: 376: 371: 366: 361: 355: 352:Standard Model 350: 349: 346: 345: 342: 341: 336: 331: 326: 321: 319:Dirac equation 315: 312: 311: 308: 307: 304: 303: 301:Wick's theorem 298: 293: 288: 286:Regularization 283: 278: 273: 268: 263: 258: 253: 248: 243: 238: 233: 228: 223: 218: 212: 209: 208: 205: 204: 201: 200: 195: 193:Noether charge 190: 185: 180: 178:Gauge symmetry 175: 170: 165: 160: 155: 150: 144: 139: 138: 135: 134: 131: 130: 125: 120: 115: 110: 105: 100: 95: 90: 84: 81: 80: 77: 76: 70: 69: 64: 56: 55: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4635: 4624: 4621: 4619: 4616: 4614: 4611: 4609: 4606: 4604: 4601: 4599: 4596: 4595: 4593: 4578: 4570: 4569: 4566: 4560: 4557: 4555: 4552: 4550: 4547: 4543: 4540: 4539: 4538: 4535: 4534: 4532: 4528: 4522: 4519: 4517: 4514: 4510: 4507: 4506: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4486: 4484: 4480: 4474: 4471: 4469: 4466: 4464: 4461: 4459: 4456: 4454: 4451: 4449: 4446: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4413:Quantum logic 4411: 4409: 4406: 4404: 4401: 4399: 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4372: 4369: 4368: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4345: 4342: 4341: 4340: 4337: 4335: 4332: 4330: 4327: 4325: 4322: 4321: 4319: 4317: 4313: 4307: 4304: 4302: 4299: 4297: 4294: 4292: 4289: 4287: 4284: 4282: 4279: 4277: 4274: 4272: 4269: 4267: 4266:Quantum chaos 4264: 4262: 4259: 4257: 4254: 4253: 4251: 4249: 4245: 4239: 4236: 4234: 4233:Stern–Gerlach 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4209: 4206: 4204: 4201: 4199: 4196: 4194: 4191: 4189: 4186: 4185: 4183: 4179: 4173: 4170: 4168: 4167:Transactional 4165: 4163: 4160: 4158: 4157:Quantum logic 4155: 4153: 4150: 4148: 4145: 4139: 4136: 4135: 4134: 4131: 4130: 4129: 4126: 4124: 4121: 4119: 4116: 4114: 4111: 4109: 4106: 4104: 4101: 4100: 4098: 4096: 4092: 4086: 4083: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4062: 4060: 4056: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4020: 4017: 4016: 4014: 4010: 4002: 3999: 3997: 3994: 3993: 3992: 3991:Wave function 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3966:Superposition 3964: 3962: 3961:Quantum state 3959: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3925: 3922: 3920: 3917: 3915: 3914:Excited state 3912: 3910: 3907: 3906: 3905: 3902: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3881: 3879: 3875: 3869: 3866: 3864: 3861: 3859: 3856: 3852: 3849: 3848: 3847: 3844: 3842: 3839: 3838: 3836: 3832: 3828: 3821: 3816: 3814: 3809: 3807: 3802: 3801: 3798: 3786: 3785: 3776: 3774: 3773: 3764: 3763: 3760: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3725: 3723: 3719: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3678:String theory 3676: 3675: 3673: 3671: 3667: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3642: 3640: 3638: 3637:Supersymmetry 3634: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3609: 3607: 3603: 3597: 3594: 3592: 3589: 3585: 3582: 3581: 3580: 3577: 3575: 3572: 3570: 3567: 3566: 3564: 3560: 3557: 3555: 3549: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3524: 3522: 3518: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3477: 3476: 3473: 3469: 3466: 3464: 3461: 3459: 3456: 3455: 3454: 3451: 3449: 3446: 3444: 3441: 3437: 3434: 3432: 3429: 3427: 3424: 3423: 3422: 3419: 3418: 3416: 3412: 3408: 3401: 3396: 3394: 3389: 3387: 3382: 3381: 3378: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3356:0-470-17057-3 3353: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3330: 3327: 3325: 3322: 3320: 3317: 3315: 3312: 3310: 3306: 3305: 3301: 3285: 3281: 3274: 3271: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3233: 3228: 3225:(3): 030602. 3224: 3220: 3219: 3211: 3208: 3203: 3199: 3195: 3191: 3187: 3183: 3178: 3173: 3169: 3165: 3161: 3154: 3151: 3146: 3142: 3138: 3134: 3130: 3126: 3122: 3118: 3117: 3112: 3108: 3104: 3098: 3095: 3089: 3086: 3081: 3077: 3073: 3069: 3064: 3059: 3055: 3051: 3044: 3041: 3036: 3030: 3026: 3025: 3017: 3014: 3009: 3005: 3001: 2997: 2993: 2989: 2984: 2979: 2976:(1): 012001. 2975: 2971: 2967: 2960: 2957: 2952: 2948: 2944: 2940: 2936: 2932: 2927: 2922: 2918: 2914: 2907: 2904: 2899: 2895: 2891: 2887: 2883: 2879: 2875: 2871: 2867: 2860: 2857: 2852: 2847: 2846: 2837: 2834: 2829: 2827:9780521426732 2823: 2819: 2818: 2810: 2807: 2802: 2800:9781402017452 2796: 2792: 2791: 2783: 2780: 2775: 2769: 2765: 2764: 2756: 2753: 2746: 2740: 2737: 2736: 2732: 2727: 2724: 2722: 2719: 2717: 2714: 2711: 2708: 2706: 2703: 2701: 2700:Norton's dome 2698: 2696: 2693: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2626: 2621: 2619: 2616: 2612: 2608: 2604: 2601:. Physicists 2600: 2596: 2592: 2588: 2584: 2576: 2574: 2572: 2568: 2564: 2560: 2555: 2553: 2549: 2545: 2541: 2537: 2536:ordered phase 2533: 2531: 2526: 2521: 2519: 2515: 2511: 2506: 2504: 2499: 2491: 2489: 2487: 2484: 2480: 2476: 2471: 2467: 2463: 2459: 2455: 2448: 2444: 2440: 2436: 2431: 2427: 2423: 2419: 2413: 2408: 2400: 2398: 2396: 2392: 2387: 2385: 2381: 2372: 2370: 2367: 2363: 2359: 2355: 2351: 2346: 2342: 2338: 2334: 2329: 2327: 2321: 2319: 2310: 2308: 2305: 2301: 2299: 2295: 2291: 2287: 2282: 2280: 2276: 2273:mediates the 2272: 2268: 2264: 2255: 2253: 2248: 2244: 2240: 2236: 2230: 2226: 2218: 2216: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2182: 2176: 2168: 2166: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2123: 2116: 2114: 2110: 2106: 2105:force carrier 2102: 2094: 2088: 2084: 2081: 2077: 2073: 2069: 2065: 2061: 2058: 2053: 2049: 2046: 2041: 2038: 2034: 2030: 2026: 2023: 2019: 2016: 2012: 2008: 2005: 2001: 2000:magnetization 1997: 1996:ferromagnetic 1993: 1992: 1988: 1986: 1984: 1980: 1975: 1973: 1969: 1963: 1958: 1954: 1951:for any real 1945: 1938: 1936: 1919: 1916: 1912: 1906: 1902: 1898: 1893: 1890: 1883: 1882: 1879: 1877: 1868: 1861: 1859: 1841: 1831: 1823: 1818: 1808: 1800: 1797: 1794: 1788: 1782: 1775: 1774: 1771: 1769: 1750: 1744: 1731: 1724: 1722: 1708: 1702: 1696: 1693: 1690: 1685: 1677: 1672: 1664: 1650: 1649: 1646: 1632: 1624: 1620: 1597: 1591: 1583: 1578: 1574: 1571: 1564: 1556: 1551: 1549: 1545: 1543: 1539: 1534: 1532: 1527: 1524: 1521: 1517: 1513: 1505: 1503: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1462: 1457: 1455: 1450: 1448: 1443: 1442: 1440: 1439: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1383: 1377: 1376: 1369: 1366: 1364: 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1345: 1342: 1337: 1336: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1310: 1304: 1303: 1296: 1293: 1290: 1288: 1285: 1282: 1280: 1277: 1274: 1272: 1269: 1266: 1264: 1261: 1258: 1257: 1254: 1249: 1248: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1220:Bose–Einstein 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1202: 1199: 1194: 1193: 1188: 1185: 1183: 1180: 1179: 1178: 1177: 1173: 1169: 1168: 1165: 1161: 1151: 1146: 1144: 1139: 1137: 1132: 1131: 1129: 1128: 1122: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1091:Zamolodchikov 1089: 1087: 1086:Zamolodchikov 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 429: 428: 421: 420: 413: 410: 408: 405: 403: 400: 398: 397:Supersymmetry 395: 393: 392:String theory 390: 389: 383: 382: 375: 372: 370: 367: 365: 362: 360: 357: 356: 353: 348: 347: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 316: 310: 309: 302: 299: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 247: 244: 242: 239: 237: 234: 232: 229: 227: 224: 222: 219: 217: 214: 213: 207: 206: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 145: 142: 137: 136: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 85: 79: 78: 75: 72: 71: 67: 62: 58: 57: 54: 50: 44: 40: 36: 32: 19: 4296:Quantum mind 4208:Franck–Hertz 4070:Klein–Gordon 4019:Formulations 4012:Formulations 3941:Interference 3931:Entanglement 3909:Ground state 3904:Energy level 3877:Fundamentals 3841:Introduction 3782: 3770: 3660:Supergravity 3531: 3520:Constituents 3500:Weak isospin 3458:Color charge 3448:Gauge theory 3287:. Retrieved 3283: 3273: 3222: 3216: 3210: 3167: 3164:Phys. Rev. B 3163: 3153: 3120: 3114: 3097: 3088: 3053: 3049: 3043: 3023: 3016: 2973: 2969: 2959: 2916: 2912: 2906: 2873: 2869: 2859: 2844: 2836: 2816: 2809: 2789: 2782: 2762: 2755: 2739: 2712:in chemistry 2644:CP-violation 2580: 2569:of the full 2567:vacuum state 2556: 2547: 2543: 2540:vacuum state 2529: 2522: 2517: 2513: 2507: 2495: 2483:mirror plane 2472: 2468: 2464: 2460: 2453: 2446: 2442: 2438: 2434: 2432:) such that 2429: 2425: 2417: 2411: 2404: 2395:spin-liquids 2388: 2376: 2352:— e.g., the 2330: 2322: 2314: 2302: 2283: 2269:, while the 2259:SU(2) × U(1) 2256: 2251: 2232: 2178: 2135:domain walls 2126: 2121: 2117: 2112: 2098: 1978: 1976: 1971: 1961: 1956: 1952: 1950: 1939: 1873: 1862: 1736: 1725: 1616: 1569: 1566: 1546: 1535: 1528: 1525: 1514:) which are 1509: 1471: 1470: 1291: 1283: 1275: 1267: 1259: 1120: 966:Stueckelberg 706:Jona-Lasinio 296:Vacuum state 281:Quantization 187: 123:Gauge theory 103:Strong force 88:Field theory 42: 38: 34: 4554:EPR paradox 4334:Quantum bus 4203:Double-slit 4181:Experiments 4147:Many-worlds 4085:Schrödinger 4049:Phase space 4039:Schrödinger 4029:Interaction 3986:Uncertainty 3956:Nonlocality 3951:Measurement 3946:Decoherence 3936:Hamiltonian 3721:Experiments 3612:Technicolor 3574:Dark matter 3468:Quark model 3436:Higgs boson 3431:Gauge boson 3289:January 15, 2674:Higgs boson 2577:Nobel Prize 2559:space group 2544:Wigner mode 2298:Higgs boson 2122:spontaneous 2080:equidistant 2029:electroweak 2015:space group 1416:von Neumann 1225:Fermi–Dirac 1106:Zinn-Justin 956:Sommerfield 881:Pomeranchuk 851:Osterwalder 846:Oppenheimer 776:ƁopuszaƄski 601:Fredenhagen 402:Technicolor 4592:Categories 4482:Extensions 4316:Technology 4162:Relational 4113:Copenhagen 4024:Heisenberg 3971:Tunnelling 3834:Background 3728:Gran Sasso 3552:Beyond the 3527:CKM matrix 3414:Background 2983:1502.06276 2773:9810215584 2747:References 2649:Fermi ball 2318:Lagrangian 1623:Lagrangian 1561:See also: 1492:Lagrangian 1380:Scientists 1341:Potentials 1101:Zimmermann 996:Vainshtein 741:Kontsevich 686:Iliopoulos 661:Heisenberg 486:Bogoliubov 424:Scientists 276:Propagator 163:T-symmetry 158:P-symmetry 153:C-symmetry 141:Symmetries 98:Weak force 82:Background 4188:Bell test 4058:Equations 3884:Born rule 3232:0704.3435 3177:1004.3835 3008:119290021 2951:119131875 2926:1205.4773 2898:120409034 2593:, of the 2563:Lie group 2498:symmetric 2159:monopoles 2145:, and/or 2143:monopoles 2066:. As the 1920:θ 1891:ϕ 1832:ϕ 1809:ϕ 1798:− 1789:ϕ 1751:ϕ 1703:ϕ 1694:− 1691:ϕ 1686:μ 1682:∂ 1678:ϕ 1673:μ 1669:∂ 1633:ϕ 1598:ϕ 1516:invariant 1484:symmetric 1411:Ehrenfest 1391:Boltzmann 1271:Canonical 1036:Wetterich 1021:Weisskopf 971:Sudarshan 921:Schwinger 836:Nishijima 801:Maldacena 766:Leutwyler 731:Kinoshita 631:Goldstone 621:Gell-Mann 536:Doplicher 313:Equations 4618:Symmetry 4577:Category 4371:Timeline 4123:Ensemble 4103:Bayesian 3996:Collapse 3868:Glossary 3851:Timeline 3772:Category 3753:Tevatron 3605:Theories 3562:Evidence 3426:Fermions 3265:37983980 3257:17678276 3202:14593420 3145:10012522 2622:See also 2486:symmetry 2416:, where 2197:nucleons 2147:textures 2064:diameter 2027:For the 1582:sombrero 1552:Examples 1520:symmetry 1518:under a 1506:Overview 1500:symmetry 1406:Einstein 1353:Enthalpy 1318:Einstein 1051:Wightman 1016:Weinberg 1006:Virasoro 986:Tomonaga 981:Thirring 976:Symanzik 936:Semenoff 911:Schrader 876:Polyakov 796:Majorana 736:Klebanov 691:Ivanenko 681:'t Hooft 651:Guralnik 596:Fröhlich 591:Fritzsch 586:Frampton 501:Buchholz 446:Bargmann 436:Anderson 236:Crossing 4530:Related 4509:History 4248:Science 4080:Rydberg 3846:History 3784:Commons 3748:Super-K 3584:problem 3237:Bibcode 3182:Bibcode 3125:Bibcode 3068:Bibcode 2988:Bibcode 2931:Bibcode 2878:Bibcode 2554:arise. 2409:and at 2343:in the 2205:baryons 2183:of the 2127:nothing 1490:or the 1386:Maxwell 1061:Wilczek 1026:Wentzel 1001:Veltman 946:Shirkov 941:Shifman 931:Seiberg 916:Schwarz 896:Rubakov 821:Naimark 771:Lipatov 761:Lehmann 726:Kendall 616:Gelfand 611:Glashow 571:Feynman 551:Faddeev 546:Englert 516:Coleman 506:Cachazo 491:Brodsky 476:Bjorken 466:Berezin 456:Belavin 216:Anomaly 74:History 4223:Popper 3354:  3263:  3255:  3200:  3143:  3031:  3006:  2949:  2896:  2824:  2797:  2770:  2530:vacuum 2518:one is 2393:, and 2271:photon 2201:quarks 2191:, the 2103:, the 2090:state. 1876:minima 1421:Tolman 1307:Models 1116:Zumino 1081:Yukawa 1071:Witten 1066:Wilson 1056:Wigner 991:Tyutin 951:Skyrme 901:Ruelle 871:Plefka 866:Peskin 856:Parisi 816:MĂžller 806:Migdal 791:Maiani 786:LĂŒders 751:Landau 746:Kuraev 721:KĂ€llĂ©n 711:Jordan 696:Jackiw 636:Gribov 526:DeWitt 521:Dashen 511:Callan 481:Bleuer 451:Becchi 441:Anselm 4133:Local 4075:Pauli 4065:Dirac 3650:NMSSM 3261:S2CID 3227:arXiv 3198:S2CID 3172:arXiv 3058:arXiv 3004:S2CID 2978:arXiv 2947:S2CID 2921:arXiv 2894:S2CID 2733:Notes 2609:, of 2514:which 2441:) = − 2213:pions 2052:fluid 1474:is a 1431:Fermi 1426:Debye 1401:Gibbs 1328:Potts 1323:Ising 1313:Debye 1111:Zuber 961:Stora 926:Segal 906:Salam 891:Proca 886:Popov 861:Pauli 841:Oehme 831:Neveu 826:Nambu 811:Mills 701:Jaffe 676:Hagen 671:Higgs 646:Gupta 641:Gross 626:Glimm 606:Furry 576:Fierz 566:Fermi 561:Fayet 556:Fadin 541:Dyson 531:Dirac 496:Brout 471:Bethe 431:Adler 210:Tools 43:right 3645:MSSM 3352:ISBN 3291:2008 3253:PMID 3141:PMID 3029:ISBN 2822:ISBN 2795:ISBN 2768:ISBN 2605:and 2227:and 2085:The 1994:For 1968:U(1) 1396:Bose 1076:Yang 1046:Wick 1041:Weyl 1031:Wess 1011:Ward 716:Jost 666:Hepp 656:Haag 581:Fock 461:Bell 39:left 3743:SNO 3738:LHC 3733:INO 3245:doi 3190:doi 3133:doi 3076:doi 2996:doi 2974:626 2939:doi 2886:doi 2851:203 2505:.) 2477:or 2456:→ 0 2414:= 0 2360:in 2328:). 2320:). 2155:GUT 2099:In 2035:In 1964:= 0 1478:of 1292:NPT 1284:NPH 1276:”VT 1268:NVT 1260:NVE 1096:Zee 781:Low 756:Lee 4594:: 3282:. 3259:. 3251:. 3243:. 3235:. 3223:99 3221:. 3196:. 3188:. 3180:. 3168:82 3166:. 3139:. 3131:. 3121:41 3119:. 3109:; 3105:; 3074:. 3066:. 3054:68 3052:. 3002:. 2994:. 2986:. 2972:. 2968:. 2945:. 2937:. 2929:. 2917:80 2915:. 2892:. 2884:. 2874:19 2872:. 2868:. 2488:. 2445:(− 2165:. 1544:. 3819:e 3812:t 3805:v 3399:e 3392:t 3385:v 3293:. 3267:. 3247:: 3239:: 3229:: 3204:. 3192:: 3184:: 3174:: 3147:. 3135:: 3127:: 3082:. 3078:: 3070:: 3060:: 3037:. 3010:. 2998:: 2990:: 2980:: 2953:. 2941:: 2933:: 2923:: 2900:. 2888:: 2880:: 2853:. 2830:. 2803:. 2776:. 2454:h 2449:) 2447:x 2443:m 2439:x 2437:( 2435:m 2430:x 2428:( 2426:m 2418:h 2412:h 2047:. 1979:Ξ 1972:Ξ 1962:Ί 1957:π 1953:Ξ 1944:) 1942:3 1940:( 1934:. 1917:i 1913:e 1907:2 1903:/ 1899:5 1894:= 1867:) 1865:2 1863:( 1857:. 1842:4 1837:| 1828:| 1824:+ 1819:2 1814:| 1805:| 1801:5 1795:= 1792:) 1786:( 1783:V 1754:) 1748:( 1745:V 1730:) 1728:1 1726:( 1709:. 1706:) 1700:( 1697:V 1665:= 1660:L 1613:. 1601:) 1595:( 1592:V 1460:e 1453:t 1446:v 1149:e 1142:t 1135:v 20:)

Index

Spontaneously broken symmetry

Quantum field theory

Feynman diagram
History
Field theory
Electromagnetism
Weak force
Strong force
Quantum mechanics
Special relativity
General relativity
Gauge theory
Yang–Mills theory
Symmetries
Symmetry in quantum mechanics
C-symmetry
P-symmetry
T-symmetry
Lorentz symmetry
Poincaré symmetry
Gauge symmetry
Explicit symmetry breaking
Spontaneous symmetry breaking
Noether charge
Topological charge
Anomaly
Background field method
BRST quantization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑