Knowledge (XXG)

Squared triangular number

Source 📝

1878: 1234: 1873:{\displaystyle {\begin{aligned}\sum _{k=1}^{n}k^{3}&=1+8+27+64+\cdots +n^{3}\\&=\underbrace {1} _{1^{3}}+\underbrace {3+5} _{2^{3}}+\underbrace {7+9+11} _{3^{3}}+\underbrace {13+15+17+19} _{4^{3}}+\cdots +\underbrace {\left(n^{2}-n+1\right)+\cdots +\left(n^{2}+n-1\right)} _{n^{3}}\\&=\underbrace {\underbrace {\underbrace {\underbrace {1} _{1^{2}}+3} _{2^{2}}+5} _{3^{2}}+\cdots +\left(n^{2}+n-1\right)} _{\left({\frac {n^{2}+n}{2}}\right)^{2}}\\&=(1+2+\cdots +n)^{2}\\&=\left(\sum _{k=1}^{n}k\right)^{2}.\end{aligned}}} 533: 27: 4927: 1905: 1027: 798:
of these two triangles, so its size is the square of a triangular number on the right hand side of the Nichomachus identity. The probabilities themselves are respectively the left and right sides of the Nichomachus identity, normalized to make probabilities by dividing both sides
332:, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on. He does not go further than this, but from this it follows that the sum of the first 823: 184: 289: 2106: 1139: 1239: 2441: 626:
grid (or a square made up of three smaller squares on a side) can form 36 different rectangles. The number of squares in a square grid is similarly counted by the square pyramidal numbers.
1229: 1897:
times a triangular number, from which it follows that the sum of all the rows is the square of a triangular number. Alternatively, one can decompose the table into a sequence of nested
1901:, each consisting of the products in which the larger of the two terms is some fixed value. The sum within each gmonon is a cube, so the sum of the whole table is a sum of cubes. 1022:{\displaystyle n^{3}=\underbrace {\left(n^{2}-n+1\right)+\left(n^{2}-n+1+2\right)+\left(n^{2}-n+1+4\right)+\cdots +\left(n^{2}+n-1\right)} _{n{\text{ consecutive odd numbers}}}.} 3029: 34:. The nth coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the nth region is n times n x n. 2664: 2573: 67: 2000: 820:) gives a particularly simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. He begins by giving the identity 3022: 1046: 2513: 2349: 199: 1974:
study polynomial analogues of the square triangular number formula, in which series of polynomials add to the square of another polynomial.
2375: 3829: 3015: 2633: 2533: 2266: 3824: 1960:, of which the sum of cubes is the simplest and most elegant example. However, in no other case is one power sum a square of another. 3839: 3819: 1162: 30:
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From
4532: 4112: 2039: 3834: 2657: 4618: 4961: 3934: 4966: 4284: 3603: 3396: 2842: 2392: 4319: 4289: 3964: 3954: 4460: 3874: 3608: 3588: 2847: 2827: 2160: 2115: 4150: 4314: 4956: 4409: 4032: 3789: 3598: 3580: 3474: 3464: 3454: 2837: 2819: 2718: 2708: 2698: 794:
form isosceles right triangles, and the set counted by the right hand side of the equation of probabilities is the
4294: 4537: 4082: 3489: 3484: 3479: 3469: 3446: 2733: 2728: 2723: 2713: 2690: 2650: 1924:
uses the rectangle-counting interpretation of these numbers to form a geometric proof of the identity (see also
3522: 2212: 20: 3779: 2309:
Kanim, Katherine (2004), "Proofs without words: The sum of cubes—An extension of Archimedes' sum of squares",
4648: 4613: 4399: 4309: 4183: 4158: 4067: 4057: 3669: 3651: 3571: 2908: 2885: 2810: 609:
observes, these numbers also count the number of rectangles with horizontal and vertical sides formed in an
599: 545: 1956:, namely that odd power sums (sums of odd powers) are a polynomial in triangular numbers. These are called 4951: 4908: 4178: 4052: 3683: 3459: 3239: 3166: 2922: 2703: 2480: 1957: 1953: 295: 2381: 4163: 4017: 3944: 3099: 2977: 4872: 4512: 1966:
studies more general conditions under which the sum of a consecutive sequence of cubes forms a square.
4805: 4699: 4663: 4404: 4127: 4107: 3924: 3593: 3381: 3353: 2832: 2582: 2445: 2311: 1928:); he observes that it may also be proved easily (but uninformatively) by induction, and states that 1886: 2298: 4527: 4391: 4386: 4354: 4117: 4092: 4087: 4062: 3992: 3988: 3919: 3809: 3641: 3437: 3406: 2875: 2681: 514: 4926: 4930: 4684: 4679: 4593: 4567: 4465: 4444: 4216: 4097: 4047: 3969: 3939: 3879: 3646: 3626: 3557: 3270: 2903: 2880: 2796: 2564: 2524: 2462: 2328: 2245: 2229: 2207: 2177: 2144: 2132: 2035: 2031: 1917: 1030: 813: 3814: 2257: 750:
is largest is a sum of cubes, the left hand side of the Nichomachus identity. The sets of pairs
460:
claims that "every student of number theory surely must have marveled at this miraculous fact".
4824: 4769: 4623: 4598: 4572: 4349: 4027: 4022: 3949: 3929: 3914: 3636: 3618: 3537: 3527: 3512: 3290: 3275: 2870: 2857: 2776: 2766: 2756: 2613: 2509: 2345: 795: 595: 532: 58: 2630: 4860: 4653: 4239: 4211: 4201: 4193: 4077: 4042: 4037: 4004: 3698: 3661: 3552: 3547: 3542: 3532: 3504: 3391: 3343: 3338: 3295: 3234: 2937: 2895: 2791: 2786: 2781: 2771: 2748: 2590: 2542: 2454: 2359:
Pengelley, David (2002), "The bridge between continuous and discrete via original sources",
2320: 2275: 2221: 2169: 2124: 2556: 2493: 2289: 2241: 4836: 4725: 4658: 4584: 4507: 4481: 4299: 4012: 3869: 3804: 3774: 3764: 3759: 3425: 3333: 3280: 3124: 3064: 2673: 2637: 2552: 2489: 2285: 2237: 2152: 1898: 591: 2617: 2586: 4841: 4709: 4694: 4558: 4522: 4497: 4373: 4344: 4329: 4206: 4102: 4072: 3799: 3754: 3631: 3229: 3224: 3219: 3191: 3176: 3089: 3074: 3052: 3039: 2865: 2189: 2148: 619: 46: 2475: 26: 4945: 4764: 4748: 4689: 4643: 4339: 4324: 4234: 3959: 3517: 3386: 3348: 3305: 3186: 3171: 3161: 3119: 3109: 3084: 2987: 2761: 2501: 2249: 50: 39: 456:
Many early mathematicians have studied and provided proofs of Nicomachus's theorem.
189:
The same equation may be written more compactly using the mathematical notation for
4800: 4789: 4704: 4542: 4517: 4434: 4334: 4304: 4279: 4263: 4168: 4135: 3884: 3858: 3769: 3708: 3285: 3181: 3114: 3094: 3069: 2992: 2947: 2193: 579: 1908:
Visual demonstration that the square of a triangular number equals a sum of cubes.
179:{\displaystyle 1^{3}+2^{3}+3^{3}+\cdots +n^{3}=\left(1+2+3+\cdots +n\right)^{2}.} 4759: 4634: 4439: 3903: 3794: 3749: 3744: 3494: 3401: 3300: 3129: 3104: 3079: 2982: 2738: 1990: 629:
The identity also admits a natural probabilistic interpretation as follows. Let
575: 4896: 4877: 4173: 3784: 2360: 571: 567: 563: 503: 465: 303: 3007: 647:
be four integer numbers independently and uniformly chosen at random between
4502: 4429: 4421: 4226: 4140: 3258: 2962: 2622: 499: 481: 473: 190: 2595: 1904: 4603: 498:
mentions several additional early mathematical works on this formula, by
2368:, National Center for Mathematics Education, Univ. of Gothenburg, Sweden 2181: 4608: 4267: 2466: 2332: 2233: 2136: 284:{\displaystyle \sum _{k=1}^{n}k^{3}=\left(\sum _{k=1}^{n}k\right)^{2}.} 2173: 491: 469: 2568: 2458: 2324: 2225: 2128: 2642: 2547: 2280: 1903: 1159:. Applying this property, along with another well-known identity: 531: 477: 25: 4894: 4858: 4822: 4786: 4746: 4371: 4260: 3986: 3901: 3856: 3733: 3423: 3370: 3322: 3256: 3208: 3146: 3050: 3011: 2646: 659:
is the largest of the four numbers equals the probability that
2569:"On the formation of powers from arithmetical progressions" 1994: 528:
Numeric values; geometric and probabilistic interpretation
594:, a four-dimensional hyperpyramidal generalization of the 464:
finds references to the identity not only in the works of
2101:{\displaystyle \textstyle \sum k^{3}={n+1 \choose 2}^{2}} 1885:
obtains another proof by summing the numbers in a square
2476:"On the sum of consecutive cubes being a perfect square" 1134:{\displaystyle n^{3}=\sum _{k=T_{n-1}+1}^{T_{n}}(2k-1),} 1952:
A similar result to Nicomachus's theorem holds for all
1147:
start off just after those forming all previous values
19:
For triangular numbers that are themselves square, see
2396: 2043: 2395: 2389:
Stein, Robert G. (1971), "A combinatorial proof that
2042: 1237: 1165: 1049: 826: 724:
so (adding the size of this cube over all choices of
202: 70: 4718: 4672: 4632: 4583: 4557: 4490: 4474: 4453: 4420: 4385: 4225: 4192: 4149: 4126: 4003: 3691: 3682: 3660: 3617: 3579: 3570: 3503: 3445: 3436: 2970: 2960: 2930: 2921: 2894: 2856: 2818: 2809: 2747: 2689: 2680: 524:, India); he reproduces Nilakantha's visual proof. 2436:{\displaystyle \textstyle \sum k^{3}=(\sum k)^{2}} 2435: 2100: 1925: 1872: 1223: 1133: 1021: 283: 178: 2297:Gulley, Ned (March 4, 2010), Shure, Loren (ed.), 2210:(1957), "Sums of powers of the natural numbers", 361:odd numbers, that is, the odd numbers from 1 to 1937: 2256:Garrett, Kristina C.; Hummel, Kristen (2004), 559:The sequence of squared triangular numbers is 3023: 2658: 2362:Study the Masters: The Abel-Fauvel Conference 2085: 2064: 1967: 585:441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 8: 2195:Calculus before Newton and Leibniz, Part III 1932:provides "an interesting old Arabic proof". 1912:In the more recent mathematical literature, 1224:{\displaystyle n^{2}=\sum _{k=1}^{n}(2k-1),} 472:in the 1st century CE, but also in those of 372:. The average of these numbers is obviously 328:Nicomachus, at the end of Chapter 20 of his 4891: 4855: 4819: 4783: 4743: 4417: 4382: 4368: 4257: 4000: 3983: 3898: 3853: 3730: 3688: 3576: 3442: 3433: 3420: 3367: 3324:Possessing a specific set of other numbers 3319: 3253: 3205: 3143: 3047: 3030: 3016: 3008: 2967: 2927: 2815: 2686: 2665: 2651: 2643: 2574:Proceedings of the Royal Society of London 817: 2594: 2546: 2426: 2404: 2394: 2279: 2091: 2084: 2063: 2061: 2051: 2041: 2001:On-Line Encyclopedia of Integer Sequences 1857: 1843: 1832: 1806: 1760: 1738: 1731: 1725: 1696: 1670: 1665: 1645: 1640: 1620: 1615: 1605: 1601: 1597: 1593: 1574: 1569: 1540: 1499: 1487: 1469: 1464: 1434: 1422: 1417: 1393: 1381: 1376: 1358: 1346: 1341: 1331: 1314: 1267: 1257: 1246: 1238: 1236: 1194: 1183: 1170: 1164: 1102: 1097: 1078: 1067: 1054: 1048: 1009: 1005: 976: 929: 888: 853: 841: 831: 825: 461: 272: 258: 247: 228: 218: 207: 201: 167: 120: 101: 88: 75: 69: 1963: 1929: 495: 457: 2014: 1982: 1971: 1913: 2631:A visual proof of Nicomachus's theorem 2153:"Summing cubes by counting rectangles" 1941: 1889:in two different ways. The sum of the 31: 2258:"A combinatorial proof of the sum of 1933: 1921: 606: 7: 2377:Geometric Exercises in Paper Folding 480:in the 5th century, and in those of 2534:Electronic Journal of Combinatorics 2267:Electronic Journal of Combinatorics 2036:"Two quick combinatorial proofs of 1940:provide two additional proofs, and 1882: 1231:produces the following derivation: 552:(red), in a 3 Ă— 3 square 2068: 336:cubes equals the sum of the first 14: 4925: 4533:Perfect digit-to-digit invariant 2506:The Calculus, a Genetic Approach 1936:provides a purely visual proof, 1926:Benjamin, Quinn & Wurtz 2006 728:) the number of combinations of 622:. For instance, the points of a 2508:, University of Chicago Press, 590:These numbers can be viewed as 2529:-analogue of the sum of cubes" 2423: 2413: 2344:, Cambridge University Press, 1944:gives seven geometric proofs. 1803: 1778: 1215: 1200: 1141:and thus the summands forming 1125: 1110: 685:. For any particular value of 1: 3372:Expressible via specific sums 2843:Centered dodecahedral numbers 1938:Benjamin & Orrison (2002) 1011: consecutive odd numbers 655:. Then, the probability that 554:(4 Ă— 4 vertex) grid 518: 507: 484: 314: 307: 16:Square of a triangular number 2848:Centered icosahedral numbers 2828:Centered tetrahedral numbers 1029:That identity is related to 4461:Multiplicative digital root 2838:Centered octahedral numbers 2719:Centered heptagonal numbers 2709:Centered pentagonal numbers 2699:Centered triangular numbers 2161:College Mathematics Journal 2116:College Mathematics Journal 1968:Garrett & Hummel (2004) 4983: 2943:Squared triangular numbers 2734:Centered decagonal numbers 2729:Centered nonagonal numbers 2724:Centered octagonal numbers 2714:Centered hexagonal numbers 1991:Sloane, N. J. A. 330:Introduction to Arithmetic 18: 4921: 4904: 4890: 4868: 4854: 4832: 4818: 4796: 4782: 4755: 4742: 4538:Perfect digital invariant 4381: 4367: 4275: 4256: 4113:Superior highly composite 3999: 3982: 3910: 3897: 3865: 3852: 3740: 3729: 3432: 3419: 3377: 3366: 3329: 3318: 3266: 3252: 3215: 3204: 3157: 3142: 3060: 3046: 2340:Nelsen, Roger B. (1993), 2151:; Wurtz, Calyssa (2006), 2034:; Orrison, M. E. (2002), 422:of them, so their sum is 4151:Euler's totient function 3935:Euler–Jacobi pseudoprime 3210:Other polynomial numbers 2909:Square pyramidal numbers 2886:Stella octangula numbers 2523:Warnaar, S. Ole (2004), 2474:Stroeker, R. J. (1995), 2374:Row, T. Sundara (1893), 2213:The Mathematical Gazette 671:is at least as large as 663:is at least as large as 600:square pyramidal numbers 544:) rectangles, including 21:square triangular number 3965:Somer–Lucas pseudoprime 3955:Lucas–Carmichael number 3790:Lazy caterer's sequence 2704:Centered square numbers 2274:(1), Research Paper 9, 1995:"Sequence A000537" 1916:provides a proof using 502:(10th century Arabia), 42:, the sum of the first 3840:Wedderburn–Etherington 3240:Lucky numbers of Euler 2618:"Nicomachus's theorem" 2596:10.1098/rspl.1854.0036 2481:Compositio Mathematica 2437: 2102: 1909: 1874: 1848: 1262: 1225: 1199: 1135: 1109: 1043:in the following way: 1023: 814:Charles Wheatstone 689:, the combinations of 556: 285: 263: 223: 180: 35: 4128:Prime omega functions 3945:Frobenius pseudoprime 3735:Combinatorial numbers 3604:Centered dodecahedral 3397:Primary pseudoperfect 2833:Centered cube numbers 2438: 2103: 1958:Faulhaber polynomials 1907: 1875: 1828: 1242: 1226: 1179: 1136: 1063: 1024: 535: 286: 243: 203: 181: 29: 4962:Algebraic identities 4587:-composition related 4387:Arithmetic functions 3989:Arithmetic functions 3925:Elliptic pseudoprime 3609:Centered icosahedral 3589:Centered tetrahedral 2876:Dodecahedral numbers 2446:Mathematics Magazine 2393: 2342:Proofs without Words 2312:Mathematics Magazine 2300:Nicomachus's Theorem 2040: 1887:multiplication table 1235: 1163: 1047: 824: 705:largest form a cube 304:Nicomachus of Gerasa 300:Nicomachus's theorem 298:is sometimes called 200: 68: 4967:Proof without words 4513:Kaprekar's constant 4033:Colossally abundant 3920:Catalan pseudoprime 3820:Schröder–Hipparchus 3599:Centered octahedral 3475:Centered heptagonal 3465:Centered pentagonal 3455:Centered triangular 3055:and related numbers 2993:8-hypercube numbers 2988:7-hypercube numbers 2983:6-hypercube numbers 2978:5-hypercube numbers 2948:Tesseractic numbers 2904:Tetrahedral numbers 2881:Icosahedral numbers 2797:Dodecagonal numbers 2587:1854RSPS....7..145W 2380:, Madras: Addison, 2145:Benjamin, Arthur T. 2032:Benjamin, Arthur T. 515:Nilakantha Somayaji 4931:Mathematics portal 4873:Aronson's sequence 4619:Smarandache–Wellin 4376:-dependent numbers 4083:Primitive abundant 3970:Strong pseudoprime 3960:Perrin pseudoprime 3940:Fermat pseudoprime 3880:Wolstenholme prime 3704:Squared triangular 3490:Centered decagonal 3485:Centered nonagonal 3480:Centered octagonal 3470:Centered hexagonal 2871:Octahedral numbers 2777:Heptagonal numbers 2767:Pentagonal numbers 2757:Triangular numbers 2636:2019-10-19 at the 2614:Weisstein, Eric W. 2433: 2432: 2208:Edmonds, Sheila M. 2149:Quinn, Jennifer J. 2098: 2097: 1918:summation by parts 1910: 1870: 1868: 1767: 1723: 1677: 1663: 1652: 1638: 1627: 1613: 1581: 1567: 1476: 1462: 1429: 1415: 1388: 1374: 1353: 1339: 1221: 1131: 1031:triangular numbers 1019: 1015: 1003: 596:triangular numbers 557: 281: 176: 36: 4957:Integer sequences 4939: 4938: 4917: 4916: 4886: 4885: 4850: 4849: 4814: 4813: 4778: 4777: 4738: 4737: 4734: 4733: 4553: 4552: 4363: 4362: 4252: 4251: 4248: 4247: 4194:Aliquot sequences 4005:Divisor functions 3978: 3977: 3950:Lucas pseudoprime 3930:Euler pseudoprime 3915:Carmichael number 3893: 3892: 3848: 3847: 3725: 3724: 3721: 3720: 3717: 3716: 3678: 3677: 3566: 3565: 3523:Square triangular 3415: 3414: 3362: 3361: 3314: 3313: 3248: 3247: 3200: 3199: 3138: 3137: 3005: 3004: 3001: 3000: 2956: 2955: 2938:Pentatope numbers 2917: 2916: 2805: 2804: 2792:Decagonal numbers 2787:Nonagonal numbers 2782:Octagonal numbers 2772:Hexagonal numbers 2515:978-0-226-80667-9 2351:978-0-88385-700-7 2083: 2004:, OEIS Foundation 1754: 1606: 1604: 1602: 1600: 1598: 1596: 1594: 1592: 1488: 1486: 1435: 1433: 1394: 1392: 1359: 1357: 1332: 1330: 1012: 842: 840: 796:Cartesian product 59:triangular number 4974: 4929: 4892: 4861:Natural language 4856: 4820: 4788:Generated via a 4784: 4744: 4649:Digit-reassembly 4614:Self-descriptive 4418: 4383: 4369: 4320:Lucas–Carmichael 4310:Harmonic divisor 4258: 4184:Sparsely totient 4159:Highly cototient 4068:Multiply perfect 4058:Highly composite 4001: 3984: 3899: 3854: 3835:Telephone number 3731: 3689: 3670:Square pyramidal 3652:Stella octangula 3577: 3443: 3434: 3426:Figurate numbers 3421: 3368: 3320: 3254: 3206: 3144: 3048: 3032: 3025: 3018: 3009: 2968: 2928: 2816: 2687: 2674:Figurate numbers 2667: 2660: 2653: 2644: 2627: 2626: 2599: 2598: 2559: 2550: 2528: 2518: 2496: 2488:(1–2): 295–307, 2469: 2442: 2440: 2439: 2434: 2431: 2430: 2409: 2408: 2384: 2369: 2367: 2354: 2335: 2304: 2303:, Matlab Central 2292: 2283: 2261: 2252: 2220:(337): 187–188, 2202: 2200: 2184: 2174:10.2307/27646391 2157: 2139: 2112: 2107: 2105: 2104: 2099: 2096: 2095: 2090: 2089: 2088: 2079: 2067: 2056: 2055: 2018: 2012: 2006: 2005: 1987: 1896: 1892: 1879: 1877: 1876: 1871: 1869: 1862: 1861: 1856: 1852: 1847: 1842: 1815: 1811: 1810: 1771: 1766: 1765: 1764: 1759: 1755: 1750: 1743: 1742: 1732: 1724: 1719: 1718: 1714: 1701: 1700: 1676: 1675: 1674: 1664: 1659: 1651: 1650: 1649: 1639: 1634: 1626: 1625: 1624: 1614: 1585: 1580: 1579: 1578: 1568: 1563: 1562: 1558: 1545: 1544: 1521: 1517: 1504: 1503: 1475: 1474: 1473: 1463: 1458: 1428: 1427: 1426: 1416: 1411: 1387: 1386: 1385: 1375: 1370: 1352: 1351: 1350: 1340: 1323: 1319: 1318: 1272: 1271: 1261: 1256: 1230: 1228: 1227: 1222: 1198: 1193: 1175: 1174: 1158: 1150: 1146: 1140: 1138: 1137: 1132: 1108: 1107: 1106: 1096: 1089: 1088: 1059: 1058: 1042: 1028: 1026: 1025: 1020: 1014: 1013: 1010: 1004: 999: 998: 994: 981: 980: 957: 953: 934: 933: 916: 912: 893: 892: 875: 871: 858: 857: 836: 835: 804: 793: 783: 771: 761: 749: 745: 727: 723: 704: 700: 696: 692: 688: 684: 674: 670: 666: 662: 658: 654: 650: 646: 625: 618: 592:figurate numbers 586: 583: 555: 549: 543: 539: 523: 520: 512: 509: 489: 486: 462:Pengelley (2002) 452: 448: 446: 445: 442: 439: 421: 420: 418: 417: 414: 411: 397:, and there are 396: 395: 393: 392: 389: 386: 371: 360: 359: 357: 356: 353: 350: 335: 319: 316: 312: 309: 290: 288: 287: 282: 277: 276: 271: 267: 262: 257: 233: 232: 222: 217: 185: 183: 182: 177: 172: 171: 166: 162: 125: 124: 106: 105: 93: 92: 80: 79: 56: 45: 4982: 4981: 4977: 4976: 4975: 4973: 4972: 4971: 4942: 4941: 4940: 4935: 4913: 4909:Strobogrammatic 4900: 4882: 4864: 4846: 4828: 4810: 4792: 4774: 4751: 4730: 4714: 4673:Divisor-related 4668: 4628: 4579: 4549: 4486: 4470: 4449: 4416: 4389: 4377: 4359: 4271: 4270:related numbers 4244: 4221: 4188: 4179:Perfect totient 4145: 4122: 4053:Highly abundant 3995: 3974: 3906: 3889: 3861: 3844: 3830:Stirling second 3736: 3713: 3674: 3656: 3613: 3562: 3499: 3460:Centered square 3428: 3411: 3373: 3358: 3325: 3310: 3262: 3261:defined numbers 3244: 3211: 3196: 3167:Double Mersenne 3153: 3134: 3056: 3042: 3040:natural numbers 3036: 3006: 2997: 2952: 2913: 2890: 2852: 2801: 2743: 2676: 2671: 2638:Wayback Machine 2612: 2611: 2608: 2603: 2563: 2526: 2522: 2516: 2500: 2473: 2459:10.2307/2688231 2422: 2400: 2391: 2390: 2388: 2373: 2365: 2358: 2352: 2339: 2325:10.2307/3219288 2308: 2296: 2259: 2255: 2226:10.2307/3609189 2206: 2198: 2190:Bressoud, David 2188: 2155: 2143: 2129:10.2307/1559017 2110: 2069: 2062: 2060: 2047: 2038: 2037: 2030: 2026: 2021: 2013: 2009: 1989: 1988: 1984: 1980: 1964:Stroeker (1995) 1950: 1948:Generalizations 1930:Toeplitz (1963) 1894: 1890: 1867: 1866: 1827: 1823: 1822: 1813: 1812: 1802: 1769: 1768: 1734: 1733: 1727: 1726: 1692: 1691: 1687: 1666: 1641: 1616: 1603: 1599: 1595: 1583: 1582: 1570: 1536: 1535: 1531: 1495: 1494: 1490: 1489: 1465: 1436: 1418: 1395: 1377: 1360: 1342: 1321: 1320: 1310: 1273: 1263: 1233: 1232: 1166: 1161: 1160: 1152: 1148: 1142: 1098: 1074: 1050: 1045: 1044: 1041: 1033: 972: 971: 967: 925: 924: 920: 884: 883: 879: 849: 848: 844: 843: 827: 822: 821: 811: 800: 785: 773: 763: 751: 747: 729: 725: 706: 702: 698: 694: 690: 686: 676: 672: 668: 664: 660: 656: 652: 648: 630: 623: 610: 588: 584: 562: 553: 547: 541: 537: 530: 521: 513:, France), and 510: 496:Bressoud (2004) 487: 468:in what is now 458:Stroeker (1995) 451: 443: 440: 430: 429: 427: 426: 423: 415: 412: 402: 401: 399: 398: 390: 387: 377: 376: 374: 373: 362: 354: 351: 341: 340: 338: 337: 333: 326: 317: 310: 242: 238: 237: 224: 198: 197: 134: 130: 129: 116: 97: 84: 71: 66: 65: 54: 43: 24: 17: 12: 11: 5: 4980: 4978: 4970: 4969: 4964: 4959: 4954: 4944: 4943: 4937: 4936: 4934: 4933: 4922: 4919: 4918: 4915: 4914: 4912: 4911: 4905: 4902: 4901: 4895: 4888: 4887: 4884: 4883: 4881: 4880: 4875: 4869: 4866: 4865: 4859: 4852: 4851: 4848: 4847: 4845: 4844: 4842:Sorting number 4839: 4837:Pancake number 4833: 4830: 4829: 4823: 4816: 4815: 4812: 4811: 4809: 4808: 4803: 4797: 4794: 4793: 4787: 4780: 4779: 4776: 4775: 4773: 4772: 4767: 4762: 4756: 4753: 4752: 4749:Binary numbers 4747: 4740: 4739: 4736: 4735: 4732: 4731: 4729: 4728: 4722: 4720: 4716: 4715: 4713: 4712: 4707: 4702: 4697: 4692: 4687: 4682: 4676: 4674: 4670: 4669: 4667: 4666: 4661: 4656: 4651: 4646: 4640: 4638: 4630: 4629: 4627: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4590: 4588: 4581: 4580: 4578: 4577: 4576: 4575: 4564: 4562: 4559:P-adic numbers 4555: 4554: 4551: 4550: 4548: 4547: 4546: 4545: 4535: 4530: 4525: 4520: 4515: 4510: 4505: 4500: 4494: 4492: 4488: 4487: 4485: 4484: 4478: 4476: 4475:Coding-related 4472: 4471: 4469: 4468: 4463: 4457: 4455: 4451: 4450: 4448: 4447: 4442: 4437: 4432: 4426: 4424: 4415: 4414: 4413: 4412: 4410:Multiplicative 4407: 4396: 4394: 4379: 4378: 4374:Numeral system 4372: 4365: 4364: 4361: 4360: 4358: 4357: 4352: 4347: 4342: 4337: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4276: 4273: 4272: 4261: 4254: 4253: 4250: 4249: 4246: 4245: 4243: 4242: 4237: 4231: 4229: 4223: 4222: 4220: 4219: 4214: 4209: 4204: 4198: 4196: 4190: 4189: 4187: 4186: 4181: 4176: 4171: 4166: 4164:Highly totient 4161: 4155: 4153: 4147: 4146: 4144: 4143: 4138: 4132: 4130: 4124: 4123: 4121: 4120: 4115: 4110: 4105: 4100: 4095: 4090: 4085: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4018:Almost perfect 4015: 4009: 4007: 3997: 3996: 3987: 3980: 3979: 3976: 3975: 3973: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3937: 3932: 3927: 3922: 3917: 3911: 3908: 3907: 3902: 3895: 3894: 3891: 3890: 3888: 3887: 3882: 3877: 3872: 3866: 3863: 3862: 3857: 3850: 3849: 3846: 3845: 3843: 3842: 3837: 3832: 3827: 3825:Stirling first 3822: 3817: 3812: 3807: 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3767: 3762: 3757: 3752: 3747: 3741: 3738: 3737: 3734: 3727: 3726: 3723: 3722: 3719: 3718: 3715: 3714: 3712: 3711: 3706: 3701: 3695: 3693: 3686: 3680: 3679: 3676: 3675: 3673: 3672: 3666: 3664: 3658: 3657: 3655: 3654: 3649: 3644: 3639: 3634: 3629: 3623: 3621: 3615: 3614: 3612: 3611: 3606: 3601: 3596: 3591: 3585: 3583: 3574: 3568: 3567: 3564: 3563: 3561: 3560: 3555: 3550: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3509: 3507: 3501: 3500: 3498: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3451: 3449: 3440: 3430: 3429: 3424: 3417: 3416: 3413: 3412: 3410: 3409: 3404: 3399: 3394: 3389: 3384: 3378: 3375: 3374: 3371: 3364: 3363: 3360: 3359: 3357: 3356: 3351: 3346: 3341: 3336: 3330: 3327: 3326: 3323: 3316: 3315: 3312: 3311: 3309: 3308: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3267: 3264: 3263: 3257: 3250: 3249: 3246: 3245: 3243: 3242: 3237: 3232: 3227: 3222: 3216: 3213: 3212: 3209: 3202: 3201: 3198: 3197: 3195: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3158: 3155: 3154: 3147: 3140: 3139: 3136: 3135: 3133: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3097: 3092: 3087: 3082: 3077: 3072: 3067: 3061: 3058: 3057: 3051: 3044: 3043: 3037: 3035: 3034: 3027: 3020: 3012: 3003: 3002: 2999: 2998: 2996: 2995: 2990: 2985: 2980: 2974: 2972: 2965: 2958: 2957: 2954: 2953: 2951: 2950: 2945: 2940: 2934: 2932: 2925: 2919: 2918: 2915: 2914: 2912: 2911: 2906: 2900: 2898: 2892: 2891: 2889: 2888: 2883: 2878: 2873: 2868: 2862: 2860: 2854: 2853: 2851: 2850: 2845: 2840: 2835: 2830: 2824: 2822: 2813: 2807: 2806: 2803: 2802: 2800: 2799: 2794: 2789: 2784: 2779: 2774: 2769: 2764: 2762:Square numbers 2759: 2753: 2751: 2745: 2744: 2742: 2741: 2736: 2731: 2726: 2721: 2716: 2711: 2706: 2701: 2695: 2693: 2684: 2678: 2677: 2672: 2670: 2669: 2662: 2655: 2647: 2641: 2640: 2628: 2607: 2606:External links 2604: 2602: 2601: 2565:Wheatstone, C. 2561: 2541:(1), Note 13, 2520: 2514: 2502:Toeplitz, Otto 2498: 2471: 2453:(3): 161–162, 2429: 2425: 2421: 2418: 2415: 2412: 2407: 2403: 2399: 2386: 2371: 2356: 2350: 2337: 2319:(4): 298–299, 2306: 2294: 2253: 2204: 2186: 2168:(5): 387–389, 2141: 2123:(5): 406–408, 2094: 2087: 2082: 2078: 2075: 2072: 2066: 2059: 2054: 2050: 2046: 2027: 2025: 2022: 2020: 2019: 2015:Edmonds (1957) 2007: 1981: 1979: 1976: 1972:Warnaar (2004) 1949: 1946: 1914:Edmonds (1957) 1865: 1860: 1855: 1851: 1846: 1841: 1838: 1835: 1831: 1826: 1821: 1818: 1816: 1814: 1809: 1805: 1801: 1798: 1795: 1792: 1789: 1786: 1783: 1780: 1777: 1774: 1772: 1770: 1763: 1758: 1753: 1749: 1746: 1741: 1737: 1730: 1722: 1717: 1713: 1710: 1707: 1704: 1699: 1695: 1690: 1686: 1683: 1680: 1673: 1669: 1662: 1658: 1655: 1648: 1644: 1637: 1633: 1630: 1623: 1619: 1612: 1609: 1591: 1588: 1586: 1584: 1577: 1573: 1566: 1561: 1557: 1554: 1551: 1548: 1543: 1539: 1534: 1530: 1527: 1524: 1520: 1516: 1513: 1510: 1507: 1502: 1498: 1493: 1485: 1482: 1479: 1472: 1468: 1461: 1457: 1454: 1451: 1448: 1445: 1442: 1439: 1432: 1425: 1421: 1414: 1410: 1407: 1404: 1401: 1398: 1391: 1384: 1380: 1373: 1369: 1366: 1363: 1356: 1349: 1345: 1338: 1335: 1329: 1326: 1324: 1322: 1317: 1313: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1274: 1270: 1266: 1260: 1255: 1252: 1249: 1245: 1241: 1240: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1197: 1192: 1189: 1186: 1182: 1178: 1173: 1169: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1105: 1101: 1095: 1092: 1087: 1084: 1081: 1077: 1073: 1070: 1066: 1062: 1057: 1053: 1037: 1018: 1008: 1002: 997: 993: 990: 987: 984: 979: 975: 970: 966: 963: 960: 956: 952: 949: 946: 943: 940: 937: 932: 928: 923: 919: 915: 911: 908: 905: 902: 899: 896: 891: 887: 882: 878: 874: 870: 867: 864: 861: 856: 852: 847: 839: 834: 830: 810: 807: 561: 529: 526: 449: 424: 325: 322: 292: 291: 280: 275: 270: 266: 261: 256: 253: 250: 246: 241: 236: 231: 227: 221: 216: 213: 210: 206: 187: 186: 175: 170: 165: 161: 158: 155: 152: 149: 146: 143: 140: 137: 133: 128: 123: 119: 115: 112: 109: 104: 100: 96: 91: 87: 83: 78: 74: 15: 13: 10: 9: 6: 4: 3: 2: 4979: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4952:Number theory 4950: 4949: 4947: 4932: 4928: 4924: 4923: 4920: 4910: 4907: 4906: 4903: 4898: 4893: 4889: 4879: 4876: 4874: 4871: 4870: 4867: 4862: 4857: 4853: 4843: 4840: 4838: 4835: 4834: 4831: 4826: 4821: 4817: 4807: 4804: 4802: 4799: 4798: 4795: 4791: 4785: 4781: 4771: 4768: 4766: 4763: 4761: 4758: 4757: 4754: 4750: 4745: 4741: 4727: 4724: 4723: 4721: 4717: 4711: 4708: 4706: 4703: 4701: 4700:Polydivisible 4698: 4696: 4693: 4691: 4688: 4686: 4683: 4681: 4678: 4677: 4675: 4671: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4641: 4639: 4636: 4631: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4591: 4589: 4586: 4582: 4574: 4571: 4570: 4569: 4566: 4565: 4563: 4560: 4556: 4544: 4541: 4540: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4495: 4493: 4489: 4483: 4480: 4479: 4477: 4473: 4467: 4464: 4462: 4459: 4458: 4456: 4454:Digit product 4452: 4446: 4443: 4441: 4438: 4436: 4433: 4431: 4428: 4427: 4425: 4423: 4419: 4411: 4408: 4406: 4403: 4402: 4401: 4398: 4397: 4395: 4393: 4388: 4384: 4380: 4375: 4370: 4366: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4290:ErdƑs–Nicolas 4288: 4286: 4283: 4281: 4278: 4277: 4274: 4269: 4265: 4259: 4255: 4241: 4238: 4236: 4233: 4232: 4230: 4228: 4224: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4199: 4197: 4195: 4191: 4185: 4182: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4157: 4156: 4154: 4152: 4148: 4142: 4139: 4137: 4134: 4133: 4131: 4129: 4125: 4119: 4116: 4114: 4111: 4109: 4108:Superabundant 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4010: 4008: 4006: 4002: 3998: 3994: 3990: 3985: 3981: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3912: 3909: 3905: 3900: 3896: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3867: 3864: 3860: 3855: 3851: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3742: 3739: 3732: 3728: 3710: 3707: 3705: 3702: 3700: 3697: 3696: 3694: 3690: 3687: 3685: 3684:4-dimensional 3681: 3671: 3668: 3667: 3665: 3663: 3659: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3624: 3622: 3620: 3616: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3594:Centered cube 3592: 3590: 3587: 3586: 3584: 3582: 3578: 3575: 3573: 3572:3-dimensional 3569: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3510: 3508: 3506: 3502: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3452: 3450: 3448: 3444: 3441: 3439: 3438:2-dimensional 3435: 3431: 3427: 3422: 3418: 3408: 3405: 3403: 3400: 3398: 3395: 3393: 3390: 3388: 3385: 3383: 3382:Nonhypotenuse 3380: 3379: 3376: 3369: 3365: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3331: 3328: 3321: 3317: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3268: 3265: 3260: 3255: 3251: 3241: 3238: 3236: 3233: 3231: 3228: 3226: 3223: 3221: 3218: 3217: 3214: 3207: 3203: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3159: 3156: 3151: 3145: 3141: 3131: 3128: 3126: 3123: 3121: 3120:Perfect power 3118: 3116: 3113: 3111: 3110:Seventh power 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3062: 3059: 3054: 3049: 3045: 3041: 3033: 3028: 3026: 3021: 3019: 3014: 3013: 3010: 2994: 2991: 2989: 2986: 2984: 2981: 2979: 2976: 2975: 2973: 2969: 2966: 2964: 2959: 2949: 2946: 2944: 2941: 2939: 2936: 2935: 2933: 2929: 2926: 2924: 2923:4-dimensional 2920: 2910: 2907: 2905: 2902: 2901: 2899: 2897: 2893: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2863: 2861: 2859: 2855: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2825: 2823: 2821: 2817: 2814: 2812: 2811:3-dimensional 2808: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2763: 2760: 2758: 2755: 2754: 2752: 2750: 2746: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2696: 2694: 2692: 2688: 2685: 2683: 2682:2-dimensional 2679: 2675: 2668: 2663: 2661: 2656: 2654: 2649: 2648: 2645: 2639: 2635: 2632: 2629: 2625: 2624: 2619: 2615: 2610: 2609: 2605: 2597: 2592: 2588: 2584: 2580: 2576: 2575: 2570: 2566: 2562: 2558: 2554: 2549: 2548:10.37236/1854 2544: 2540: 2536: 2535: 2530: 2521: 2517: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2482: 2477: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2447: 2427: 2419: 2416: 2410: 2405: 2401: 2397: 2387: 2383: 2379: 2378: 2372: 2364: 2363: 2357: 2353: 2347: 2343: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2313: 2307: 2302: 2301: 2295: 2291: 2287: 2282: 2281:10.37236/1762 2277: 2273: 2269: 2268: 2263: 2254: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2214: 2209: 2205: 2197: 2196: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2162: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2118: 2117: 2109: 2092: 2080: 2076: 2073: 2070: 2057: 2052: 2048: 2044: 2033: 2029: 2028: 2023: 2016: 2011: 2008: 2003: 2002: 1996: 1992: 1986: 1983: 1977: 1975: 1973: 1969: 1965: 1961: 1959: 1955: 1947: 1945: 1943: 1942:Nelsen (1993) 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1906: 1902: 1900: 1888: 1884: 1880: 1863: 1858: 1853: 1849: 1844: 1839: 1836: 1833: 1829: 1824: 1819: 1817: 1807: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1775: 1773: 1761: 1756: 1751: 1747: 1744: 1739: 1735: 1728: 1720: 1715: 1711: 1708: 1705: 1702: 1697: 1693: 1688: 1684: 1681: 1678: 1671: 1667: 1660: 1656: 1653: 1646: 1642: 1635: 1631: 1628: 1621: 1617: 1610: 1607: 1589: 1587: 1575: 1571: 1564: 1559: 1555: 1552: 1549: 1546: 1541: 1537: 1532: 1528: 1525: 1522: 1518: 1514: 1511: 1508: 1505: 1500: 1496: 1491: 1483: 1480: 1477: 1470: 1466: 1459: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1430: 1423: 1419: 1412: 1408: 1405: 1402: 1399: 1396: 1389: 1382: 1378: 1371: 1367: 1364: 1361: 1354: 1347: 1343: 1336: 1333: 1327: 1325: 1315: 1311: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1275: 1268: 1264: 1258: 1253: 1250: 1247: 1243: 1218: 1212: 1209: 1206: 1203: 1195: 1190: 1187: 1184: 1180: 1176: 1171: 1167: 1156: 1145: 1128: 1122: 1119: 1116: 1113: 1103: 1099: 1093: 1090: 1085: 1082: 1079: 1075: 1071: 1068: 1064: 1060: 1055: 1051: 1040: 1036: 1032: 1016: 1006: 1000: 995: 991: 988: 985: 982: 977: 973: 968: 964: 961: 958: 954: 950: 947: 944: 941: 938: 935: 930: 926: 921: 917: 913: 909: 906: 903: 900: 897: 894: 889: 885: 880: 876: 872: 868: 865: 862: 859: 854: 850: 845: 837: 832: 828: 819: 815: 808: 806: 803: 797: 792: 788: 781: 777: 772:and of pairs 770: 766: 759: 755: 744: 740: 736: 732: 722: 718: 714: 710: 683: 679: 645: 641: 637: 633: 627: 621: 617: 613: 608: 603: 601: 597: 593: 581: 577: 573: 569: 565: 560: 551: 538:= (1 + 2 + 3) 534: 527: 525: 516: 505: 501: 497: 493: 483: 479: 475: 471: 467: 463: 459: 454: 437: 433: 409: 405: 384: 380: 369: 365: 348: 344: 331: 323: 321: 318: 120 CE 305: 301: 297: 278: 273: 268: 264: 259: 254: 251: 248: 244: 239: 234: 229: 225: 219: 214: 211: 208: 204: 196: 195: 194: 192: 173: 168: 163: 159: 156: 153: 150: 147: 144: 141: 138: 135: 131: 126: 121: 117: 113: 110: 107: 102: 98: 94: 89: 85: 81: 76: 72: 64: 63: 62: 60: 52: 48: 41: 40:number theory 33: 32:Gulley (2010) 28: 22: 4664:Transposable 4528:Narcissistic 4435:Digital root 4355:Super-Poulet 4315:Jordan–PĂłlya 4264:prime factor 4169:Noncototient 4136:Almost prime 4118:Superperfect 4093:Refactorable 4088:Quasiperfect 4063:Hyperperfect 3904:Pseudoprimes 3875:Wall–Sun–Sun 3810:Ordered Bell 3780:Fuss–Catalan 3703: 3692:non-centered 3642:Dodecahedral 3619:non-centered 3505:non-centered 3407:Wolstenholme 3152:× 2 ± 1 3149: 3148:Of the form 3115:Eighth power 3095:Fourth power 2971:non-centered 2942: 2931:non-centered 2866:Cube numbers 2858:non-centered 2749:non-centered 2739:Star numbers 2621: 2578: 2572: 2538: 2532: 2505: 2485: 2479: 2450: 2444: 2376: 2361: 2341: 2316: 2310: 2299: 2271: 2265: 2217: 2211: 2201:, AP Central 2194: 2165: 2159: 2120: 2114: 2010: 1998: 1985: 1962: 1951: 1934:Kanim (2004) 1922:Stein (1971) 1911: 1881: 1154: 1143: 1038: 1034: 812: 801: 790: 786: 779: 775: 768: 764: 757: 753: 742: 738: 734: 730: 720: 716: 712: 708: 681: 677: 643: 639: 635: 631: 628: 615: 611: 607:Stein (1971) 604: 589: 558: 455: 435: 431: 407: 403: 382: 378: 367: 363: 346: 342: 329: 327: 299: 293: 188: 37: 4685:Extravagant 4680:Equidigital 4635:permutation 4594:Palindromic 4568:Automorphic 4466:Sum-product 4445:Sum-product 4400:Persistence 4295:ErdƑs–Woods 4217:Untouchable 4098:Semiperfect 4048:Hemiperfect 3709:Tesseractic 3647:Icosahedral 3627:Tetrahedral 3558:Dodecagonal 3259:Recursively 3130:Prime power 3105:Sixth power 3100:Fifth power 3080:Power of 10 3038:Classes of 2963:dimensional 2581:: 145–151, 675:. That is, 548:= 1 + 2 + 3 522: 1500 511: 1300 488: 1000 61:. That is, 4946:Categories 4897:Graphemics 4770:Pernicious 4624:Undulating 4599:Pandigital 4573:Trimorphic 4174:Nontotient 4023:Arithmetic 3637:Octahedral 3538:Heptagonal 3528:Pentagonal 3513:Triangular 3354:SierpiƄski 3276:Jacobsthal 3075:Power of 3 3070:Power of 2 2024:References 1954:power sums 1893:th row is 1883:Row (1893) 746:for which 701:that make 504:Gersonides 466:Nicomachus 4654:Parasitic 4503:Factorion 4430:Digit sum 4422:Digit sum 4240:Fortunate 4227:Primorial 4141:Semiprime 4078:Practical 4043:Descartes 4038:Deficient 4028:Betrothed 3870:Wieferich 3699:Pentatope 3662:pyramidal 3553:Decagonal 3548:Nonagonal 3543:Octagonal 3533:Hexagonal 3392:Practical 3339:Congruent 3271:Fibonacci 3235:Loeschian 2896:pyramidal 2623:MathWorld 2417:∑ 2398:∑ 2382:pp. 47–48 2250:126165678 2045:∑ 1830:∑ 1794:⋯ 1721:⏟ 1709:− 1682:⋯ 1661:⏟ 1636:⏟ 1611:⏟ 1565:⏟ 1553:− 1526:⋯ 1506:− 1481:⋯ 1460:⏟ 1413:⏟ 1372:⏟ 1337:⏟ 1305:⋯ 1244:∑ 1210:− 1181:∑ 1120:− 1083:− 1065:∑ 1001:⏟ 989:− 962:⋯ 936:− 895:− 860:− 707:1 ≀  667:and that 550:) squares 542:1 + 2 + 3 500:Al-Qabisi 482:Al-Karaji 474:Aryabhata 311: 60 245:∑ 205:∑ 191:summation 154:⋯ 111:⋯ 4726:Friedman 4659:Primeval 4604:Repdigit 4561:-related 4508:Kaprekar 4482:Meertens 4405:Additive 4392:dynamics 4300:Friendly 4212:Sociable 4202:Amicable 4013:Abundant 3993:dynamics 3815:Schröder 3805:Narayana 3775:Eulerian 3765:Delannoy 3760:Dedekind 3581:centered 3447:centered 3334:Amenable 3291:Narayana 3281:Leonardo 3177:Mersenne 3125:Powerful 3065:Achilles 2820:centered 2691:centered 2634:Archived 2567:(1854), 2525:"On the 2504:(1963), 2192:(2004), 2182:27646391 799:by  536:All 36 ( 370:+ 1) − 1 302:, after 296:identity 4899:related 4863:related 4827:related 4825:Sorting 4710:Vampire 4695:Harshad 4637:related 4609:Repunit 4523:Lychrel 4498:Dudeney 4350:StĂžrmer 4345:Sphenic 4330:Regular 4268:divisor 4207:Perfect 4103:Sublime 4073:Perfect 3800:Motzkin 3755:Catalan 3296:Padovan 3230:Leyland 3225:Idoneal 3220:Hilbert 3192:Woodall 2961:Higher 2583:Bibcode 2557:2114194 2494:1355130 2467:2688231 2333:3219288 2290:2034423 2262:-cubes" 2242:0096615 2234:3609189 2137:1559017 1993:(ed.), 1899:gnomons 816: ( 447:⁠ 428:⁠ 419:⁠ 400:⁠ 394:⁠ 375:⁠ 358:⁠ 339:⁠ 324:History 53:of the 49:is the 4765:Odious 4690:Frugal 4644:Cyclic 4633:Digit- 4340:Smooth 4325:Pronic 4285:Cyclic 4262:Other 4235:Euclid 3885:Wilson 3859:Primes 3518:Square 3387:Polite 3349:Riesel 3344:Knödel 3306:Perrin 3187:Thabit 3172:Fermat 3162:Cullen 3085:Square 3053:Powers 2555:  2512:  2492:  2465:  2348:  2331:  2288:  2248:  2240:  2232:  2180:  2135:  1151:up to 809:Proofs 697:, and 582:, 225, 492:Persia 470:Jordan 51:square 4806:Prime 4801:Lucky 4790:sieve 4719:Other 4705:Smith 4585:Digit 4543:Happy 4518:Keith 4491:Other 4335:Rough 4305:Giuga 3770:Euler 3632:Cubic 3286:Lucas 3182:Proth 2463:JSTOR 2366:(PDF) 2329:JSTOR 2246:S2CID 2230:JSTOR 2199:(PDF) 2178:JSTOR 2156:(PDF) 2133:JSTOR 2111:(PDF) 1978:Notes 784:with 762:with 624:4 × 4 587:... . 478:India 294:This 47:cubes 4760:Evil 4440:Self 4390:and 4280:Blum 3991:and 3795:Lobb 3750:Cake 3745:Bell 3495:Star 3402:Ulam 3301:Pell 3090:Cube 2510:ISBN 2346:ISBN 1999:The 1970:and 1157:− 1) 818:1854 651:and 620:grid 598:and 546:14 ( 438:+ 1) 410:+ 1) 385:+ 1) 349:+ 1) 4878:Ban 4266:or 3785:Lah 2591:doi 2543:doi 2455:doi 2443:", 2321:doi 2276:doi 2222:doi 2170:doi 2125:doi 605:As 580:100 490:in 476:in 320:). 57:th 38:In 4948:: 2620:, 2616:, 2589:, 2577:, 2571:, 2553:MR 2551:, 2539:11 2537:, 2531:, 2490:MR 2486:97 2484:, 2478:, 2461:, 2451:44 2449:, 2327:, 2317:77 2315:, 2286:MR 2284:, 2272:11 2270:, 2264:, 2244:, 2238:MR 2236:, 2228:, 2218:41 2216:, 2176:, 2166:37 2164:, 2158:, 2147:; 2131:, 2121:33 2119:, 2113:, 1997:, 1920:. 1456:19 1450:17 1444:15 1438:13 1409:11 1299:64 1293:27 805:. 789:≀ 778:, 767:≀ 756:, 741:, 737:, 733:, 719:≀ 715:, 711:, 693:, 680:= 642:, 638:, 634:, 614:× 602:. 578:, 576:36 574:, 570:, 566:, 540:= 519:c. 508:c. 494:. 485:c. 453:. 315:c. 313:– 308:c. 193:: 3150:a 3031:e 3024:t 3017:v 2666:e 2659:t 2652:v 2600:. 2593:: 2585:: 2579:7 2560:. 2545:: 2527:q 2519:. 2497:. 2470:. 2457:: 2428:2 2424:) 2420:k 2414:( 2411:= 2406:3 2402:k 2385:. 2370:. 2355:. 2336:. 2323:: 2305:. 2293:. 2278:: 2260:q 2224:: 2203:. 2185:. 2172:: 2140:. 2127:: 2108:" 2093:2 2086:) 2081:2 2077:1 2074:+ 2071:n 2065:( 2058:= 2053:3 2049:k 2017:. 1895:i 1891:i 1864:. 1859:2 1854:) 1850:k 1845:n 1840:1 1837:= 1834:k 1825:( 1820:= 1808:2 1804:) 1800:n 1797:+ 1791:+ 1788:2 1785:+ 1782:1 1779:( 1776:= 1762:2 1757:) 1752:2 1748:n 1745:+ 1740:2 1736:n 1729:( 1716:) 1712:1 1706:n 1703:+ 1698:2 1694:n 1689:( 1685:+ 1679:+ 1672:2 1668:3 1657:5 1654:+ 1647:2 1643:2 1632:3 1629:+ 1622:2 1618:1 1608:1 1590:= 1576:3 1572:n 1560:) 1556:1 1550:n 1547:+ 1542:2 1538:n 1533:( 1529:+ 1523:+ 1519:) 1515:1 1512:+ 1509:n 1501:2 1497:n 1492:( 1484:+ 1478:+ 1471:3 1467:4 1453:+ 1447:+ 1441:+ 1431:+ 1424:3 1420:3 1406:+ 1403:9 1400:+ 1397:7 1390:+ 1383:3 1379:2 1368:5 1365:+ 1362:3 1355:+ 1348:3 1344:1 1334:1 1328:= 1316:3 1312:n 1308:+ 1302:+ 1296:+ 1290:+ 1287:8 1284:+ 1281:1 1278:= 1269:3 1265:k 1259:n 1254:1 1251:= 1248:k 1219:, 1216:) 1213:1 1207:k 1204:2 1201:( 1196:n 1191:1 1188:= 1185:k 1177:= 1172:2 1168:n 1155:n 1153:( 1149:1 1144:n 1129:, 1126:) 1123:1 1117:k 1114:2 1111:( 1104:n 1100:T 1094:1 1091:+ 1086:1 1080:n 1076:T 1072:= 1069:k 1061:= 1056:3 1052:n 1039:n 1035:T 1017:. 1007:n 996:) 992:1 986:n 983:+ 978:2 974:n 969:( 965:+ 959:+ 955:) 951:4 948:+ 945:1 942:+ 939:n 931:2 927:n 922:( 918:+ 914:) 910:2 907:+ 904:1 901:+ 898:n 890:2 886:n 881:( 877:+ 873:) 869:1 866:+ 863:n 855:2 851:n 846:( 838:= 833:3 829:n 802:n 791:W 787:Z 782:) 780:W 776:Z 774:( 769:Y 765:X 760:) 758:Y 754:X 752:( 748:W 743:W 739:Z 735:Y 731:X 726:W 721:n 717:Z 713:Y 709:X 703:W 699:Z 695:Y 691:X 687:W 682:P 678:P 673:Z 669:W 665:X 661:Y 657:W 653:n 649:1 644:W 640:Z 636:Y 632:X 616:n 612:n 572:9 568:1 564:0 517:( 506:( 450:) 444:2 441:/ 436:n 434:( 432:n 425:( 416:2 413:/ 408:n 406:( 404:n 391:2 388:/ 383:n 381:( 379:n 368:n 366:( 364:n 355:2 352:/ 347:n 345:( 343:n 334:n 306:( 279:. 274:2 269:) 265:k 260:n 255:1 252:= 249:k 240:( 235:= 230:3 226:k 220:n 215:1 212:= 209:k 174:. 169:2 164:) 160:n 157:+ 151:+ 148:3 145:+ 142:2 139:+ 136:1 132:( 127:= 122:3 118:n 114:+ 108:+ 103:3 99:3 95:+ 90:3 86:2 82:+ 77:3 73:1 55:n 44:n 23:.

Index

square triangular number

Gulley (2010)
number theory
cubes
square
triangular number
summation
identity
Nicomachus of Gerasa
Stroeker (1995)
Pengelley (2002)
Nicomachus
Jordan
Aryabhata
India
Al-Karaji
Persia
Bressoud (2004)
Al-Qabisi
Gersonides
Nilakantha Somayaji

14 (= 1 + 2 + 3) squares
0
1
9
36
100
figurate numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑