Knowledge (XXG)

Squaring the square

Source 📝

1351: 156: 31: 494: 78: 543:
the square of the smallest size not yet used to get another, larger L-shaped region. The squares added during the puffing up procedure have sizes that have not yet appeared in the construction and the procedure is set up so that the resulting rectangular regions are expanding in all four directions, which leads to a tiling of the whole plane.
1358: 539:. For example, the plane can be tiled with different integral squares, but not for every integer, by recursively taking any perfect squared square and enlarging it so that the formerly smallest tile now has the size of the original squared square, then replacing this tile with a copy of the original squared square. 542:
In 2008 James Henle and Frederick Henle proved that this, in fact, can be done. Their proof is constructive and proceeds by "puffing up" an L-shaped region formed by two side-by-side and horizontally flush squares of different sizes to a perfect tiling of a larger rectangular region, then adjoining
213:
When the constraint of all the squares being different sizes is relaxed, a squared square such that the side lengths of the smaller squares do not have a common divisor larger than 1 is called a "Mrs. Perkins's quilt". In other words, the
578:
in squares, the smallest square in this dissection does not lie on an edge of the rectangle. Indeed, each corner square has a smaller adjacent edge square, and the smallest edge square is adjacent to smaller squares not on the edge.
182:
discovered a simple perfect squared square of side 112 with the smallest number of squares using a computer search. His tiling uses 21 squares, and has been proved to be minimal. This squared square forms the logo of the
69:, which can be done even with the restriction that each natural number occurs exactly once as a size of a square in the tiling. The order of a squared square is its number of constituent squares. 168:
A "simple" squared square is one where no subset of more than one of the squares forms a rectangle or square. When a squared square has a square or rectangular subset, it is "compound".
379: 943: 906: 315: 201:
The perfect compound squared square with the fewest squares was discovered by T.H. Willcocks in 1946 and has 24 squares; however, it was not until 1982 that Duijvestijn,
279: 146: 246: 654:
could be perfectly hypercubed then its 'faces' would be perfect cubed cubes; this is impossible. Similarly, there is no solution for all cubes of higher dimensions.
194:
Duijvestijn also found two simple perfect squared squares of sides 110 but each comprising 22 squares. Theophilus Harding Willcocks, an amateur mathematician and
483: 463: 335: 1267: 2291: 1556: 772: 668: 391: 1489: 2296: 1511: 1245: 1034: 564:
Unlike the case of squaring the square, a hard yet solvable problem, there is no perfect cubed cube and, more generally, no dissection of a
2106: 1941: 1192: 34:
The first perfect squared square discovered, a compound one of side 4205 and order 55. Each number denotes the side length of its square.
2256: 2231: 2221: 2191: 2146: 2096: 2076: 1891: 1776: 733:
Gardner, Martin (November 1958). "How rectangles, including squares, can be divided into squares of unequal size". Mathematical Games.
198:
composer, found another. In 1999, I. Gambini proved that these three are the smallest perfect squared squares in terms of side length.
2266: 2261: 2201: 2196: 2151: 2101: 2086: 2340: 2335: 2286: 2071: 1319: 1059: 858: 623:
be the smallest square in this dissection. By the claim above, this is surrounded on all 4 sides by squares which are larger than
159:
Lowest-order perfect squared square (1) and the three smallest perfect squared squares (2–4): all are simple squared squares
61:. Squaring the square is an easy task unless additional conditions are set. The most studied restriction is that the squaring be 2126: 2061: 2046: 1881: 1501: 2226: 2186: 2141: 2081: 2066: 2056: 2031: 1392: 188: 2330: 2091: 2011: 1866: 980: 756:
is not named as an author of the column, but it consists almost entirely of a long multi-paragraph quote credited to Tutte.
2021: 2006: 1966: 1896: 1846: 1761: 1581: 514:
raised the question whether the whole plane can be tiled by squares, one of each integer edge-length, which he called the
535:
and G. C. Shephard stated that in all perfect integral tilings of the plane known at that time, the sizes of the squares
505:
3. Scaling the Fibonacci tiling by 110 times and replacing one of the 110-squares with Duijvestijn's perfects the tiling.
1991: 1956: 1946: 1806: 1350: 815: 184: 2131: 1961: 1951: 1931: 1911: 1886: 1831: 1811: 1796: 1786: 1721: 1387: 1106: 93: 121: 2325: 2281: 2276: 2271: 2176: 1936: 1901: 1861: 1841: 1816: 1801: 1791: 1751: 1238: 663: 1382: 2216: 2211: 2121: 2116: 2111: 1906: 1876: 1871: 1851: 1836: 1826: 1821: 1741: 1187: 1123: 693: 647:, ... is infinite and the corresponding cubes are infinite in number. This contradicts our original supposition. 2251: 2246: 2241: 2171: 2166: 2161: 2156: 1856: 1736: 1731: 853: 202: 1404: 1916: 1766: 1716: 215: 125: 2036: 2026: 1996: 1678: 1293: 172: 131:
The first perfect squared square to be published, a compound one of side 4205 and order 55, was found by
2136: 2041: 2001: 1986: 1981: 1976: 1971: 1726: 1516: 1231: 112:") at Cambridge University between 1936 and 1938. They transformed the square tiling into an equivalent 1193:
https://web.archive.org/web/20030419012114/http://www.math.niu.edu/~rusin/known-math/98/square_dissect
978:
Wynn, Ed (2014). "Exhaustive generation of 'Mrs. Perkins's quilt' square dissections for low orders".
2181: 1921: 1634: 1622: 1506: 1435: 1411: 1336: 527: 105: 499:
1. Tiling with squares with Fibonacci-number sides is almost perfect except for 2 squares of side 1.
340: 155: 1926: 1746: 1592: 1546: 1426: 1110: 735: 519: 97: 85:
A "perfect" squared square is a square such that each of the smaller squares has a different size.
58: 1711: 1480: 1278: 1182: 1084: 1076: 989: 901: 875: 744: 565: 536: 284: 177: 113: 582:
Now suppose that there is a perfect dissection of a rectangular cuboid in cubes. Make a face of
532: 251: 225: 2206: 1756: 1683: 1526: 1309: 1102: 1030: 109: 89: 50: 691:
Sprague, R. (1939). "Beispiel einer Zerlegung des Quadrats in lauter verschiedene Quadrate".
2236: 2051: 2016: 1693: 1657: 1602: 1568: 1521: 1495: 1484: 1399: 1371: 1314: 1288: 1283: 1132: 1068: 999: 952: 915: 867: 824: 781: 702: 1144: 1011: 964: 927: 887: 838: 795: 714: 128:
techniques to that circuit. The first perfect squared squares they found were of order 69.
1597: 1421: 1331: 1140: 1007: 960: 923: 883: 834: 791: 710: 1534: 1447: 1416: 1305: 1166: 511: 468: 448: 320: 138: 132: 30: 829: 810: 2319: 1688: 1652: 1452: 1440: 1298: 1212: 786: 767: 1088: 1587: 1324: 1254: 1072: 871: 65:, meaning the sizes of the smaller squares are all different. A related problem is 42: 1174:, Eindhoven University of Technology, Faculty of Mathematics and Computing Science 1136: 1118: 1051: 574:
To prove this, we start with the following claim: for any perfect dissection of a
493: 120:
that connected to their neighbors at their top and bottom edges, and then applied
17: 561:, the problem of dividing it into finitely many smaller cubes, no two congruent. 1573: 1114: 753: 522:
column and appeared in several books, but it defied solution for over 30 years.
195: 142: 101: 1003: 384:
1, 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, ... (sequence
1642: 1188:
http://www.math.uwaterloo.ca/navigation/ideas/articles/honsberger2/index.shtml
956: 919: 554:
is the analogue in three dimensions of squaring the square: that is, given a
1662: 1647: 1563: 1539: 1216: 651: 616:
is divided into a perfect squared square by the cubes which rest on it. Let
497:
Tiling the plane with different integral squares using the Fibonacci series
77: 586:
its horizontal base. The base is divided into a perfect squared rectangle
502:
2. Duijvestijn found a 110-square tiled with 22 different integer squares.
1431: 117: 1080: 748: 879: 706: 54: 1357: 721:
An example of a dissection of the square into pairwise unequal squares
205:
and P. Leeuw mathematically proved it to be the lowest-order example.
317:. Computer searches have found exact solutions for small values of 222:
asks for a Mrs. Perkins's quilt with the fewest pieces for a given
116:– they called it a "Smith diagram" – by considering the squares as 994: 492: 154: 76: 29: 555: 465:
other than 2, 3, and 5, it is possible to dissect a square into
1619: 1469: 1369: 1265: 1227: 1223: 1183:
http://www.maa.org/editorial/mathgames/mathgames_12_01_03.html
518:. This problem was later publicized by Martin Gardner in his 720: 1177: 386: 1202: 45:
an integral square using only other integral squares. (An
401: 57:
length.) The name was coined in a humorous analogy with
403:
A square cut into 10 pieces (an HTML table)
145:
about the early history of squaring the square in his
1167:"Album of Simple Perfect Squared Squares of order 26" 471: 451: 343: 323: 287: 254: 228: 811:"A method for cutting squares into distinct squares" 1775: 1702: 1671: 1633: 1165:Bouwkamp, C. J.; Duijvestijn, A. J. W. (Dec 1994). 590:by the cubes which rest on it. The smallest square 944:Proceedings of the Cambridge Philosophical Society 907:Proceedings of the Cambridge Philosophical Society 477: 457: 373: 329: 309: 273: 248:square. The number of pieces required is at least 240: 218:of all the smaller side lengths should be 1. The 856:; Leeuw, P. (1982). "Compound perfect squares". 438: 435: 941:Trustrum, G. B. (1965). "Mrs Perkins's quilt". 768:"Simple perfect squared square of lowest order" 1239: 1050:Henle, Frederick V.; Henle, James M. (2008). 609:, cubes. Hence the upper face of the cube on 8: 1029:. Australian Mathematics Trust. p. 84. 337:(small enough to need up to 18 pieces). For 1119:"The dissection of rectangles into squares" 1630: 1616: 1466: 1366: 1262: 1246: 1232: 1224: 141:published an extensive article written by 1557:Dividing a square into similar rectangles 993: 828: 785: 773:Journal of Combinatorial Theory, Series B 686: 684: 669:Dividing a square into similar rectangles 470: 450: 342: 322: 295: 286: 259: 253: 227: 88:It is first recorded as being studied by 680: 571:into a finite number of unequal cubes. 485:squares of one or two different sizes. 187:. It also appears on the cover of the 719:English translation by David Moews, " 7: 1025:Henry, J. B.; Taylor, P. J. (2009). 421: 416: 413: 410: 407: 381:the number of pieces required is: 25: 1060:The American Mathematical Monthly 859:The American Mathematical Monthly 1356: 1349: 904:(1964). "Mrs. Perkins's quilt". 398:No more than two different sizes 516:heterogeneous tiling conjecture 189:Journal of Combinatorial Theory 1199:Nowhere-neat squared squares: 1073:10.1080/00029890.2008.11920491 872:10.1080/00029890.1982.11995375 766:Duijvestijn, A. J. W. (1978). 374:{\displaystyle n=1,2,3,\dots } 1: 1582:Regular Division of the Plane 1137:10.1215/S0012-7094-40-00718-9 1027:Challenge! 1999 - 2006 Book 2 830:10.1016/S0166-218X(99)00158-4 816:Discrete Applied Mathematics 787:10.1016/0095-8956(78)90041-2 220:Mrs. Perkins's quilt problem 185:Trinity Mathematical Society 81:Smith diagram of a rectangle 1490:Architectonic and catoptric 1388:Aperiodic set of prototiles 310:{\displaystyle 6\log _{2}n} 2357: 1004:10.1016/j.disc.2014.06.022 664:Square packing in a square 274:{\displaystyle \log _{2}n} 1629: 1615: 1476: 1465: 1378: 1365: 1347: 1274: 1261: 1161:Perfect squared squares: 1124:Duke Mathematical Journal 957:10.1017/s0305004100038573 920:10.1017/S0305004100037877 694:Mathematische Zeitschrift 241:{\displaystyle n\times n} 2341:Rectangular subdivisions 2336:Recreational mathematics 1178:http://www.squaring.net/ 633:The sequence of squares 203:Pasquale Joseph Federico 122:Kirchhoff's circuit laws 1203:http://karlscherer.com/ 1172:. EUT Report 94-WSK-02. 852:Duijvestijn, A. J. W.; 216:greatest common divisor 73:Perfect squared squares 1209:Mrs. Perkins's quilt: 630:and therefore higher. 507: 479: 459: 375: 331: 311: 275: 242: 164:Simple squared squares 160: 82: 35: 2331:Mathematical problems 809:Gambini, Ian (1999). 531:, published in 1987, 496: 480: 460: 376: 332: 312: 276: 243: 208: 158: 126:circuit decomposition 80: 33: 1213:Mrs. Perkins's Quilt 1052:"Squaring the plane" 981:Discrete Mathematics 528:Tilings and patterns 469: 449: 341: 321: 285: 252: 226: 209:Mrs. Perkins's quilt 173:A. J. W. Duijvestijn 106:collective pseudonym 27:Mathematical problem 736:Scientific American 650:If a 4-dimensional 520:Scientific American 404: 104:(writing under the 59:squaring the circle 39:Squaring the square 707:10.1007/BF01580305 566:rectangular cuboid 537:grew exponentially 508: 489:Squaring the plane 475: 455: 402: 371: 327: 307: 271: 238: 161: 152:of November 1958. 148:Mathematical Games 114:electrical circuit 83: 67:squaring the plane 41:is the problem of 36: 18:Squaring the plane 2326:Discrete geometry 2313: 2312: 2309: 2308: 2305: 2304: 1611: 1610: 1502:Computer graphics 1461: 1460: 1345: 1344: 1036:978-1-876420-23-9 601:is surrounded by 478:{\displaystyle n} 458:{\displaystyle n} 443: 442: 330:{\displaystyle n} 110:Blanche Descartes 53:whose sides have 16:(Redirected from 2348: 1631: 1617: 1569:Conway criterion 1496:Circle Limit III 1467: 1400:Einstein problem 1367: 1360: 1353: 1289:Schwarz triangle 1263: 1248: 1241: 1234: 1225: 1173: 1171: 1149: 1148: 1099: 1093: 1092: 1056: 1047: 1041: 1040: 1022: 1016: 1015: 997: 975: 969: 968: 938: 932: 931: 898: 892: 891: 849: 843: 842: 832: 806: 800: 799: 789: 763: 757: 752: 730: 724: 718: 688: 605:, and therefore 484: 482: 481: 476: 464: 462: 461: 456: 445:For any integer 405: 389: 380: 378: 377: 372: 336: 334: 333: 328: 316: 314: 313: 308: 300: 299: 280: 278: 277: 272: 264: 263: 247: 245: 244: 239: 181: 21: 2356: 2355: 2351: 2350: 2349: 2347: 2346: 2345: 2316: 2315: 2314: 2301: 1778: 1771: 1704: 1698: 1667: 1625: 1607: 1472: 1457: 1374: 1361: 1355: 1354: 1341: 1332:Wallpaper group 1270: 1257: 1252: 1169: 1164: 1158: 1153: 1152: 1107:Smith, C. A. B. 1101: 1100: 1096: 1054: 1049: 1048: 1044: 1037: 1024: 1023: 1019: 977: 976: 972: 940: 939: 935: 900: 899: 895: 854:Federico, P. J. 851: 850: 846: 808: 807: 803: 765: 764: 760: 732: 731: 727: 690: 689: 682: 677: 660: 646: 639: 629: 622: 615: 596: 552:Cubing the cube 549: 547:Cubing the cube 533:Branko Grünbaum 506: 503: 500: 491: 467: 466: 447: 446: 400: 395: 385: 339: 338: 319: 318: 291: 283: 282: 255: 250: 249: 224: 223: 211: 175: 166: 75: 47:integral square 28: 23: 22: 15: 12: 11: 5: 2354: 2352: 2344: 2343: 2338: 2333: 2328: 2318: 2317: 2311: 2310: 2307: 2306: 2303: 2302: 2300: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1994: 1989: 1984: 1979: 1974: 1969: 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1783: 1781: 1773: 1772: 1770: 1769: 1764: 1759: 1754: 1749: 1744: 1739: 1734: 1729: 1724: 1719: 1714: 1708: 1706: 1700: 1699: 1697: 1696: 1691: 1686: 1681: 1675: 1673: 1669: 1668: 1666: 1665: 1660: 1655: 1650: 1645: 1639: 1637: 1627: 1626: 1620: 1613: 1612: 1609: 1608: 1606: 1605: 1600: 1595: 1590: 1585: 1578: 1577: 1576: 1571: 1561: 1560: 1559: 1554: 1549: 1544: 1543: 1542: 1529: 1524: 1519: 1514: 1509: 1504: 1499: 1492: 1487: 1477: 1474: 1473: 1470: 1463: 1462: 1459: 1458: 1456: 1455: 1450: 1445: 1444: 1443: 1429: 1424: 1419: 1414: 1409: 1408: 1407: 1405:Socolar–Taylor 1397: 1396: 1395: 1385: 1383:Ammann–Beenker 1379: 1376: 1375: 1370: 1363: 1362: 1348: 1346: 1343: 1342: 1340: 1339: 1334: 1329: 1328: 1327: 1322: 1317: 1306:Uniform tiling 1303: 1302: 1301: 1291: 1286: 1281: 1275: 1272: 1271: 1266: 1259: 1258: 1253: 1251: 1250: 1243: 1236: 1228: 1222: 1221: 1220: 1219: 1207: 1206: 1205: 1197: 1196: 1195: 1190: 1185: 1180: 1175: 1157: 1156:External links 1154: 1151: 1150: 1094: 1042: 1035: 1017: 970: 933: 893: 844: 823:(1–2): 65–80. 801: 780:(2): 240–243. 758: 743:(5): 136–144. 725: 679: 678: 676: 673: 672: 671: 666: 659: 656: 644: 637: 627: 620: 613: 594: 548: 545: 512:Solomon Golomb 504: 501: 498: 490: 487: 474: 454: 441: 440: 437: 433: 432: 429: 426: 423: 419: 418: 415: 412: 409: 399: 396: 383: 370: 367: 364: 361: 358: 355: 352: 349: 346: 326: 306: 303: 298: 294: 290: 281:, and at most 270: 267: 262: 258: 237: 234: 231: 210: 207: 165: 162: 139:Martin Gardner 133:Roland Sprague 94:C. A. B. Smith 74: 71: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2353: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2323: 2321: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1784: 1782: 1780: 1774: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1709: 1707: 1701: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1676: 1674: 1670: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1640: 1638: 1636: 1632: 1628: 1624: 1618: 1614: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1583: 1579: 1575: 1572: 1570: 1567: 1566: 1565: 1562: 1558: 1555: 1553: 1550: 1548: 1545: 1541: 1538: 1537: 1536: 1533: 1532: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1497: 1493: 1491: 1488: 1486: 1482: 1479: 1478: 1475: 1468: 1464: 1454: 1451: 1449: 1446: 1442: 1439: 1438: 1437: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1406: 1403: 1402: 1401: 1398: 1394: 1391: 1390: 1389: 1386: 1384: 1381: 1380: 1377: 1373: 1368: 1364: 1359: 1352: 1338: 1335: 1333: 1330: 1326: 1323: 1321: 1318: 1316: 1313: 1312: 1311: 1307: 1304: 1300: 1297: 1296: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1276: 1273: 1269: 1264: 1260: 1256: 1249: 1244: 1242: 1237: 1235: 1230: 1229: 1226: 1218: 1214: 1211: 1210: 1208: 1204: 1201: 1200: 1198: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1168: 1163: 1162: 1160: 1159: 1155: 1146: 1142: 1138: 1134: 1130: 1126: 1125: 1120: 1116: 1112: 1108: 1104: 1103:Brooks, R. L. 1098: 1095: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1061: 1053: 1046: 1043: 1038: 1032: 1028: 1021: 1018: 1013: 1009: 1005: 1001: 996: 991: 987: 983: 982: 974: 971: 966: 962: 958: 954: 950: 946: 945: 937: 934: 929: 925: 921: 917: 913: 909: 908: 903: 902:Conway, J. H. 897: 894: 889: 885: 881: 877: 873: 869: 865: 861: 860: 855: 848: 845: 840: 836: 831: 826: 822: 818: 817: 812: 805: 802: 797: 793: 788: 783: 779: 775: 774: 769: 762: 759: 755: 750: 746: 742: 738: 737: 729: 726: 722: 716: 712: 708: 704: 700: 696: 695: 687: 685: 681: 674: 670: 667: 665: 662: 661: 657: 655: 653: 648: 643: 636: 631: 626: 619: 612: 608: 604: 600: 593: 589: 585: 580: 577: 572: 570: 567: 562: 560: 557: 553: 546: 544: 540: 538: 534: 530: 529: 523: 521: 517: 513: 495: 488: 486: 472: 452: 434: 430: 427: 424: 420: 406: 397: 393: 388: 382: 368: 365: 362: 359: 356: 353: 350: 347: 344: 324: 304: 301: 296: 292: 288: 268: 265: 260: 256: 235: 232: 229: 221: 217: 206: 204: 199: 197: 192: 190: 186: 179: 174: 169: 163: 157: 153: 151: 149: 144: 140: 136: 134: 129: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 86: 79: 72: 70: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 1593:Substitution 1588:Regular grid 1580: 1551: 1494: 1427:Quaquaversal 1325:Kisrhombille 1255:Tessellation 1128: 1122: 1115:Tutte, W. T. 1111:Stone, A. H. 1097: 1064: 1058: 1045: 1026: 1020: 985: 979: 973: 948: 942: 936: 911: 905: 896: 866:(1): 15–32. 863: 857: 847: 820: 814: 804: 777: 771: 761: 740: 734: 728: 698: 692: 649: 641: 634: 632: 624: 617: 610: 606: 602: 598: 591: 587: 583: 581: 575: 573: 568: 563: 558: 551: 550: 541: 526: 524: 515: 509: 444: 219: 212: 200: 193: 170: 167: 147: 137: 130: 90:R. L. Brooks 87: 84: 66: 62: 46: 38: 37: 1623:vertex type 1481:Anisohedral 1436:Self-tiling 1279:Pythagorean 1131:: 312–340. 1067:(1): 3–12. 914:: 363–368. 754:W. T. Tutte 701:: 607–608. 196:fairy chess 176: [ 143:W. T. Tutte 102:W. T. Tutte 98:A. H. Stone 2320:Categories 1527:Pentagonal 675:References 1635:Spherical 1603:Voderberg 1564:Prototile 1531:Problems 1507:Honeycomb 1485:Isohedral 1372:Aperiodic 1310:honeycomb 1294:Rectangle 1284:Rhombille 1217:MathWorld 995:1308.5420 988:: 38–47. 652:hypercube 576:rectangle 510:In 1975, 369:… 302:⁡ 266:⁡ 233:× 171:In 1978, 135:in 1939. 118:resistors 1717:V3.4.3.4 1552:Squaring 1547:Heesch's 1512:Isotoxal 1432:Rep-tile 1422:Pinwheel 1315:Coloring 1268:Periodic 1117:(1940). 1089:26663945 1081:27642387 951:: 7–11. 749:24944827 658:See also 2177:6.4.8.4 2132:5.4.6.4 2092:4.12.16 2082:4.10.12 2052:V4.8.10 2027:V4.6.16 2017:V4.6.14 1917:3.6.4.6 1912:3.4.∞.4 1907:3.4.8.4 1902:3.4.7.4 1897:3.4.6.4 1847:3.∞.3.∞ 1842:3.4.3.4 1837:3.8.3.8 1832:3.7.3.7 1827:3.6.3.8 1822:3.6.3.6 1817:3.5.3.6 1812:3.5.3.5 1807:3.4.3.∞ 1802:3.4.3.8 1797:3.4.3.7 1792:3.4.3.6 1787:3.4.3.5 1742:3.4.6.4 1712:3.4.3.4 1705:regular 1672:Regular 1598:Voronoi 1522:Packing 1453:Truchet 1448:Socolar 1417:Penrose 1412:Gilbert 1337:Wythoff 1145:0003040 1012:3240464 965:0170831 928:0167425 888:0639770 880:2320990 839:1723687 796:0511994 715:0000470 439:  436:  431:  417:  414:  411:  408:  390:in the 387:A005670 63:perfect 55:integer 2067:4.8.16 2062:4.8.14 2057:4.8.12 2047:4.8.10 2022:4.6.16 2012:4.6.14 2007:4.6.12 1777:Hyper- 1762:4.6.12 1535:Domino 1441:Sphinx 1320:Convex 1299:Domino 1143:  1087:  1079:  1033:  1010:  963:  926:  886:  878:  837:  794:  747:  713:  607:higher 603:larger 428:  425:  422:  150:column 51:square 43:tiling 2182:(6.8) 2137:(5.6) 2072:4.8.∞ 2042:(4.8) 2037:(4.7) 2032:4.6.∞ 2002:(4.6) 1997:(4.5) 1967:4.∞.4 1962:4.8.4 1957:4.7.4 1952:4.6.4 1947:4.5.4 1927:(3.8) 1922:(3.7) 1892:(3.4) 1887:(3.4) 1779:bolic 1747:(3.6) 1703:Semi- 1574:Girih 1471:Other 1170:(PDF) 1085:S2CID 1077:JSTOR 1055:(PDF) 990:arXiv 876:JSTOR 745:JSTOR 180:] 49:is a 2267:8.16 2262:8.12 2232:7.14 2202:6.16 2197:6.12 2192:6.10 2152:5.12 2147:5.10 2102:4.16 2097:4.14 2087:4.12 2077:4.10 1937:3.16 1932:3.14 1752:3.12 1737:V3.6 1663:V4.n 1653:V3.n 1540:Wang 1517:List 1483:and 1434:and 1393:List 1308:and 1031:ISBN 556:cube 392:OEIS 124:and 100:and 2297:∞.8 2292:∞.6 2257:8.6 2227:7.8 2222:7.6 2187:6.8 2142:5.8 2107:4.∞ 1942:3.∞ 1867:3.4 1862:3.∞ 1857:3.8 1852:3.7 1767:4.8 1757:4.∞ 1732:3.6 1727:3.∞ 1722:3.4 1658:4.n 1648:3.n 1621:By 1215:on 1133:doi 1069:doi 1065:115 1000:doi 986:334 953:doi 916:doi 868:doi 825:doi 782:doi 741:199 703:doi 597:in 525:In 293:log 257:log 2322:: 1141:MR 1139:. 1127:. 1121:. 1113:; 1109:; 1105:; 1083:. 1075:. 1063:. 1057:. 1008:MR 1006:. 998:. 984:. 961:MR 959:. 949:61 947:. 924:MR 922:. 912:60 910:. 884:MR 882:. 874:. 864:89 862:. 835:MR 833:. 821:98 819:. 813:. 792:MR 790:. 778:25 776:. 770:. 739:. 723:". 711:MR 709:. 699:45 697:. 683:^ 640:, 191:. 178:de 96:, 92:, 2287:∞ 2282:∞ 2277:∞ 2272:∞ 2252:8 2247:8 2242:8 2237:8 2217:7 2212:7 2207:7 2172:6 2167:6 2162:6 2157:6 2127:5 2122:5 2117:5 2112:5 1992:4 1987:4 1982:4 1977:4 1972:4 1882:3 1877:3 1872:3 1694:6 1689:4 1684:3 1679:2 1643:2 1247:e 1240:t 1233:v 1147:. 1135:: 1129:7 1091:. 1071:: 1039:. 1014:. 1002:: 992:: 967:. 955:: 930:. 918:: 890:. 870:: 841:. 827:: 798:. 784:: 751:. 717:. 705:: 645:2 642:s 638:1 635:s 628:2 625:s 621:2 618:s 614:1 611:s 599:R 595:1 592:s 588:R 584:C 569:C 559:C 473:n 453:n 394:) 366:, 363:3 360:, 357:2 354:, 351:1 348:= 345:n 325:n 305:n 297:2 289:6 269:n 261:2 236:n 230:n 108:" 20:)

Index

Squaring the plane

tiling
square
integer
squaring the circle

R. L. Brooks
C. A. B. Smith
A. H. Stone
W. T. Tutte
collective pseudonym
Blanche Descartes
electrical circuit
resistors
Kirchhoff's circuit laws
circuit decomposition
Roland Sprague
Martin Gardner
W. T. Tutte
Mathematical Games column

A. J. W. Duijvestijn
de
Trinity Mathematical Society
Journal of Combinatorial Theory
fairy chess
Pasquale Joseph Federico
greatest common divisor
A005670

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.