Knowledge (XXG)

Square packing

Source đź“ť

262: 207: 152: 971: 739: 566: 408:
2, 3, 5, 6, 7, 8, 10, 13, 14, 15, 24, 34, 35, 46, 47, and 48. For most of these numbers (with the exceptions only of 5 and 10), the packing is the natural one with axis-aligned squares, and
254: 199: 457: 783: 484: 291: 629: 490:(round up) function. The figure shows the optimal packings for 5 and 10 squares, the two smallest numbers of squares for which the optimal packing involves tilted squares. 835: 381: 887: 1036: 699: 1095: 1069: 117: 1122: 599: 517: 406: 1819: 991: 673: 426: 357: 337: 317: 141: 83: 63: 1765: 1815: 649: 261: 1978: 1321: 903: 1535: 1494: 1456: 1361: 704: 1672: 1587: 1952: 522: 1884: 1758: 568:. By contrast, the tightest known packing of 11 squares is inside a square of side length approximately 3.877084 found by 1879: 1869: 1823: 1811: 1268: 215: 160: 1973: 1859: 1751: 431: 1874: 793:
showed that for a different packing by tilted unit squares, the wasted space could be significantly reduced to
602: 744: 1533:
Gensane, Thierry; Ryckelynck, Philippe (2005), "Improved dense packings of congruent squares in a square",
1012:
Some numbers of unit squares are never the optimal number in a packing. In particular, if a square of size
1833: 1864: 462: 270: 608: 1926: 1788: 1451: 1396: 1283: 1273: 1002: 1408: 897: 796: 362: 1489: 848: 1356: 1015: 678: 646:
What is the asymptotic growth rate of wasted space for square packing in a half-integer square?
1931: 1828: 1327: 1317: 1278: 838: 1311: 1074: 1041: 575:
The smallest case where the best known packing involves squares at three different angles is
1774: 1681: 1646: 1596: 1544: 1503: 1461: 1418: 1370: 487: 92: 1695: 1610: 1558: 1515: 1475: 1430: 1382: 1339: 1100: 1691: 1606: 1579: 1554: 1511: 1471: 1426: 1378: 1335: 578: 519:. It is known that 11 unit squares cannot be packed in a square of side length less than 496: 386: 206: 23: 151: 1889: 1851: 1838: 1803: 1728: 976: 658: 411: 342: 322: 302: 126: 68: 48: 45:(squares of side length one) that can be packed inside a larger square of side length 1967: 1947: 1894: 1732: 1709: 1686: 1627: 1601: 1575: 1571: 1307: 790: 786: 1006: 994: 569: 741:
grid of axis-aligned unit squares, but this may leave a large area, approximately
1631: 1143:
with radius as small as possible. For this problem, good solutions are known for
1793: 1667: 998: 894: 42: 1650: 1663: 1549: 890: 120: 601:. It was discovered in 1998 by John Bidwell, an undergraduate student at the 1623: 842: 1531:
listed this side length as 3.8772; the tighter bound stated here is from
638: 86: 1140: 966:{\displaystyle \Omega {\bigl (}a^{1/2}(a-\lfloor a\rfloor ){\bigr )}} 27: 1005:
of the wasted space, even for half-integer side lengths, remains an
1743: 1413: 1507: 1374: 1331: 1422: 1466: 30:
can be packed into some larger shape, often a square or circle.
1747: 1670:(1978), "Inefficiency in packing squares with unit squares", 734:{\displaystyle \lfloor a\rfloor \!\times \!\lfloor a\rfloor } 1452:"Packing unit squares in squares: a survey and new results" 1397:"Optimal packings of 13 and 46 unit squares in a square" 701:
square remains unknown. It is always possible to pack a
561:{\displaystyle \textstyle 2+2{\sqrt {4/5}}\approx 3.789} 123:– amount of unfilled space for an arbitrary non-integer 26:
where the objective is to determine how many congruent
1632:"Efficient packings of unit squares in a large square" 526: 1103: 1077: 1044: 1018: 979: 906: 851: 799: 747: 707: 681: 661: 611: 581: 525: 499: 465: 434: 414: 389: 365: 345: 325: 305: 273: 218: 163: 129: 95: 71: 51: 675:, the exact number of unit squares that can pack an 41:
is the problem of determining the maximum number of
1940: 1919: 1903: 1850: 1802: 1781: 997:, the wasted space is at least proportional to its 1116: 1089: 1063: 1030: 985: 965: 881: 829: 777: 733: 693: 667: 623: 593: 560: 511: 478: 451: 420: 400: 375: 351: 331: 311: 285: 248: 193: 135: 111: 77: 57: 721: 717: 1357:"Efficient packing of unit squares in a square" 1759: 958: 912: 8: 1071:unit squares, then it must be the case that 950: 944: 769: 763: 728: 722: 714: 708: 473: 466: 446: 435: 249:{\displaystyle 3+1/{\sqrt {2}}\approx 3.707} 194:{\displaystyle 2+1/{\sqrt {2}}\approx 2.707} 1490:"Packing 10 or 11 unit squares in a square" 1301: 1299: 452:{\displaystyle \lceil {\sqrt {n}}\,\rceil } 267:11 unit squares in a square of side length 212:10 unit squares in a square of side length 1766: 1752: 1744: 900:, all solutions must waste space at least 157:5 unit squares in a square of side length 1685: 1600: 1548: 1465: 1412: 1355:Kearney, Michael J.; Shiu, Peter (2002), 1147:up to 35. Here are minimum solutions for 1108: 1102: 1076: 1049: 1043: 1017: 978: 957: 956: 925: 921: 911: 910: 905: 866: 862: 850: 814: 810: 798: 746: 706: 680: 660: 610: 580: 541: 536: 524: 498: 469: 464: 445: 438: 433: 413: 396: 388: 366: 364: 359:is a perfect square (in which case it is 344: 324: 304: 272: 233: 228: 217: 178: 173: 162: 128: 100: 94: 70: 50: 1528: 1445: 1443: 1441: 1439: 1153: 1580:"On packing squares with equal squares" 1401:The Electronic Journal of Combinatorics 1295: 778:{\displaystyle 2a(a-\lfloor a\rfloor )} 650:(more unsolved problems in mathematics) 1350: 1348: 1313:Research Problems in Discrete Geometry 1639:Discrete & Computational Geometry 1536:Discrete & Computational Geometry 655:For larger values of the side length 7: 845:further reduced the wasted space to 1495:Electronic Journal of Combinatorics 1457:Electronic Journal of Combinatorics 1362:Electronic Journal of Combinatorics 1316:, New York: Springer, p. 45, 907: 479:{\displaystyle \lceil \,\ \rceil } 14: 785:, uncovered and wasted. Instead, 286:{\displaystyle a\approx 3.877084} 1369:(1), Research Paper 14, 14 pp., 1135:is a related problem of packing 493:The smallest unresolved case is 260: 205: 150: 1673:Journal of Combinatorial Theory 1588:Journal of Combinatorial Theory 1124:unit squares is also possible. 641:Unsolved problem in mathematics 624:{\displaystyle a\approx 4.6756} 16:Two-dimensional packing problem 1895:Sphere-packing (Hamming) bound 1306:Brass, Peter; Moser, William; 953: 935: 876: 855: 824: 803: 772: 754: 1: 1979:Unsolved problems in geometry 1687:10.1016/0097-3165(78)90005-5 1602:10.1016/0097-3165(75)90099-0 1488:Stromquist, Walter (2003), 830:{\displaystyle o(a^{7/11})} 376:{\displaystyle {\sqrt {n}}} 339:unit squares is known when 319:that allows the packing of 1995: 1651:10.1007/s00454-019-00088-9 1269:Circle packing in a square 1133:Square packing in a circle 1128:Square packing in a circle 882:{\displaystyle O(a^{3/5})} 119:but the precise – or even 39:Square packing in a square 34:Square packing in a square 1550:10.1007/s00454-004-1129-z 1031:{\displaystyle a\times a} 694:{\displaystyle a\times a} 1820:isosceles right triangle 1739:, Erich's Packing Center 1450:Friedman, Erich (2009), 1395:Bentz, Wolfram (2010), 1090:{\displaystyle a\geq n} 1064:{\displaystyle n^{2}-2} 1834:Circle packing theorem 1118: 1097:and that a packing of 1091: 1065: 1038:allows the packing of 1032: 1003:asymptotic growth rate 987: 973:. In particular, when 967: 883: 831: 779: 735: 695: 669: 625: 605:, and has side length 595: 562: 513: 480: 453: 422: 402: 377: 353: 333: 313: 299:The smallest value of 287: 250: 195: 137: 113: 112:{\displaystyle a^{2},} 79: 59: 1119: 1117:{\displaystyle n^{2}} 1092: 1066: 1033: 988: 968: 884: 841:). Later, Graham and 832: 780: 736: 696: 670: 626: 603:University of HawaiĘ»i 596: 563: 514: 481: 454: 423: 403: 378: 354: 334: 314: 288: 251: 196: 143:is an open question. 138: 114: 80: 60: 1816:equilateral triangle 1733:"Squares in Squares" 1527:The 2000 version of 1502:, Research Paper 8, 1460:, Dynamic Survey 7, 1139:unit squares into a 1101: 1075: 1042: 1016: 977: 904: 849: 797: 745: 705: 679: 659: 609: 594:{\displaystyle n=17} 579: 523: 512:{\displaystyle n=11} 497: 463: 432: 412: 401:{\displaystyle n={}} 387: 363: 343: 323: 303: 271: 216: 161: 127: 93: 69: 49: 1953:Slothouber–Graatsma 1284:Moving sofa problem 1274:Squaring the square 1711:Squares in Circles 1157:Number of squares 1114: 1087: 1061: 1028: 983: 963: 879: 827: 775: 731: 691: 665: 635:Asymptotic results 621: 591: 558: 557: 509: 476: 449: 418: 398: 383:), as well as for 373: 349: 329: 309: 283: 246: 191: 133: 109: 75: 55: 1961: 1960: 1920:Other 3-D packing 1904:Other 2-D packing 1829:Apollonian gasket 1708:Friedman, Erich, 1279:Rectangle packing 1260: 1259: 986:{\displaystyle a} 839:little o notation 837:(here written in 668:{\displaystyle a} 549: 472: 443: 421:{\displaystyle a} 371: 352:{\displaystyle n} 332:{\displaystyle n} 312:{\displaystyle a} 238: 183: 136:{\displaystyle a} 78:{\displaystyle a} 58:{\displaystyle a} 1986: 1974:Packing problems 1842: 1782:Abstract packing 1775:Packing problems 1768: 1761: 1754: 1745: 1740: 1715: 1714: 1705: 1699: 1698: 1689: 1660: 1654: 1653: 1636: 1620: 1614: 1613: 1604: 1584: 1568: 1562: 1561: 1552: 1525: 1519: 1518: 1485: 1479: 1478: 1469: 1447: 1434: 1433: 1416: 1392: 1386: 1385: 1352: 1343: 1342: 1323:978-0387-23815-9 1303: 1154: 1123: 1121: 1120: 1115: 1113: 1112: 1096: 1094: 1093: 1088: 1070: 1068: 1067: 1062: 1054: 1053: 1037: 1035: 1034: 1029: 992: 990: 989: 984: 972: 970: 969: 964: 962: 961: 934: 933: 929: 916: 915: 888: 886: 885: 880: 875: 874: 870: 836: 834: 833: 828: 823: 822: 818: 784: 782: 781: 776: 740: 738: 737: 732: 700: 698: 697: 692: 674: 672: 671: 666: 642: 630: 628: 627: 622: 600: 598: 597: 592: 567: 565: 564: 559: 550: 545: 537: 518: 516: 515: 510: 485: 483: 482: 477: 470: 458: 456: 455: 450: 444: 439: 427: 425: 424: 419: 407: 405: 404: 399: 397: 382: 380: 379: 374: 372: 367: 358: 356: 355: 350: 338: 336: 335: 330: 318: 316: 315: 310: 292: 290: 289: 284: 264: 255: 253: 252: 247: 239: 234: 232: 209: 200: 198: 197: 192: 184: 179: 177: 154: 142: 140: 139: 134: 118: 116: 115: 110: 105: 104: 89:, the answer is 84: 82: 81: 76: 64: 62: 61: 56: 1994: 1993: 1989: 1988: 1987: 1985: 1984: 1983: 1964: 1963: 1962: 1957: 1936: 1915: 1899: 1846: 1840: 1839:Tammes problem 1798: 1777: 1772: 1729:Friedman, Erich 1727: 1724: 1719: 1718: 1707: 1706: 1702: 1662: 1661: 1657: 1634: 1622: 1621: 1617: 1582: 1570: 1569: 1565: 1532: 1529:Friedman (2009) 1526: 1522: 1487: 1486: 1482: 1449: 1448: 1437: 1394: 1393: 1389: 1354: 1353: 1346: 1324: 1305: 1304: 1297: 1292: 1265: 1130: 1104: 1099: 1098: 1073: 1072: 1045: 1040: 1039: 1014: 1013: 975: 974: 917: 902: 901: 858: 847: 846: 806: 795: 794: 743: 742: 703: 702: 677: 676: 657: 656: 653: 652: 647: 644: 640: 637: 607: 606: 577: 576: 521: 520: 495: 494: 461: 460: 430: 429: 410: 409: 385: 384: 361: 360: 341: 340: 321: 320: 301: 300: 297: 296: 295: 294: 293: 269: 268: 265: 257: 256: 214: 213: 210: 202: 201: 159: 158: 155: 125: 124: 96: 91: 90: 67: 66: 47: 46: 36: 24:packing problem 17: 12: 11: 5: 1992: 1990: 1982: 1981: 1976: 1966: 1965: 1959: 1958: 1956: 1955: 1950: 1944: 1942: 1938: 1937: 1935: 1934: 1929: 1923: 1921: 1917: 1916: 1914: 1913: 1911:Square packing 1907: 1905: 1901: 1900: 1898: 1897: 1892: 1890:Kissing number 1887: 1882: 1877: 1872: 1867: 1862: 1856: 1854: 1852:Sphere packing 1848: 1847: 1845: 1844: 1836: 1831: 1826: 1808: 1806: 1804:Circle packing 1800: 1799: 1797: 1796: 1791: 1785: 1783: 1779: 1778: 1773: 1771: 1770: 1763: 1756: 1748: 1742: 1741: 1723: 1722:External links 1720: 1717: 1716: 1700: 1680:(2): 170–186, 1668:Vaughan, R. C. 1655: 1645:(3): 690–699, 1615: 1563: 1520: 1480: 1435: 1387: 1344: 1322: 1294: 1293: 1291: 1288: 1287: 1286: 1281: 1276: 1271: 1264: 1261: 1258: 1257: 1254: 1250: 1249: 1246: 1242: 1241: 1238: 1234: 1233: 1230: 1226: 1225: 1222: 1218: 1217: 1214: 1210: 1209: 1206: 1202: 1201: 1198: 1194: 1193: 1190: 1186: 1185: 1182: 1178: 1177: 1174: 1170: 1169: 1166: 1162: 1161: 1160:Circle radius 1158: 1129: 1126: 1111: 1107: 1086: 1083: 1080: 1060: 1057: 1052: 1048: 1027: 1024: 1021: 1001:. The precise 982: 960: 955: 952: 949: 946: 943: 940: 937: 932: 928: 924: 920: 914: 909: 889:. However, as 878: 873: 869: 865: 861: 857: 854: 826: 821: 817: 813: 809: 805: 802: 774: 771: 768: 765: 762: 759: 756: 753: 750: 730: 727: 724: 720: 716: 713: 710: 690: 687: 684: 664: 648: 645: 639: 636: 633: 620: 617: 614: 590: 587: 584: 556: 553: 548: 544: 540: 535: 532: 529: 508: 505: 502: 475: 468: 448: 442: 437: 417: 395: 392: 370: 348: 328: 308: 282: 279: 276: 266: 259: 258: 245: 242: 237: 231: 227: 224: 221: 211: 204: 203: 190: 187: 182: 176: 172: 169: 166: 156: 149: 148: 147: 146: 145: 132: 108: 103: 99: 74: 54: 35: 32: 20:Square packing 15: 13: 10: 9: 6: 4: 3: 2: 1991: 1980: 1977: 1975: 1972: 1971: 1969: 1954: 1951: 1949: 1946: 1945: 1943: 1939: 1933: 1930: 1928: 1925: 1924: 1922: 1918: 1912: 1909: 1908: 1906: 1902: 1896: 1893: 1891: 1888: 1886: 1885:Close-packing 1883: 1881: 1880:In a cylinder 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1857: 1855: 1853: 1849: 1843: 1837: 1835: 1832: 1830: 1827: 1825: 1821: 1817: 1813: 1810: 1809: 1807: 1805: 1801: 1795: 1792: 1790: 1787: 1786: 1784: 1780: 1776: 1769: 1764: 1762: 1757: 1755: 1750: 1749: 1746: 1738: 1734: 1730: 1726: 1725: 1721: 1713: 1712: 1704: 1701: 1697: 1693: 1688: 1683: 1679: 1675: 1674: 1669: 1665: 1659: 1656: 1652: 1648: 1644: 1640: 1633: 1629: 1625: 1619: 1616: 1612: 1608: 1603: 1598: 1594: 1590: 1589: 1581: 1577: 1576:Graham, R. L. 1573: 1567: 1564: 1560: 1556: 1551: 1546: 1543:(1): 97–109, 1542: 1538: 1537: 1530: 1524: 1521: 1517: 1513: 1509: 1508:10.37236/1701 1505: 1501: 1497: 1496: 1491: 1484: 1481: 1477: 1473: 1468: 1463: 1459: 1458: 1453: 1446: 1444: 1442: 1440: 1436: 1432: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1398: 1391: 1388: 1384: 1380: 1376: 1375:10.37236/1631 1372: 1368: 1364: 1363: 1358: 1351: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1319: 1315: 1314: 1309: 1302: 1300: 1296: 1289: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1266: 1262: 1255: 1252: 1251: 1247: 1244: 1243: 1239: 1236: 1235: 1231: 1228: 1227: 1223: 1220: 1219: 1215: 1212: 1211: 1207: 1204: 1203: 1199: 1196: 1195: 1191: 1188: 1187: 1183: 1180: 1179: 1175: 1172: 1171: 1167: 1164: 1163: 1159: 1156: 1155: 1152: 1150: 1146: 1142: 1138: 1134: 1127: 1125: 1109: 1105: 1084: 1081: 1078: 1058: 1055: 1050: 1046: 1025: 1022: 1019: 1010: 1008: 1004: 1000: 996: 980: 947: 941: 938: 930: 926: 922: 918: 899: 896: 892: 871: 867: 863: 859: 852: 844: 840: 819: 815: 811: 807: 800: 792: 791:Ronald Graham 788: 766: 760: 757: 751: 748: 725: 718: 711: 688: 685: 682: 662: 651: 634: 632: 618: 615: 612: 604: 588: 585: 582: 573: 571: 554: 551: 546: 542: 538: 533: 530: 527: 506: 503: 500: 491: 489: 440: 415: 393: 390: 368: 346: 326: 306: 280: 277: 274: 263: 243: 240: 235: 229: 225: 222: 219: 208: 188: 185: 180: 174: 170: 167: 164: 153: 144: 130: 122: 106: 101: 97: 88: 72: 52: 44: 40: 33: 31: 29: 25: 21: 1910: 1822: / 1818: / 1814: / 1736: 1710: 1703: 1677: 1676:, Series A, 1671: 1658: 1642: 1638: 1618: 1592: 1591:, Series A, 1586: 1566: 1540: 1534: 1523: 1499: 1493: 1483: 1455: 1423:10.37236/398 1404: 1400: 1390: 1366: 1360: 1312: 1148: 1144: 1136: 1132: 1131: 1011: 1007:open problem 995:half-integer 654: 574: 570:Walter Trump 492: 298: 43:unit squares 38: 37: 19: 18: 1927:Tetrahedron 1870:In a sphere 1841:(on sphere) 1812:In a circle 1664:Roth, K. F. 1628:Graham, Ron 1595:: 119–123, 1467:10.37236/28 1308:Pach, János 999:square root 895:Bob Vaughan 1968:Categories 1860:Apollonian 1624:Chung, Fan 1414:1606.03746 1332:2005924022 1290:References 1151:up to 12: 891:Klaus Roth 787:Paul ErdĹ‘s 121:asymptotic 1932:Ellipsoid 1875:In a cube 1572:ErdĹ‘s, P. 1256:2.236... 1248:2.214... 1240:2.121... 1232:2.077... 1224:1.978... 1216:1.802... 1208:1.688... 1200:1.581... 1192:1.414... 1184:1.288... 1176:1.118... 1168:0.707... 1082:≥ 1056:− 1023:× 951:⌋ 945:⌊ 942:− 908:Ω 843:Fan Chung 770:⌋ 764:⌊ 761:− 729:⌋ 723:⌊ 719:× 715:⌋ 709:⌊ 686:× 616:≈ 552:≈ 474:⌉ 467:⌈ 447:⌉ 436:⌈ 278:≈ 241:≈ 186:≈ 1630:(2020), 1578:(1975), 1407:(R126), 1310:(2005), 1263:See also 459:, where 281:3.877084 1941:Puzzles 1696:0487806 1611:0370368 1559:2140885 1516:2386538 1476:1668055 1431:2729375 1383:1912796 1340:2163782 488:ceiling 486:is the 87:integer 28:squares 1948:Conway 1865:Finite 1824:square 1737:Github 1694:  1609:  1557:  1514:  1474:  1429:  1381:  1338:  1330:  1320:  1141:circle 898:proved 619:4.6756 471:  85:is an 1635:(PDF) 1583:(PDF) 1409:arXiv 993:is a 555:3.789 244:3.707 189:2.707 65:. If 22:is a 1328:LCCN 1318:ISBN 893:and 789:and 1794:Set 1789:Bin 1682:doi 1647:doi 1597:doi 1545:doi 1504:doi 1462:doi 1419:doi 1371:doi 1253:12 1245:11 1237:10 428:is 1970:: 1735:, 1731:, 1692:MR 1690:, 1678:24 1666:; 1643:64 1641:, 1637:, 1626:; 1607:MR 1605:, 1593:19 1585:, 1574:; 1555:MR 1553:, 1541:34 1539:, 1512:MR 1510:, 1500:10 1498:, 1492:, 1472:MR 1470:, 1454:, 1438:^ 1427:MR 1425:, 1417:, 1405:17 1403:, 1399:, 1379:MR 1377:, 1365:, 1359:, 1347:^ 1336:MR 1334:, 1326:, 1298:^ 1229:9 1221:8 1213:7 1205:6 1197:5 1189:4 1181:3 1173:2 1165:1 1009:. 820:11 631:. 589:17 572:. 507:11 1767:e 1760:t 1753:v 1684:: 1649:: 1599:: 1547:: 1506:: 1464:: 1421:: 1411:: 1373:: 1367:9 1149:n 1145:n 1137:n 1110:2 1106:n 1085:n 1079:a 1059:2 1051:2 1047:n 1026:a 1020:a 981:a 959:) 954:) 948:a 939:a 936:( 931:2 927:/ 923:1 919:a 913:( 877:) 872:5 868:/ 864:3 860:a 856:( 853:O 825:) 816:/ 812:7 808:a 804:( 801:o 773:) 767:a 758:a 755:( 752:a 749:2 726:a 712:a 689:a 683:a 663:a 643:: 613:a 586:= 583:n 547:5 543:/ 539:4 534:2 531:+ 528:2 504:= 501:n 441:n 416:a 394:= 391:n 369:n 347:n 327:n 307:a 275:a 236:2 230:/ 226:1 223:+ 220:3 181:2 175:/ 171:1 168:+ 165:2 131:a 107:, 102:2 98:a 73:a 53:a

Index

packing problem
squares
unit squares
integer
asymptotic



ceiling
Walter Trump
University of Hawaiʻi
(more unsolved problems in mathematics)
Paul Erdős
Ronald Graham
little o notation
Fan Chung
Klaus Roth
Bob Vaughan
proved
half-integer
square root
asymptotic growth rate
open problem
circle
Circle packing in a square
Squaring the square
Rectangle packing
Moving sofa problem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑