Knowledge (XXG)

Carbide-derived carbon

Source πŸ“

287:
templating method. Templating yields an ordered array of mesopores in addition to the disordered network of micropores. It has been shown that the initial crystal structure of the carbide is the primary factor affecting the CDC porosity, especially for low-temperature chlorine treatment. In general, a larger spacing between carbon atoms in the lattice correlates with an increase in the average pore diameter. As the synthesis temperature increases, the average pore diameter increases, while the pore size distribution becomes broader. The overall shape and size of the carbide precursor, however, is largely maintained and CDC formation is usually referred to as a conformal process.
500:/kg at 1 bar and 0 Β°C. CDCs also store up to 3 wt.% hydrogen at 60 bar and βˆ’196 Β°C, with additional increases possible as a result of chemical or physical activation of the CDC materials. SiOC-CDC with large subnanometer pore volumes are able to store over 5.5 wt.% hydrogen at 60 bar and βˆ’196 Β°C, almost reaching the goal of the US Department of Energy of 6 wt.% storage density for automotive applications. Methane storage densities of over 21.5 wt.% can be achieved for this material at those conditions. In particular, a predominance of pores with subnanometer diameters and large pore volumes are instrumental towards increasing storage densities. 81:. Among carbon materials, microporous CDCs exhibit some of the highest reported specific surface areas (up to more than 3000 m/g). By varying the type of the precursor and the CDC synthesis conditions, microporous and mesoporous structures with controllable average pore size and pore size distributions can be produced. Depending on the precursor and the synthesis conditions, the average pore size control can be applied at sub-Angstrom accuracy. This ability to precisely tune the size and shapes of pores makes CDCs attractive for selective sorption and storage of liquids and gases (e.g., hydrogen, methane, CO 567:
fashion with similarities to a supercapacitor. As an ion-containing water (electrolyte) is flown between two porous electrodes with an applied potential across the system, the corresponding ions assemble into a double layer in the pores of the two terminals, decreasing the ion content in the liquid exiting the purification device. Due to the ability of carbide-derived carbons to closely match the size of ions in the electrolyte, side-by-side comparisons of desalinization devices based on CDCs and activated carbon showed a significant efficiency increase in the 1.2–1.4 V range compared to activated carbon.
479:
small pores, especially when combined with an overall large particle diameter, impose an additional diffusion limitation on the ion mobility during charge/discharge cycling. The prevalence of mesopores in the CDC structure allows for more ions to move past each other during charging and discharging, allowing for faster scan rates and improved rate handling abilities. Conversely, by implementing nanoparticle carbide precursors, shorter pore channels allow for higher electrolyte mobility, resulting in faster charge/discharge rates and higher power densities.
466:
and pore size control that enable to match the porosity metrics of the porous carbon electrode to a certain electrolyte. In particular, when the pore size approaches the size of the (desolvated) ion in the electrolyte, there is a significant increase in the capacitance. The electrically conductive carbon material minimizes resistance losses in supercapacitor devices and enhances charge screening and confinement, maximizing the packing density and subsequent charge storage capacity of microporous CDC electrodes.
544:). The particles diffuse through the material to form Pt particle surfaces, which may serve as catalyst support layers. In particular, in addition to Pt, other noble elements such as gold can be deposited into the pores, with the resulting nanoparticle size controlled by the pore size and overall pore size distribution of the CDC substrate. Such gold or platinum nanoparticles can be smaller than 1 nm even without employing surface coatings. Au nanoparticles in different CDCs (TiC-CDC, Mo 509:
dry conditions. It’s important to mention that graphite cannot operate in dry environments. The porous 3-dimensional network of CDC allows for high ductility and an increased mechanical strength, minimizing fracture of the film under an applied force. Those coatings find applications in dynamic seals. The friction properties can be further tailored with high-temperature hydrogen annealing and subsequent hydrogen termination of
320:
single crystals (wafers) at 1200–1500 Β°C, metal/metalloid atoms are selectively removed and a layer of 1–3 layer graphene (depending on the treatment time) is formed, undergoing a conformal transformation of 3 layers of silicon carbide into one monolayer of graphene. Also, graphene formation occurs preferentially on the Si-face of the 6H-SiC crystals, while nanotube growth is favored on the c-face of SiC.
576:
Skeleton, which is located in Tartu, Estonia, and Carbon-Ukraine, located in Kiev, Ukraine, have a diverse product line of porous carbons for supercapacitors, gas storage, and filtration applications. In addition, numerous education and research institutions worldwide are engaged in basic research of CDC structure, synthesis, or (indirectly) their application for various high-end applications.
522:
released into the body during a bacterial infection that cause the primary inflammatory response during the attack and increase the potential lethality of sepsis, making their removal a very important concern. The rates and levels of removal of above cytokines (85–100% removed within 30 minutes) are higher than those observed for comparable activated carbons.
191: 153: 57:). CDCs have also been derived from polymer-derived ceramics such as Si-O-C or Ti-C, and carbonitrides, such as Si-N-C. CDCs can occur in various structures, ranging from amorphous to crystalline carbon, from sp- to sp-bonded, and from highly porous to fully dense. Among others, the following carbon structures have been derived from carbide precursors: 470: 291: 106:
carried out in the 1960-1980s mostly by Russian scientists on the synthesis of CDC via halogen treatment, while hydrothermal treatment was explored as an alternative route to derive CDCs in the 1990s. Most recently, research activities have centered on optimized CDC synthesis and nanoengineered CDC precursors.
566:
As desalinization and purification of water is critical for obtaining deionized water for laboratory research, large-scale chemical synthesis in industry and consumer applications, the use of porous materials for this application has received particular interest. Capacitive deionization operates in a
508:
CDC films obtained by vacuum annealing (ESK) or chlorine treatment of SiC ceramics yield a low friction coefficient. The friction coefficient of SiC, which is widely used in tribological applications for its high mechanical strength and hardness, can therefore decrease from ~0.7 to ~0.2 or less under
198:
The linear growth rate of the solid carbon product phase suggests a reaction-driven kinetic mechanism, but the kinetics become diffusion-limited for thicker films or larger particles. A high mass transport condition (high gas flow rates) facilitates the removal of the chloride and shifts the reaction
148:
as the chlorinated product, metal chloride, is the discarded byproduct and the carbon itself remains largely unreacted. This method is implemented for commercial production of CDC by Skeleton in Estonia and Carbon-Ukraine. Hydrothermal etching has also been used for synthesis of SiC-CDC which yielded
105:
was first patented in 1918 by Otis Hutchins, with the process further optimized for higher yields in 1956. The solid porous carbon product was initially regarded as a waste byproduct until its properties and potential applications were investigated in more detail in 1959 by Walter Mohun. Research was
465:
One application of carbide-derived carbons is as active material in electrodes for electric double layer capacitors which have become commonly known as supercapacitors or ultracapacitors. This is motivated by their good electrical conductivity combined with high surface area, large micropore volume,
319:
While carbon nanotube formation occurs when trace oxygen amounts are present, very high vacuum conditions (approaching 10–10 torr) result in the formation of graphene sheets. If the conditions are maintained, graphene transitions into bulk graphite. In particular, by vacuum annealing silicon carbide
521:
Carbide-derived carbons with a mesoporous structure remove large molecules from biofluids. As other carbons, CDCs possess good biocompatibility. CDCs have been demonstrated to remove cytokines such as TNF-alpha, IL-6, and IL-1beta from blood plasma. These are the most common receptor-binding agents
478:
CDC electrodes have been shown to yield a gravimetric capacitance of up to 190 F/g in aqueous electrolytes and 180 F/g in organic electrolytes. The highest capacitance values are observed for matching ion/pore systems, which allow high-density packing of ions in pores in superionic states. However,
430:
Only the last reaction yields solid carbon. The yield of carbon-containing gases increases with pressure (decreasing solid carbon yield) and decreases with temperatures (increasing the carbon yield). The ability to produce a usable porous carbon material is dependent on the solubility of the formed
315:
Like halogen treatment, vacuum decomposition is a conformal process. The resulting carbon structures are, as a result of the higher temperatures, more ordered, and carbon nanotubes and graphene can be obtained. In particular, vertically aligned carbon nanotubes films of high tube density have been
165:
The most common method for producing porous carbide-derived carbons involves high-temperature etching with halogens, most commonly chlorine gas. The following generic equation describes the reaction of a metal carbide with chlorine gas (M: Si, Ti, V; similar equations can be written for other CDC
575:
Having originated as the by-product of industrial metal chloride synthesis, CDC has certainly a potential for large-scale production at a moderate cost. Currently, only small companies engage in production of carbide-derived carbons and their implementation in commercial products. For example,
286:
Most produced CDCs exhibit a prevalence of micropores (< 2 nm) and mesopores (between 2 and 50 nm), with specific distributions affected by carbide precursor and synthesis conditions. Hierarchic porosity can be achieved by using polymer-derived ceramics with or without utilizing a
182:
Halogen treatment at temperatures between 200 and 1000 Β°C has been shown to yield mostly disordered porous carbons with a porosity between 50 and ~80 vol% depending on the precursor. Temperatures above 1000 Β°C result in predominantly graphitic carbon and an observed shrinkage of the
311:
Metal or metalloid atoms from carbides can selectively be extracted at high temperatures (usually above 1200 Β°C) under vacuum. The underlying mechanism is incongruent decomposition of carbides, using the high melting point of carbon compared to corresponding carbide metals that melt and
118:
was adopted that clearly denotes the precursor. For example, CDC derived from silicon carbide has been referred to as SiC-CDC, Si-CDC, or SiCDC. Recently, it was recommended to adhere to a unified precursor-CDC-nomenclature to reflect the chemical composition of the precursor (e.g.,
143:
CDCs have been synthesized using several chemical and physical synthesis methods. Most commonly, dry chlorine treatment is used to selectively etch metal or metalloid atoms from the carbide precursor lattice. The term "chlorine treatment" is to be preferred over
473:
Confinement of solvated ions in pores, such as those present in CDCs. As the pore size approaches the size of the solvation shell, the solvent molecules are removed, resulting in larger ionic packing density and increased charge storage
316:
reported for vacuum decomposition of SiC. The high tube density translates into a high elastic modulus and high buckling resistance which is of particular interest for mechanical and tribological applications.
328:
The removal of metal atoms from carbides has been reported at high temperatures (300–1000 Β°C) and pressures (2–200 MPa). The following reactions are possible between metal carbides and water:
1914:
Carroll, B.; Gogotsi, Y.; Kovalchenko, A.; Erdemir, A. & McNallan, M. J. (2003). "Effect of Humidity on the Tribological Properties of Carbide-Derived Carbon (CDC) Films on Silicon Carbide".
85:) and the high electric conductivity and electrochemical stability allows these structures to be effectively implemented in electrical energy storage and capacitive water desalinization. 496:
store up to 21 wt.% of methane at 25 Β°C at high pressure. CDCs with subnanometer pores in the 0.50–0.88 nm diameter range have shown to store up to 7.1 mol CO
825:
Rose, M.; Kockrick, E.; Senkovska, I. & Kaskel, S. (2010). "High surface area carbide-derived carbon fibers produced by electrospinning of polycarbosilane precursors".
1860:
Vakifahmetoglu, C.; Presser, V.; Yeon, S.-H.; Colombo, P. & Gogotsi, Y. (2011). "Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon".
1381:
Hoffman, E. N.; Yushin, G.; El-Raghy, T.; Gogotsi, Y. & Barsoum, M. W. (2008). "Micro and mesoporosity of carbon derived from ternary and binary metal carbides".
199:
equilibrium towards the CDC product. Chlorine treatment has successfully been employed for CDC synthesis from a variety of carbide precursors, including SiC, TiC, B
1230: 2172: 2068:
Niu, J. J.; Presser, V.; Karwacki, C. & Gogotsi, Y. (2011). "Ultrasmall Gold Nanoparticles with the Size Controlled by the Pores of Carbide-Derived Carbon".
1887:
Erdemir, A.; et al. (2004). "Effects of High-Temperature Hydrogenation Treatment on Sliding Friction and Wear Behavior of Carbide-Derived Carbon Films".
1044:
Kitaoka, S.; Tsuji, T.; Katoh, T. & Yamaguchi, Y. (1994). "Tribological Characteristics of SiC Ceramics in High-Temperature and High-Pressure Water".
1644:
Permann, L.; Latt, M.; Leis, J. & Arulepp, M. (2006). "Electrical double layer characteristics of nanoporous carbon derived from titanium carbide".
1671:
Leis, J.; Arulepp, M.; Kuura, A.; Latt, M. & Lust, E. (2006). "Electrical double-layer characteristics of novel carbide-derived carbon materials".
728:
Rose, M.; et al. (2011). "Hierarchical Micro- and Mesoporous Carbide-Derived Carbon as a High-Performance Electrode Material in Supercapacitors".
435:) in supercritical water. Hydrothermal carbon formation has been reported for SiC, TiC, WC, TaC, and NbC. Insolubility of metal oxides, for example TiO 114:
Historically, various terms have been used for CDC, such as "mineral carbon" or "nanoporous carbon". Later, a more adequate nomenclature introduced by
1194:
Kusunoki, M.; Rokkaku, M. & Suzuki, T. (1997). "Epitaxial carbon nanotube film self-organized by sublimation decomposition of silicon carbide".
1833:
Presser, V.; McDonough, J.; Yeon, S.-H. & Gogotsi, Y. (2011). "Effect of pore size on carbon dioxide sorption by carbide derived carbon".
1009:
Roy, R.; Ravichandran, D.; Badzian, A. & Breval, E. (1996). "Attempted hydrothermal synthesis of diamond by hydrolysis of b-SiC powder".
2165: 958:
Babkin, O. E.; Ivakhnyuk, G. K.; Lukin, Y. N. & Fedorov, N. F. (1988). "Study of structure of carbide derived carbon by XPS".
1949:
Yushin, G.; et al. (2006). "Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines".
456: 702: 1328:
Zhou, H.; et al. (2012). "Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory".
790:
Presser, V.; et al. (2011). "Flexible Nano-Felts of Carbide-Derived Carbon with Ultra-High Power Handling Capability".
636:
Presser, V.; Heon, M. & Gogotsi, Y. (2011). "Carbide-Derived Carbons – From Porous Networks to Nanotubes and Graphene".
2559: 2158: 1798:
Portet, C.; Yushin, G. & Gogotsi, Y. (2008). "Effect of Carbon Particle Size on Electrochemical Performance of EDLC".
1078:
Presser, V.; Heon, M. & Gogotsi, Y. (2011). "Carbide-Derived Carbons-From Porous Networks to Nanotubes and Graphene".
1263:
Lee, D. S.; et al. (2008). "Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO
2098:
Porada, S.; et al. (2012). "Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes".
2538: 1987:
Yachamaneni, S.; et al. (2010). "Mesoporous carbide-derived carbon for cytokine removal from blood plasma".
763:
Yeon, S.-H.; et al. (2010). "Carbide-derived-carbons with hierarchical porosity from a preceramic polymer".
678: 2304: 1113:
Kockrick, E.; et al. (2010). "Ordered mesoporous carbide derived carbons for high pressure gas storage".
1698:
Kondrat, S.; Kornyshev, A. (2011). "Superionic state in double-layer capacitors with nanoporous electrodes".
561: 2569: 2191: 145: 977:
Gordeev, S. K.; Vartanova, A. V. (1994). "New approach for production of block microporous materials".
2024:"Platinum Reactions with Carbon Coatings Produced by High Temperature Chlorination of Silicon Carbide" 536:
Pt nanoparticles can be introduced to the SiC/C interface during chlorine treatment (in the form of Pt
2495: 2490: 2242: 2181: 2035: 1807: 1717: 1610: 1575: 1520: 1459: 1444: 1417: 1347: 1286: 1203: 1152: 1018: 870: 610: 58: 2564: 62: 1408:
Pandolfo, A. G.; Hollenkamp, A. F. (2006). "Carbon properties and their role in supercapacitors".
2279: 2261: 1931: 1780: 1741: 1707: 1626: 1544: 1483: 1363: 1337: 1310: 1276: 1095: 894: 807: 690: 653: 995:
Yoshimura, M. et al. Dense Carbon Coating on Silicon Carbide Finers by Hydrothermal Treatment.
2115: 2004: 1966: 1733: 1536: 1475: 1302: 886: 745: 698: 1601:
Huczko, A.; et al. (2007). "Characterization of 1-D nanoSiC-derived nanoporous carbon".
1143:
Arulepp, M.; et al. (2006). "The advanced carbide-derived carbon based supercapacitor".
2518: 2448: 2354: 2107: 2077: 2043: 1996: 1958: 1923: 1896: 1869: 1842: 1815: 1772: 1725: 1680: 1653: 1618: 1583: 1528: 1467: 1425: 1390: 1355: 1294: 1245: 1211: 1160: 1122: 1087: 1053: 1026: 878: 834: 799: 772: 737: 645: 590: 585: 531: 2403: 2359: 2325: 2267: 605: 102: 66: 1761:""Brick-and-Mortar" Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites" 17: 2039: 1811: 1729: 1721: 1614: 1579: 1564:"Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors" 1524: 1505: 1463: 1421: 1351: 1290: 1207: 1156: 1022: 874: 2500: 2309: 2273: 2000: 1962: 1229:
Pathak, S.; Cambaz, Z. G.; Kalidindi, S. R.; Swadener, J. G. & Gogotsi, Y. (2009).
1057: 595: 184: 2553: 2533: 2387: 2286: 2252: 1935: 1487: 1367: 1030: 600: 510: 1873: 1784: 1657: 1630: 1548: 1394: 1314: 1099: 898: 811: 657: 2523: 1900: 1745: 1429: 1164: 460: 115: 1684: 1249: 1126: 838: 776: 2485: 2464: 2207: 70: 1359: 41:
precursors, such as binary (e.g. SiC, TiC), or ternary carbides, also known as
1927: 1506:"Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer" 928: 913: 42: 858: 2419: 2237: 1532: 997:
International Symposium on Carbon, Tokyo, Japan; The Carbon Society of Japan
2119: 2008: 1970: 1776: 1737: 1622: 1540: 1479: 1306: 1231:"Viscoelasticity and high buckling stress of dense carbon nanotube brushes" 1091: 890: 803: 749: 741: 649: 2081: 1587: 194:
Different bulk porosity of CDCs derived from different carbide precursors.
2528: 2369: 2232: 2226: 304: 98: 78: 74: 190: 152: 2480: 2201: 2150: 1846: 469: 290: 38: 2111: 2048: 2023: 1819: 1298: 156:
Schematic of chlorine etching of to produce a porous carbon structure.
1471: 1215: 1760: 1563: 882: 718:
Vol. 7, H.S. Nalwa (ed.) pp. 553–574, American Scientific Publishers
439:, is a significant complication for certain metal carbides (e.g., Ti 2135: 1712: 1342: 1281: 468: 289: 189: 151: 911:
Hutchins, O. Method for the Production of Silicon Tetrachlorid.
2154: 2140: 675:
Carbon Materials for Electrochemical Energy Storage Systems
149:
a route for porous carbon films and nanodiamond synthesis.
859:"Nanoporous carbide-derived carbon with tunable pore size" 697:, Y. Gogotsi (ed.) pp. 211–254, CRC Taylor & Francis 294:
Pore size distributions for different carbide precursors.
2145: 2022:
Ersoy, D. A.; McNallan, M. J. & Gogotsi, Y. (2001).
37:, is the common term for carbon materials derived from 312:
eventually evaporate away, leaving the carbon behind.
681:) Ch. 3, 77–113 (CRC Press/Taylor and Francis, 2009). 2509: 2439: 2378: 2345: 2295: 2216: 2188: 926:Andersen, J. N. Silicon Tetrachloride Manufacture. 1179:Carbides. Properties, Production, and Applications 552:C-CDC) catalyze the oxidation of carbon monoxide. 716:Encyclopedia of Nanoscience and Nanotechnology 673:Kyotani, T., Chmiola, J. & Gogotsi, Y. in 2166: 8: 2173: 2159: 2151: 1445:"Materials for electrochemical capacitors" 693:, Nikitin, A. & Gogotsi, Y. (2006) in 2047: 1711: 1341: 1280: 714:Nikitin, A. & Gogotsi, Y. (2004) in 488:Gas storage and carbon dioxide capturing 1046:Journal of the American Ceramic Society 946:Proceedings of the Conference on Carbon 621: 2100:ACS Applied Materials & Interfaces 2093: 2091: 2063: 2061: 2059: 2028:Journal of the Electrochemical Society 1982: 1980: 1800:Journal of the Electrochemical Society 1499: 1497: 1189: 1187: 1138: 1136: 1073: 1071: 1069: 1067: 940: 938: 571:Commercial production and applications 7: 1862:Microporous and Mesoporous Materials 1700:Journal of Physics: Condensed Matter 1383:Microporous and Mesoporous Materials 852: 850: 848: 669: 667: 631: 629: 627: 625: 1759:Fulvio, P. F.; et al. (2011). 251:C, ZrC, ternary carbides such as Ti 2001:10.1016/j.biomaterials.2010.02.054 1963:10.1016/j.biomaterials.2006.07.019 1835:Energy & Environmental Science 1058:10.1111/j.1151-2916.1994.tb07061.x 25: 1504:Chmiola, J.; et al. (2006). 857:Gogotsi, Y.; et al. (2003). 2136:http://nano.materials.drexel.edu 492:TiC-CDC activated with KOH or CO 97:by high temperature reaction of 2208:Lonsdaleite (hexagonal diamond) 1889:Surface and Coatings Technology 1874:10.1016/j.micromeso.2011.03.042 1658:10.1016/j.electacta.2005.06.024 1562:Huang, J.; et al. (2010). 1443:Simon, P.; Gogotsi, Y. (2008). 1395:10.1016/j.micromeso.2007.10.033 457:Electric double-layer capacitor 1901:10.1016/j.surfcoat.2004.07.052 1430:10.1016/j.jpowsour.2006.02.065 1165:10.1016/j.jpowsour.2006.08.014 271:, and carbonitrides such as Ti 1: 1765:Advanced Functional Materials 1730:10.1088/0953-8984/23/2/022201 1568:Journal of Materials Research 1080:Advanced Functional Materials 1011:Diamond and Related Materials 638:Advanced Functional Materials 556:Capacitive deionization (CDI) 1685:10.1016/j.carbon.2006.04.022 1250:10.1016/j.carbon.2009.03.042 1127:10.1016/j.carbon.2010.01.004 1031:10.1016/0925-9635(95)00443-2 839:10.1016/j.carbon.2009.09.043 777:10.1016/j.carbon.2009.09.004 2586: 2539:Aggregated diamond nanorod 1360:10.1103/PhysRevB.85.035406 559: 529: 454: 324:Hydrothermal decomposition 302: 65:carbon, amorphous carbon, 2337:(cyclo[18]carbon) 979:Zhurnal Prikladnoi Khimii 960:Zhurnal Prikladnoi Khimii 948:Vol. 4 pp. 443–453 (1959) 792:Advanced Energy Materials 35:tunable nanoporous carbon 18:Tunable nanoporous carbon 2321:(cyclo[6]carbon) 2305:Linear acetylenic carbon 2141:http://skeletontech.com/ 1410:Journal of Power Sources 1177:Kosolapova, T. Y (1971) 1145:Journal of Power Sources 431:metal oxide (such as SiO 27:Type of carbon materials 1928:10.1023/A:1023508006745 1603:Physica Status Solidi B 1533:10.1126/science.1132195 1196:Applied Physics Letters 562:Capacitive deionization 71:nanocrystalline diamond 2365:Carbide-derived carbon 2247:(buckminsterfullerene) 1777:10.1002/adfm.201002641 1623:10.1002/pssb.200776162 1092:10.1002/adfm.201002094 804:10.1002/aenm.201100047 742:10.1002/smll.201001898 650:10.1002/adfm.201002094 475: 295: 195: 157: 93:The production of SiCl 31:Carbide-derived carbon 2146:http://carbon.org.ua/ 2082:10.1166/mex.2011.1040 1588:10.1557/JMR.2010.0195 929:U.S. patent 2,739,041 914:U.S. patent 1,271,713 677:(eds F. Beguin & 504:Tribological coatings 483:Proposed applications 472: 341: MC + x H 293: 193: 155: 69:, onion-like carbon, 33:(CDC), also known as 2560:Allotropes of carbon 2182:Allotropes of carbon 695:Carbon Nanomaterials 611:Allotropes of carbon 387:+ CO + (x+1) H 299:Vacuum decomposition 2040:2001JElS..148C.774E 1812:2008JElS..155A.531P 1722:2011JPCM...23b2201K 1646:Electrochimica Acta 1615:2007PSSBR.244.3969H 1580:2010JMatR..25.1525H 1525:2006Sci...313.1760C 1519:(5794): 1760–1763. 1464:2008NatMa...7..845S 1422:2006JPS...157...11P 1352:2012PhRvB..85c5406Z 1291:2008NanoL...8.4320L 1208:1997ApPhL..71.2620K 1157:2006JPS...162.1460A 1023:1996DRM.....5..973R 875:2003NatMa...2..591G 2460:(cyclopropatriene) 2441:hypothetical forms 2262:Fullerene whiskers 1847:10.1039/c1ee01176f 517:Protein adsorption 476: 395:MC + (x+2) H 379:MC + (x+1) H 306:Epitaxial graphene 296: 196: 161:Chlorine treatment 158: 2547: 2546: 2415:(diatomic carbon) 2347:mixed sp/sp forms 2112:10.1021/am201683j 2070:Materials Express 2049:10.1149/1.1415033 2034:(12): C774–C779. 1995:(18): 4789–4795. 1916:Tribology Letters 1820:10.1149/1.2918304 1771:(12): 2208–2215. 1679:(11): 2122–2129. 1609:(11): 3969–3972. 1330:Physical Review B 1299:10.1021/nl802156w 1275:(12): 4320–4325. 1202:(18): 2620–2622. 999:, 552–553 (1998). 178:(gas) + C (solid) 170:MC (solid) + 2 Cl 16:(Redirected from 2577: 2519:Activated carbon 2475: 2474: 2473: 2459: 2458: 2457: 2430: 2429: 2428: 2414: 2413: 2412: 2398: 2397: 2396: 2355:Amorphous carbon 2336: 2335: 2334: 2320: 2319: 2318: 2175: 2168: 2161: 2152: 2124: 2123: 2106:(3): 1194–1199. 2095: 2086: 2085: 2065: 2054: 2053: 2051: 2019: 2013: 2012: 1984: 1975: 1974: 1946: 1940: 1939: 1911: 1905: 1904: 1884: 1878: 1877: 1868:(1–3): 105–112. 1857: 1851: 1850: 1841:(8): 3059–3066. 1830: 1824: 1823: 1806:(7): A531–A536. 1795: 1789: 1788: 1756: 1750: 1749: 1715: 1695: 1689: 1688: 1668: 1662: 1661: 1652:(7): 1274–1281. 1641: 1635: 1634: 1598: 1592: 1591: 1574:(8): 1525–1531. 1559: 1553: 1552: 1510: 1501: 1492: 1491: 1472:10.1038/nmat2297 1452:Nature Materials 1449: 1440: 1434: 1433: 1405: 1399: 1398: 1389:(1–3): 526–532. 1378: 1372: 1371: 1345: 1325: 1319: 1318: 1284: 1260: 1254: 1253: 1244:(8): 1969–1976. 1235: 1226: 1220: 1219: 1216:10.1063/1.120158 1191: 1182: 1175: 1169: 1168: 1151:(2): 1460–1466. 1140: 1131: 1130: 1121:(6): 1707–1717. 1110: 1104: 1103: 1075: 1062: 1061: 1052:(7): 1851–1856. 1041: 1035: 1034: 1006: 1000: 993: 987: 986: 974: 968: 967: 955: 949: 944:Mohun, W. A. in 942: 933: 931: 924: 918: 916: 909: 903: 902: 863:Nature Materials 854: 843: 842: 822: 816: 815: 787: 781: 780: 760: 754: 753: 736:(8): 1108–1117. 725: 719: 712: 706: 688: 682: 671: 662: 661: 633: 591:Hydrogen economy 586:Hydrogen storage 532:Catalyst support 526:Catalyst support 370: 369: 365: 355: 354: 350: 340: 339: 335: 183:material due to 67:carbon nanotubes 21: 2585: 2584: 2580: 2579: 2578: 2576: 2575: 2574: 2550: 2549: 2548: 2543: 2505: 2496:Metallic carbon 2472: 2469: 2468: 2467: 2465: 2456: 2453: 2452: 2451: 2449: 2435: 2427: 2424: 2423: 2422: 2420: 2411: 2408: 2407: 2406: 2404: 2399:(atomic carbon) 2395: 2392: 2391: 2390: 2388: 2374: 2360:Carbon nanofoam 2341: 2333: 2330: 2329: 2328: 2326: 2317: 2314: 2313: 2312: 2310: 2291: 2256: 2246: 2212: 2202:Diamond (cubic) 2184: 2179: 2132: 2127: 2097: 2096: 2089: 2067: 2066: 2057: 2021: 2020: 2016: 1986: 1985: 1978: 1957:(34): 5755–62. 1948: 1947: 1943: 1913: 1912: 1908: 1886: 1885: 1881: 1859: 1858: 1854: 1832: 1831: 1827: 1797: 1796: 1792: 1758: 1757: 1753: 1697: 1696: 1692: 1670: 1669: 1665: 1643: 1642: 1638: 1600: 1599: 1595: 1561: 1560: 1556: 1508: 1503: 1502: 1495: 1458:(11): 845–854. 1447: 1442: 1441: 1437: 1407: 1406: 1402: 1380: 1379: 1375: 1327: 1326: 1322: 1266: 1262: 1261: 1257: 1233: 1228: 1227: 1223: 1193: 1192: 1185: 1176: 1172: 1142: 1141: 1134: 1112: 1111: 1107: 1077: 1076: 1065: 1043: 1042: 1038: 1008: 1007: 1003: 994: 990: 976: 975: 971: 957: 956: 952: 943: 936: 927: 925: 921: 912: 910: 906: 883:10.1038/nmat957 856: 855: 846: 824: 823: 819: 789: 788: 784: 762: 761: 757: 727: 726: 722: 713: 709: 689: 685: 672: 665: 635: 634: 623: 619: 606:Nanoengineering 582: 573: 564: 558: 551: 547: 543: 539: 534: 528: 519: 506: 499: 495: 490: 485: 463: 453: 446: 442: 438: 434: 426: 423:+ C + x H 422: 418: 410: 407:+ (x+2) H 406: 402: 398: 390: 386: 382: 374: 367: 363: 362: 360: 356: 352: 348: 347: 344: 337: 333: 332: 326: 309: 301: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 177: 173: 163: 141: 134: 130: 126: 122: 112: 103:silicon carbide 96: 91: 84: 56: 52: 48: 28: 23: 22: 15: 12: 11: 5: 2583: 2581: 2573: 2572: 2567: 2562: 2552: 2551: 2545: 2544: 2542: 2541: 2536: 2531: 2526: 2521: 2515: 2513: 2507: 2506: 2504: 2503: 2501:Penta-graphene 2498: 2493: 2488: 2483: 2478: 2470: 2462: 2454: 2445: 2443: 2437: 2436: 2434: 2433: 2425: 2417: 2409: 2401: 2393: 2384: 2382: 2376: 2375: 2373: 2372: 2367: 2362: 2357: 2351: 2349: 2343: 2342: 2340: 2339: 2331: 2323: 2315: 2307: 2301: 2299: 2293: 2292: 2290: 2289: 2284: 2254: 2244: 2235: 2230: 2222: 2220: 2214: 2213: 2211: 2210: 2205: 2197: 2195: 2186: 2185: 2180: 2178: 2177: 2170: 2163: 2155: 2149: 2148: 2143: 2138: 2131: 2130:External links 2128: 2126: 2125: 2087: 2076:(4): 259–266. 2055: 2014: 1976: 1941: 1906: 1879: 1852: 1825: 1790: 1751: 1690: 1663: 1636: 1593: 1554: 1493: 1435: 1400: 1373: 1320: 1264: 1255: 1221: 1183: 1181:, Plenum Press 1170: 1132: 1105: 1086:(5): 810–833. 1063: 1036: 1017:(9): 973–976. 1001: 988: 969: 950: 934: 919: 904: 869:(9): 591–594. 844: 833:(2): 403–407. 817: 798:(3): 423–430. 782: 755: 720: 707: 683: 663: 644:(5): 810–833. 620: 618: 615: 614: 613: 608: 603: 598: 596:Nanotechnology 593: 588: 581: 578: 572: 569: 557: 554: 549: 545: 541: 537: 527: 524: 518: 515: 511:dangling bonds 505: 502: 497: 493: 489: 486: 484: 481: 452: 449: 444: 440: 436: 432: 428: 427: 424: 420: 416: 415:MC + x H 412: 411: 408: 404: 400: 396: 392: 391: 388: 384: 380: 376: 375: 372: 358: 346: 342: 325: 322: 303:Main article: 300: 297: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 185:graphitization 180: 179: 175: 171: 162: 159: 140: 137: 132: 128: 124: 120: 111: 108: 94: 90: 87: 82: 54: 50: 46: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2582: 2571: 2570:Nanomaterials 2568: 2566: 2563: 2561: 2558: 2557: 2555: 2540: 2537: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2516: 2514: 2512: 2508: 2502: 2499: 2497: 2494: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2476:(prismane C8) 2463: 2461: 2447: 2446: 2444: 2442: 2438: 2432: 2418: 2416: 2402: 2400: 2386: 2385: 2383: 2381: 2377: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2352: 2350: 2348: 2344: 2338: 2324: 2322: 2308: 2306: 2303: 2302: 2300: 2298: 2294: 2288: 2287:Glassy carbon 2285: 2282: 2281: 2276: 2275: 2270: 2269: 2264: 2263: 2258: 2257: 2249: 2248: 2239: 2236: 2234: 2231: 2229: 2228: 2224: 2223: 2221: 2219: 2215: 2209: 2206: 2204: 2203: 2199: 2198: 2196: 2194: 2193: 2187: 2183: 2176: 2171: 2169: 2164: 2162: 2157: 2156: 2153: 2147: 2144: 2142: 2139: 2137: 2134: 2133: 2129: 2121: 2117: 2113: 2109: 2105: 2101: 2094: 2092: 2088: 2083: 2079: 2075: 2071: 2064: 2062: 2060: 2056: 2050: 2045: 2041: 2037: 2033: 2029: 2025: 2018: 2015: 2010: 2006: 2002: 1998: 1994: 1990: 1983: 1981: 1977: 1972: 1968: 1964: 1960: 1956: 1952: 1945: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1910: 1907: 1902: 1898: 1894: 1890: 1883: 1880: 1875: 1871: 1867: 1863: 1856: 1853: 1848: 1844: 1840: 1836: 1829: 1826: 1821: 1817: 1813: 1809: 1805: 1801: 1794: 1791: 1786: 1782: 1778: 1774: 1770: 1766: 1762: 1755: 1752: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1714: 1709: 1706:(2): 022201. 1705: 1701: 1694: 1691: 1686: 1682: 1678: 1674: 1667: 1664: 1659: 1655: 1651: 1647: 1640: 1637: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1597: 1594: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1555: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1500: 1498: 1494: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1446: 1439: 1436: 1431: 1427: 1423: 1419: 1415: 1411: 1404: 1401: 1396: 1392: 1388: 1384: 1377: 1374: 1369: 1365: 1361: 1357: 1353: 1349: 1344: 1339: 1336:(3): 035406. 1335: 1331: 1324: 1321: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1283: 1278: 1274: 1270: 1259: 1256: 1251: 1247: 1243: 1239: 1232: 1225: 1222: 1217: 1213: 1209: 1205: 1201: 1197: 1190: 1188: 1184: 1180: 1174: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1137: 1133: 1128: 1124: 1120: 1116: 1109: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1074: 1072: 1070: 1068: 1064: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1028: 1024: 1020: 1016: 1012: 1005: 1002: 998: 992: 989: 984: 980: 973: 970: 965: 961: 954: 951: 947: 941: 939: 935: 930: 923: 920: 915: 908: 905: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 860: 853: 851: 849: 845: 840: 836: 832: 828: 821: 818: 813: 809: 805: 801: 797: 793: 786: 783: 778: 774: 770: 766: 759: 756: 751: 747: 743: 739: 735: 731: 724: 721: 717: 711: 708: 704: 700: 696: 692: 687: 684: 680: 679:E. Frackowiak 676: 670: 668: 664: 659: 655: 651: 647: 643: 639: 632: 630: 628: 626: 622: 616: 612: 609: 607: 604: 602: 601:Nanomaterials 599: 597: 594: 592: 589: 587: 584: 583: 579: 577: 570: 568: 563: 555: 553: 533: 525: 523: 516: 514: 512: 503: 501: 487: 482: 480: 471: 467: 462: 458: 450: 448: 414: 413: 394: 393: 378: 377: 331: 330: 329: 323: 321: 317: 313: 308: 307: 298: 292: 288: 284: 192: 188: 186: 169: 168: 167: 166:precursors): 160: 154: 150: 147: 138: 136: 117: 109: 107: 104: 100: 88: 86: 80: 76: 72: 68: 64: 60: 44: 40: 36: 32: 19: 2534:Carbon fiber 2524:Carbon black 2510: 2491:Cubic carbon 2440: 2379: 2364: 2346: 2296: 2278: 2272: 2266: 2260: 2251: 2241: 2240:, including 2225: 2217: 2200: 2189: 2103: 2099: 2073: 2069: 2031: 2027: 2017: 1992: 1989:Biomaterials 1988: 1954: 1951:Biomaterials 1950: 1944: 1919: 1915: 1909: 1892: 1888: 1882: 1865: 1861: 1855: 1838: 1834: 1828: 1803: 1799: 1793: 1768: 1764: 1754: 1703: 1699: 1693: 1676: 1672: 1666: 1649: 1645: 1639: 1606: 1602: 1596: 1571: 1567: 1557: 1516: 1512: 1455: 1451: 1438: 1416:(1): 11–27. 1413: 1409: 1403: 1386: 1382: 1376: 1333: 1329: 1323: 1272: 1269:Nano Letters 1268: 1258: 1241: 1237: 1224: 1199: 1195: 1178: 1173: 1148: 1144: 1118: 1114: 1108: 1083: 1079: 1049: 1045: 1039: 1014: 1010: 1004: 996: 991: 985:: 1375–1377. 982: 978: 972: 966:: 1719–1721. 963: 959: 953: 945: 922: 907: 866: 862: 830: 826: 820: 795: 791: 785: 768: 764: 758: 733: 729: 723: 715: 710: 694: 686: 674: 641: 637: 574: 565: 535: 520: 507: 491: 477: 464: 461:Capa vehicle 451:Applications 429: 327: 318: 314: 310: 305: 285: 247:C, VC, WC, W 197: 181: 164: 146:chlorination 142: 116:Yury Gogotsi 113: 110:Nomenclature 92: 34: 30: 29: 2486:Haeckelites 2431:(tricarbon) 2380:other forms 2280:Nanoscrolls 1895:: 588–593. 771:: 201–210. 474:capability. 174:(gas) β†’ MCl 2565:Capacitors 2554:Categories 2238:Fullerenes 703:0849393868 691:Yushin, G. 617:References 560:See also: 530:See also: 455:See also: 63:mesoporous 43:MAX phases 2268:Nanotubes 1936:137442598 1922:: 51–55. 1713:1010.0921 1488:205401964 1368:118510423 1343:1112.2242 1282:0807.4049 371: CH 139:Synthesis 123:C-CDC, Ti 101:gas with 45:(e.g., Ti 2529:Charcoal 2370:Q-carbon 2297:sp forms 2274:Nanobuds 2233:Graphene 2227:Graphite 2218:sp forms 2120:22329838 2009:20303167 1971:16914195 1785:93644784 1738:21406834 1631:95577444 1549:40027564 1541:16917025 1480:18956000 1315:35392475 1307:19368003 1100:96797238 899:14257229 891:12907942 812:97714605 750:21449047 658:96797238 580:See also 548:C-CDC, B 263:, and Ti 135:C-CDC). 99:chlorine 79:graphite 75:graphene 2511:related 2481:Chaoite 2036:Bibcode 1808:Bibcode 1746:4494305 1718:Bibcode 1611:Bibcode 1576:Bibcode 1521:Bibcode 1513:Science 1460:Bibcode 1418:Bibcode 1348:Bibcode 1287:Bibcode 1204:Bibcode 1153:Bibcode 1019:Bibcode 871:Bibcode 366:⁄ 351:⁄ 336:⁄ 255:AlC, Ti 131:-CDC, W 89:History 49:AlC, Ti 39:carbide 2118:  2007:  1969:  1934:  1783:  1744:  1736:  1673:Carbon 1629:  1547:  1539:  1486:  1478:  1366:  1313:  1305:  1238:Carbon 1115:Carbon 1098:  932:(1956) 917:(1918) 897:  889:  827:Carbon 810:  765:Carbon 748:  701:  656:  419:O β†’ MO 399:O β†’ MO 383:O β†’ MO 239:C, SrC 203:C, BaC 77:, and 59:micro- 2192:forms 1932:S2CID 1781:S2CID 1742:S2CID 1708:arXiv 1627:S2CID 1545:S2CID 1509:(PDF) 1484:S2CID 1448:(PDF) 1364:S2CID 1338:arXiv 1311:S2CID 1277:arXiv 1234:(PDF) 1096:S2CID 895:S2CID 808:S2CID 730:Small 654:S2CID 345:O β†’ M 227:C, Al 223:C, Mo 207:, CaC 2116:PMID 2005:PMID 1967:PMID 1734:PMID 1537:PMID 1476:PMID 1303:PMID 887:PMID 746:PMID 699:ISBN 459:and 403:+ CO 243:, Ta 235:, Nb 219:, Fe 211:, Cr 61:and 2190:sp 2108:doi 2078:doi 2044:doi 2032:148 1997:doi 1959:doi 1924:doi 1897:doi 1893:188 1870:doi 1866:144 1843:doi 1816:doi 1804:155 1773:doi 1726:doi 1681:doi 1654:doi 1619:doi 1607:244 1584:doi 1529:doi 1517:313 1468:doi 1426:doi 1414:157 1391:doi 1387:112 1356:doi 1295:doi 1267:". 1246:doi 1212:doi 1161:doi 1149:162 1123:doi 1088:doi 1054:doi 1027:doi 879:doi 835:doi 800:doi 773:doi 738:doi 646:doi 447:). 443:SiC 281:0.5 277:0.5 275:AlC 267:SiC 259:AlC 127:SiC 53:SiC 2556:: 2332:18 2277:, 2271:, 2265:, 2259:, 2255:70 2250:, 2245:60 2114:. 2102:. 2090:^ 2072:. 2058:^ 2042:. 2030:. 2026:. 2003:. 1993:31 1991:. 1979:^ 1965:. 1955:27 1953:. 1930:. 1920:15 1918:. 1891:. 1864:. 1837:. 1814:. 1802:. 1779:. 1769:21 1767:. 1763:. 1740:. 1732:. 1724:. 1716:. 1704:23 1702:. 1677:44 1675:. 1650:51 1648:. 1625:. 1617:. 1605:. 1582:. 1572:25 1570:. 1566:. 1543:. 1535:. 1527:. 1515:. 1511:. 1496:^ 1482:. 1474:. 1466:. 1454:. 1450:. 1424:. 1412:. 1385:. 1362:. 1354:. 1346:. 1334:85 1332:. 1309:. 1301:. 1293:. 1285:. 1271:. 1242:47 1240:. 1236:. 1210:. 1200:71 1198:. 1186:^ 1159:. 1147:. 1135:^ 1119:48 1117:. 1094:. 1084:21 1082:. 1066:^ 1050:77 1048:. 1025:. 1013:. 983:67 981:. 964:57 962:. 937:^ 893:. 885:. 877:. 865:. 861:. 847:^ 831:48 829:. 806:. 794:. 769:48 767:. 744:. 732:. 666:^ 652:. 642:21 640:. 624:^ 540:Cl 513:. 361:+ 283:. 187:. 73:, 2471:6 2466:C 2455:3 2450:C 2426:3 2421:C 2410:2 2405:C 2394:1 2389:C 2327:C 2316:6 2311:C 2283:) 2253:C 2243:C 2174:e 2167:t 2160:v 2122:. 2110:: 2104:4 2084:. 2080:: 2074:1 2052:. 2046:: 2038:: 2011:. 1999:: 1973:. 1961:: 1938:. 1926:: 1903:. 1899:: 1876:. 1872:: 1849:. 1845:: 1839:4 1822:. 1818:: 1810:: 1787:. 1775:: 1748:. 1728:: 1720:: 1710:: 1687:. 1683:: 1660:. 1656:: 1633:. 1621:: 1613:: 1590:. 1586:: 1578:: 1551:. 1531:: 1523:: 1490:. 1470:: 1462:: 1456:7 1432:. 1428:: 1420:: 1397:. 1393:: 1370:. 1358:: 1350:: 1340:: 1317:. 1297:: 1289:: 1279:: 1273:8 1265:2 1252:. 1248:: 1218:. 1214:: 1206:: 1167:. 1163:: 1155:: 1129:. 1125:: 1102:. 1090:: 1060:. 1056:: 1033:. 1029:: 1021:: 1015:5 901:. 881:: 873:: 867:2 841:. 837:: 814:. 802:: 796:1 779:. 775:: 752:. 740:: 734:7 705:. 660:. 648:: 550:4 546:2 542:3 538:3 498:2 494:2 445:2 441:3 437:2 433:2 425:2 421:x 417:2 409:2 405:2 401:x 397:2 389:2 385:x 381:2 373:4 368:2 364:x 359:x 357:O 353:2 349:x 343:2 338:2 334:x 279:N 273:2 269:2 265:3 261:2 257:3 253:2 249:2 245:2 241:2 237:2 233:3 231:C 229:4 225:2 221:3 217:2 215:C 213:3 209:2 205:2 201:4 176:4 172:2 133:2 129:2 125:3 121:4 119:B 95:4 83:2 55:2 51:3 47:2 20:)

Index

Tunable nanoporous carbon
carbide
MAX phases
micro-
mesoporous
carbon nanotubes
nanocrystalline diamond
graphene
graphite
chlorine
silicon carbide
Yury Gogotsi
chlorination

graphitization


Epitaxial graphene
Electric double-layer capacitor
Capa vehicle

dangling bonds
Catalyst support
Capacitive deionization
Hydrogen storage
Hydrogen economy
Nanotechnology
Nanomaterials
Nanoengineering
Allotropes of carbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑