Knowledge (XXG)

Tautological bundle

Source 📝

3651: 2964: 1462: 4217: 1810: 3490: 2790: 3091: 2654: 1964: 2670:(1). (In fact, the above isomorphism is part of the usual correspondence between Weil divisors and Cartier divisors.) Finally, the dual of the twisting sheaf corresponds to the tautological line bundle (see below). 2550: 1211: 3474: 1303: 3309: 2372: 2047: 1872: 2782: 4103: 263: 3710: 3211: 326: 1693: 2195: 4096: 1606: 1116: 956: 3158: 2439: 1044: 1002: 3905: 3404: 2264: 365: 3945: 3346: 3240: 394: 3848: 3765: 1635: 1522: 4261:
Editorial note: this definition differs from Hartshorne in that he does not take dual, but is consistent with the standard practice and the other parts of Knowledge (XXG).
1494: 134: 3646:{\displaystyle 0\to I\to {\mathcal {O}}_{\mathbb {P} ^{n}}{\overset {x_{i}\mapsto y_{i}}{\longrightarrow }}\operatorname {Sym} {\mathcal {O}}_{\mathbb {P} ^{n}}(1)\to 0,} 2141: 1681: 4246: 2111: 2084: 1551: 827: 796: 740: 677: 642: 535: 2959:{\displaystyle \mathbf {Spec} \left({\mathcal {O}}_{\mathbb {P} ^{n}}\right)=\mathbb {A} _{\mathbb {P} ^{n}}^{n+1}=\mathbb {A} ^{n+1}\times _{k}{\mathbb {P} ^{n}}} 769: 709: 2741: 873: 897: 847: 615: 595: 575: 555: 508: 488: 174: 154: 108: 88: 61: 2983: 3767:
this is equivalent to saying that it is a negative line bundle, meaning that minus its Chern class is the de Rham class of the standard Kähler form.
203:
Tautological bundles are constructed both in algebraic topology and in algebraic geometry. In algebraic geometry, the tautological line bundle (as
2577: 1888: 4449: 4391: 4355: 4303: 2459: 1457:{\displaystyle {\begin{cases}\phi :\pi ^{-1}(U)\to U\times X\subseteq G_{n}(\mathbb {R} ^{n+k})\times X\\\phi (V,v)=(V,p(v))\end{cases}}} 1141: 3979:(Chern classes of tautological bundles is the algebraically independent generators of the cohomology ring of the infinite Grassmannian.) 3424: 1815:
where on the left the bracket means homotopy class and on the right is the set of isomorphism classes of real vector bundles of rank
617:, varying continuously. All that can stop the definition of the tautological bundle from this indication, is the difficulty that the 3257: 2321: 1981: 1830: 4212:{\displaystyle {\begin{cases}G_{n}(\mathbb {R} ^{n+k})\to \operatorname {End} (\mathbb {R} ^{n+k})\\V\mapsto p_{V}\end{cases}}} 2746: 213: 192:
since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a
3663: 3167: 4328: 282: 3948: 329: 3716:. In practice both the notions (tautological line bundle and the dual of the twisting sheaf) are used interchangeably. 1805:{\displaystyle {\begin{cases}\to \operatorname {Vect} _{n}^{\mathbb {R} }(X)\\f\mapsto f^{*}(\gamma _{n})\end{cases}}} 4324: 443: 4378: 3713: 277: 2146: 4050: 3855: 1560: 1070: 910: 408: 64: 4467: 3477: 1975:: In turn, one can define a tautological bundle as a universal bundle; suppose there is a natural bijection 3103: 2392: 3947:; in other words the hyperplane bundle is the generator of the Picard group having positive degree (as a 2406: 1011: 969: 3966: 3874: 3374: 2234: 2143:
It is precisely the tautological bundle and, by restriction, one gets the tautological bundles over all
335: 3917: 3322: 3216: 370: 4337: 3822: 2086:
is the direct limit of compact spaces, it is paracompact and so there is a unique vector bundle over
597:, this is already almost the data required for a vector bundle: namely a vector space for each point 197: 4112: 2586: 1897: 1702: 1312: 420: 3745: 3415: 1611: 1502: 4428:, Annals of Mathematics Studies, vol. 76, Princeton, New Jersey: Princeton University Press, 4026:
Over a noncompact but paracompact base, this remains true provided one uses infinite Grassmannian.
1477: 113: 3720: 452: 3982: 396:. The tautological line bundle and the hyperplane bundle are exactly the two generators of the 4445: 4405: 4387: 4351: 4320: 4299: 3739: 2053: 799: 427: 193: 4373: 4341: 4007: 3868: 2309: 2116: 1656: 447:
is heavily overloaded as it is, in mathematical terminology, and (worse) confusion with the
431: 204: 188: 177: 4433: 4401: 4365: 4313: 4224: 2089: 2062: 1529: 805: 774: 718: 655: 620: 513: 4429: 4397: 4383: 4361: 4309: 3851: 745: 685: 464: 448: 196:
for vector bundles. Because of this, the tautological bundle is important in the study of
67: 3808: 2685: 852: 4295: 4287: 3971: 882: 832: 645: 600: 580: 560: 540: 493: 473: 404: 159: 139: 93: 73: 46: 3803:= 1, the real tautological line bundle is none other than the well-known bundle whose 4461: 4001: 2974: 1497: 36: 4421: 3816: 3804: 3788: 3784: 3727: 2400: 1554: 959: 649: 468: 397: 40: 3086:{\displaystyle L=\mathbf {Spec} \left({\mathcal {O}}_{\mathbb {P} ^{n}}/I\right)} 4417: 3976: 3961: 3951:) and the tautological bundle is its opposite: the generator of negative degree. 3864: 3731: 2302: 876: 416: 269: 28: 1467:
which is clearly a homeomorphism. Hence, the result is a vector bundle of rank
3987: 3368: 712: 17: 4035:
In literature and textbooks, they are both often called canonical generators.
4409: 328:. The hyperplane bundle is the line bundle corresponding to the hyperplane ( 4346: 2649:{\displaystyle {\begin{cases}O(H)\simeq O(1)\\f\mapsto fx_{0}\end{cases}}} 1959:{\displaystyle {\begin{cases}f_{E}:X\to G_{n}\\x\mapsto E_{x}\end{cases}}} 3719:
Over a field, its dual line bundle is the line bundle associated to the
644:
are going to intersect. Fixing this up is a routine application of the
879:
is one tautological bundle, and the other, just described, is of rank
3863:
In the case of projective space, where the tautological bundle is a
2545:{\displaystyle \Gamma (U,O(D))=\{f\in K|(f)+D\geq 0{\text{ on }}U\}} 2308:
In algebraic geometry, the hyperplane bundle is the line bundle (as
1206:{\displaystyle G_{n}(\mathbb {R} ^{n+k})\times \mathbb {R} ^{n+k}.} 1118:
as follows. The total space of the bundle is the set of all pairs (
3469:{\displaystyle \mathbf {Spec} (\operatorname {Sym} {\check {E}})} 415:. The sphere bundle of the standard bundle is usually called the 3912: 2666:
is, as usual, viewed as a global section of the twisting sheaf
1683:
It is a universal bundle in the sense: for each compact space
3304:{\displaystyle \mathbb {A} ^{n+1}\times _{k}\mathbb {P} ^{n}} 1138:; it is given the subspace topology of the Cartesian product 3923: 3880: 3670: 3605: 3509: 3015: 2816: 2367:{\displaystyle H=\mathbb {P} ^{n-1}\subset \mathbb {P} ^{n}} 2042:{\displaystyle =\operatorname {Vect} _{n}^{\mathbb {R} }(X)} 679:, that now do not intersect. With this, we have the bundle. 289: 220: 4205: 2642: 1952: 1867:{\displaystyle E\hookrightarrow X\times \mathbb {R} ^{n+k}} 1798: 1474:
The above definition continues to make sense if we replace
1450: 2294:.) The rest is exactly like the tautological line bundle. 2678:
In algebraic geometry, this notion exists over any field
463:
Grassmannians by definition are the parameter spaces for
426:
More generally, there are also tautological bundles on a
2777:{\displaystyle \mathbb {P} ^{n}=\operatorname {Proj} A} 90:, given a point in the Grassmannian corresponding to a 1233:
under π, it is given a structure of a vector space by
258:{\displaystyle {\mathcal {O}}_{\mathbb {P} ^{n}}(-1),} 4227: 4106: 4053: 3920: 3911:
the dual vector bundle) of the hyperplane bundle or
3877: 3825: 3748: 3705:{\displaystyle {\mathcal {O}}_{\mathbb {P} ^{n}}(-1)} 3666: 3493: 3427: 3377: 3356:
is the tautological line bundle as defined before if
3325: 3260: 3219: 3206:{\displaystyle \mathbb {A} _{\mathbb {P} ^{n}}^{n+1}} 3170: 3106: 2986: 2793: 2749: 2688: 2580: 2462: 2409: 2324: 2237: 2149: 2119: 2092: 2065: 1984: 1891: 1833: 1696: 1659: 1614: 1563: 1532: 1505: 1480: 1306: 1144: 1073: 1014: 972: 913: 885: 855: 835: 808: 798:
that are their kernels, when considered as (rays of)
777: 748: 721: 688: 682:
The projective space case is included. By convention
658: 623: 603: 583: 563: 543: 516: 496: 476: 373: 338: 285: 216: 162: 142: 116: 96: 76: 49: 43:
in a natural tautological way: for a Grassmannian of
321:{\displaystyle {\mathcal {O}}_{\mathbb {P} ^{n}}(1)} 1269:). Finally, to see local triviality, given a point 407:'s "K-theory", the tautological line bundle over a 4240: 4211: 4090: 3939: 3899: 3842: 3759: 3704: 3645: 3484:of finite rank. Since we have the exact sequence: 3468: 3398: 3340: 3303: 3234: 3205: 3152: 3085: 2958: 2776: 2735: 2648: 2544: 2433: 2366: 2258: 2189: 2135: 2105: 2078: 2041: 1958: 1866: 1804: 1675: 1629: 1600: 1545: 1516: 1488: 1456: 1205: 1110: 1038: 996: 950: 891: 867: 841: 821: 790: 763: 734: 711:may usefully carry the tautological bundle in the 703: 671: 636: 609: 589: 569: 549: 529: 502: 482: 388: 359: 320: 257: 168: 148: 128: 102: 82: 55: 3799:In fact, it is straightforward to show that, for 2215:-space is defined as follows. The total space of 3100:is the ideal sheaf generated by global sections 648:device, so that the bundle projection is from a 441:has dropped out of favour, on the grounds that 4270: 2674:Tautological line bundle in algebraic geometry 2682:. The concrete definition is as follows. Let 1819:. The inverse map is given as follows: since 8: 3660:, as defined above, corresponds to the dual 2539: 2493: 3811:. For a full proof of the above fact, see. 3418:. (cf. Hartshorne, Ch. I, the end of § 4.) 186:The tautological bundle is also called the 2441:one defines the corresponding line bundle 2190:{\displaystyle G_{n}(\mathbb {R} ^{n+k}).} 4345: 4294:, Advanced Book Classics (2nd ed.), 4232: 4226: 4196: 4167: 4163: 4162: 4134: 4130: 4129: 4119: 4107: 4105: 4091:{\displaystyle G_{n}(\mathbb {R} ^{n+k})} 4073: 4069: 4068: 4058: 4052: 3922: 3921: 3919: 3879: 3878: 3876: 3827: 3826: 3824: 3795:≥ 1. This remains true over other fields. 3750: 3749: 3747: 3682: 3678: 3677: 3675: 3669: 3668: 3665: 3617: 3613: 3612: 3610: 3604: 3603: 3587: 3574: 3564: 3555: 3536: 3521: 3517: 3516: 3514: 3508: 3507: 3492: 3452: 3451: 3428: 3426: 3384: 3380: 3379: 3376: 3360:is the field of real or complex numbers. 3332: 3328: 3327: 3324: 3295: 3291: 3290: 3283: 3267: 3263: 3262: 3259: 3226: 3222: 3221: 3218: 3191: 3184: 3180: 3179: 3177: 3173: 3172: 3169: 3144: 3134: 3121: 3111: 3105: 3070: 3061: 3042: 3027: 3023: 3022: 3020: 3014: 3013: 2993: 2985: 2949: 2945: 2944: 2942: 2936: 2920: 2916: 2915: 2899: 2892: 2888: 2887: 2885: 2881: 2880: 2862: 2843: 2828: 2824: 2823: 2821: 2815: 2814: 2794: 2792: 2756: 2752: 2751: 2748: 2724: 2705: 2687: 2633: 2581: 2579: 2531: 2505: 2461: 2422: 2418: 2417: 2408: 2358: 2354: 2353: 2337: 2333: 2332: 2323: 2244: 2240: 2239: 2236: 2169: 2165: 2164: 2154: 2148: 2124: 2118: 2097: 2091: 2070: 2064: 2021: 2020: 2019: 2014: 1998: 1983: 1943: 1923: 1904: 1892: 1890: 1852: 1848: 1847: 1832: 1786: 1773: 1741: 1740: 1739: 1734: 1718: 1697: 1695: 1664: 1658: 1613: 1601:{\displaystyle G_{n}(\mathbb {R} ^{n+k})} 1583: 1579: 1578: 1568: 1562: 1537: 1531: 1526:By definition, the infinite Grassmannian 1507: 1506: 1504: 1482: 1481: 1479: 1377: 1373: 1372: 1362: 1325: 1307: 1305: 1188: 1184: 1183: 1164: 1160: 1159: 1149: 1143: 1111:{\displaystyle G_{n}(\mathbb {R} ^{n+k})} 1093: 1089: 1088: 1078: 1072: 1021: 1017: 1016: 1013: 979: 975: 974: 971: 951:{\displaystyle G_{n}(\mathbb {R} ^{n+k})} 933: 929: 928: 918: 912: 884: 854: 834: 813: 807: 782: 776: 747: 726: 720: 687: 663: 657: 628: 622: 602: 582: 562: 542: 521: 515: 495: 475: 380: 376: 375: 372: 345: 341: 340: 337: 301: 297: 296: 294: 288: 287: 284: 232: 228: 227: 225: 219: 218: 215: 161: 141: 115: 95: 75: 48: 4442:Algebraic Geometry: A Concise Dictionary 2113:that corresponds to the identity map on 1637:Taking the direct limit of the bundles γ 180:the tautological bundle is known as the 4019: 3990:(Thom spaces of tautological bundles γ 3480:corresponding to a locally free sheaf 2559:is the field of rational functions on 3153:{\displaystyle x_{i}y_{j}-x_{j}y_{i}} 2274:. The projection map π is given by π( 7: 4444:, Berlin/Boston: Walter De Gruyter, 4336:, Wiley Classics Library, New York: 4252:, is a homeomorphism onto the image. 1827:is a subbundle of a trivial bundle: 1281:such that the orthogonal projection 2434:{\displaystyle X=\mathbb {P} ^{n},} 1213:The projection map π is given by π( 1057:We define the tautological bundle γ 1039:{\displaystyle \mathbb {R} ^{n+k}.} 997:{\displaystyle \mathbb {R} ^{n+k};} 652:made up of identical copies of the 467:, of a given dimension, in a given 4248:is the orthogonal projection onto 3900:{\displaystyle {\mathcal {O}}(-1)} 3399:{\displaystyle \mathbb {A} ^{n+1}} 3371:of the origin of the affine space 2463: 2395:. This can be seen as follows. If 2259:{\displaystyle \mathbb {R} ^{k+1}} 1621: 360:{\displaystyle \mathbb {P} ^{n-1}} 25: 3940:{\displaystyle {\mathcal {O}}(1)} 3738:. This is an example of an anti- 3242:; moreover, the closed points of 2305:of the tautological line bundle. 1130:of the Grassmannian and a vector 1008:-dimensional vector subspaces of 966:-dimensional vector subspaces in 4330:Principles of algebraic geometry 3726:, whose global sections are the 3438: 3435: 3432: 3429: 3341:{\displaystyle \mathbb {P} ^{n}} 3235:{\displaystyle \mathbb {P} ^{n}} 3003: 3000: 2997: 2994: 2804: 2801: 2798: 2795: 430:of a vector bundle as well as a 389:{\displaystyle \mathbb {P} ^{n}} 3843:{\displaystyle \mathbb {P} (V)} 1687:, there is a natural bijection 1647:gives the tautological bundle γ 1050:= 1, it is the real projective 4189: 4179: 4158: 4149: 4146: 4125: 4098:is given a topology such that 4085: 4064: 3934: 3928: 3894: 3885: 3837: 3831: 3776:The tautological line bundle γ 3699: 3690: 3634: 3631: 3625: 3580: 3566: 3561: 3529: 3503: 3497: 3463: 3457: 3442: 3067: 3035: 2868: 2836: 2730: 2698: 2623: 2613: 2607: 2598: 2592: 2516: 2510: 2506: 2487: 2484: 2478: 2466: 2181: 2160: 2036: 2030: 2004: 1985: 1936: 1916: 1837: 1823:is compact, any vector bundle 1792: 1779: 1766: 1756: 1750: 1727: 1724: 1705: 1618: 1595: 1574: 1444: 1441: 1435: 1423: 1417: 1405: 1389: 1368: 1343: 1340: 1334: 1176: 1155: 1105: 1084: 1004:as a set it is the set of all 945: 924: 771:carry the vector subspaces of 758: 752: 698: 692: 315: 309: 249: 240: 1: 3760:{\displaystyle \mathbb {C} ,} 3656:the tautological line bundle 1630:{\displaystyle k\to \infty .} 1517:{\displaystyle \mathbb {C} .} 110:-dimensional vector subspace 2290:is the dual vector space of 1489:{\displaystyle \mathbb {R} } 129:{\displaystyle W\subseteq V} 455:could scarcely be avoided. 4484: 4271:Milnor & Stasheff 1974 3213:over the same base scheme 742:the dual space, points of 3164:is a closed subscheme of 2219:is the set of all pairs ( 1273:in the Grassmannian, let 400:of the projective space. 182:tautological line bundle. 3856:tautological line bundle 3315:is zero or the image of 2286:(so that the fiber over 1126:) consisting of a point 409:complex projective space 4288:Atiyah, Michael Francis 3478:algebraic vector bundle 3363:In more concise terms, 2393:homogeneous coordinates 2312:) corresponding to the 2270:a linear functional on 2227:) consisting of a line 1969:unique up to homotopy. 510:is a Grassmannian, and 176:itself. In the case of 4426:Characteristic Classes 4242: 4213: 4092: 3941: 3907:, the tensor inverse ( 3901: 3844: 3761: 3714:Serre's twisting sheaf 3706: 3647: 3470: 3400: 3342: 3305: 3236: 3207: 3154: 3087: 2960: 2778: 2737: 2650: 2546: 2435: 2368: 2260: 2231:through the origin in 2191: 2137: 2136:{\displaystyle G_{n}.} 2107: 2080: 2043: 1960: 1868: 1806: 1677: 1676:{\displaystyle G_{n}.} 1631: 1602: 1547: 1518: 1490: 1458: 1207: 1112: 1040: 998: 952: 893: 869: 843: 823: 792: 765: 736: 705: 673: 638: 611: 591: 571: 551: 531: 504: 484: 390: 361: 322: 278:Serre's twisting sheaf 259: 198:characteristic classes 170: 150: 130: 104: 84: 57: 4440:Rubei, Elena (2014), 4347:10.1002/9781118032527 4338:John Wiley & Sons 4243: 4241:{\displaystyle p_{V}} 4214: 4093: 3967:Stiefel-Whitney class 3942: 3902: 3845: 3762: 3707: 3648: 3471: 3401: 3343: 3306: 3237: 3208: 3155: 3088: 2961: 2784:. Note that we have: 2779: 2738: 2651: 2547: 2436: 2369: 2261: 2211:on a real projective 2192: 2138: 2108: 2106:{\displaystyle G_{n}} 2081: 2079:{\displaystyle G_{n}} 2044: 1961: 1869: 1807: 1678: 1632: 1603: 1548: 1546:{\displaystyle G_{n}} 1519: 1491: 1459: 1208: 1113: 1041: 999: 953: 894: 870: 844: 824: 822:{\displaystyle V^{*}} 793: 791:{\displaystyle V^{*}} 766: 737: 735:{\displaystyle V^{*}} 715:sense. That is, with 706: 674: 672:{\displaystyle V_{g}} 639: 637:{\displaystyle V_{g}} 612: 592: 572: 552: 532: 530:{\displaystyle V_{g}} 505: 485: 391: 362: 323: 260: 171: 151: 131: 105: 85: 58: 4382:, Berlin, New York: 4225: 4104: 4051: 3918: 3875: 3823: 3746: 3664: 3491: 3425: 3375: 3323: 3258: 3217: 3168: 3104: 2984: 2791: 2747: 2686: 2578: 2460: 2407: 2322: 2235: 2147: 2117: 2090: 2063: 1982: 1889: 1831: 1694: 1657: 1612: 1561: 1530: 1503: 1478: 1304: 1293:isomorphically onto 1229:is the pre-image of 1142: 1071: 1012: 970: 911: 883: 853: 833: 806: 775: 764:{\displaystyle P(V)} 746: 719: 704:{\displaystyle P(V)} 686: 656: 621: 601: 581: 561: 541: 514: 494: 474: 459:Intuitive definition 413:standard line bundle 371: 336: 283: 214: 160: 140: 114: 94: 74: 47: 3819:of line bundles on 3416:exceptional divisor 3246:are exactly those ( 3202: 2910: 2736:{\displaystyle A=k} 2026: 1746: 875:, the tautological 868:{\displaystyle n+1} 537:is the subspace of 33:tautological bundle 4422:Stasheff, James D. 4379:Algebraic Geometry 4321:Griffiths, Phillip 4273:, §2. Theorem 2.1. 4238: 4209: 4204: 4088: 3937: 3897: 3840: 3757: 3721:hyperplane divisor 3702: 3643: 3466: 3406:, where the locus 3396: 3338: 3301: 3232: 3203: 3171: 3150: 3083: 2956: 2879: 2774: 2733: 2646: 2641: 2542: 2431: 2364: 2314:hyperplane divisor 2256: 2187: 2133: 2103: 2076: 2039: 2010: 1956: 1951: 1882:determines a map 1864: 1802: 1797: 1730: 1673: 1627: 1598: 1543: 1514: 1486: 1454: 1449: 1297:, and then define 1277:be the set of all 1203: 1108: 1036: 994: 948: 889: 865: 839: 819: 800:linear functionals 788: 761: 732: 701: 669: 634: 607: 587: 567: 547: 527: 500: 480: 453:algebraic geometry 386: 357: 318: 255: 166: 146: 126: 100: 80: 53: 4451:978-3-11-031622-3 4393:978-0-387-90244-9 4374:Hartshorne, Robin 4357:978-0-471-05059-9 4305:978-0-201-09394-0 4000:→∞ is called the 3913:Serre twist sheaf 3867:, the associated 3740:ample line bundle 3594: 3460: 3311:such that either 2534: 2206:hyperplane bundle 2200:Hyperplane bundle 2054:paracompact space 903:Formal definition 892:{\displaystyle n} 842:{\displaystyle V} 610:{\displaystyle g} 590:{\displaystyle G} 570:{\displaystyle g} 557:corresponding to 550:{\displaystyle W} 503:{\displaystyle G} 483:{\displaystyle W} 428:projective bundle 274:hyperplane bundle 194:classifying space 169:{\displaystyle W} 149:{\displaystyle W} 136:, the fiber over 103:{\displaystyle k} 83:{\displaystyle V} 56:{\displaystyle k} 39:occurring over a 16:(Redirected from 4475: 4454: 4436: 4412: 4368: 4349: 4335: 4316: 4274: 4268: 4262: 4259: 4253: 4247: 4245: 4244: 4239: 4237: 4236: 4218: 4216: 4215: 4210: 4208: 4207: 4201: 4200: 4178: 4177: 4166: 4145: 4144: 4133: 4124: 4123: 4097: 4095: 4094: 4089: 4084: 4083: 4072: 4063: 4062: 4042: 4036: 4033: 4027: 4024: 4008:Grassmann bundle 3946: 3944: 3943: 3938: 3927: 3926: 3906: 3904: 3903: 3898: 3884: 3883: 3869:invertible sheaf 3849: 3847: 3846: 3841: 3830: 3766: 3764: 3763: 3758: 3753: 3711: 3709: 3708: 3703: 3689: 3688: 3687: 3686: 3681: 3674: 3673: 3652: 3650: 3649: 3644: 3624: 3623: 3622: 3621: 3616: 3609: 3608: 3595: 3593: 3592: 3591: 3579: 3578: 3565: 3560: 3559: 3541: 3540: 3528: 3527: 3526: 3525: 3520: 3513: 3512: 3475: 3473: 3472: 3467: 3462: 3461: 3453: 3441: 3405: 3403: 3402: 3397: 3395: 3394: 3383: 3347: 3345: 3344: 3339: 3337: 3336: 3331: 3310: 3308: 3307: 3302: 3300: 3299: 3294: 3288: 3287: 3278: 3277: 3266: 3241: 3239: 3238: 3233: 3231: 3230: 3225: 3212: 3210: 3209: 3204: 3201: 3190: 3189: 3188: 3183: 3176: 3159: 3157: 3156: 3151: 3149: 3148: 3139: 3138: 3126: 3125: 3116: 3115: 3092: 3090: 3089: 3084: 3082: 3078: 3074: 3066: 3065: 3047: 3046: 3034: 3033: 3032: 3031: 3026: 3019: 3018: 3006: 2965: 2963: 2962: 2957: 2955: 2954: 2953: 2948: 2941: 2940: 2931: 2930: 2919: 2909: 2898: 2897: 2896: 2891: 2884: 2875: 2871: 2867: 2866: 2848: 2847: 2835: 2834: 2833: 2832: 2827: 2820: 2819: 2807: 2783: 2781: 2780: 2775: 2761: 2760: 2755: 2742: 2740: 2739: 2734: 2729: 2728: 2710: 2709: 2655: 2653: 2652: 2647: 2645: 2644: 2638: 2637: 2551: 2549: 2548: 2543: 2535: 2532: 2509: 2440: 2438: 2437: 2432: 2427: 2426: 2421: 2373: 2371: 2370: 2365: 2363: 2362: 2357: 2348: 2347: 2336: 2310:invertible sheaf 2297:In other words, 2265: 2263: 2262: 2257: 2255: 2254: 2243: 2196: 2194: 2193: 2188: 2180: 2179: 2168: 2159: 2158: 2142: 2140: 2139: 2134: 2129: 2128: 2112: 2110: 2109: 2104: 2102: 2101: 2085: 2083: 2082: 2077: 2075: 2074: 2048: 2046: 2045: 2040: 2025: 2024: 2018: 2003: 2002: 1965: 1963: 1962: 1957: 1955: 1954: 1948: 1947: 1928: 1927: 1909: 1908: 1873: 1871: 1870: 1865: 1863: 1862: 1851: 1811: 1809: 1808: 1803: 1801: 1800: 1791: 1790: 1778: 1777: 1745: 1744: 1738: 1723: 1722: 1682: 1680: 1679: 1674: 1669: 1668: 1636: 1634: 1633: 1628: 1607: 1605: 1604: 1599: 1594: 1593: 1582: 1573: 1572: 1552: 1550: 1549: 1544: 1542: 1541: 1523: 1521: 1520: 1515: 1510: 1495: 1493: 1492: 1487: 1485: 1463: 1461: 1460: 1455: 1453: 1452: 1388: 1387: 1376: 1367: 1366: 1333: 1332: 1212: 1210: 1209: 1204: 1199: 1198: 1187: 1175: 1174: 1163: 1154: 1153: 1117: 1115: 1114: 1109: 1104: 1103: 1092: 1083: 1082: 1046:For example, if 1045: 1043: 1042: 1037: 1032: 1031: 1020: 1003: 1001: 1000: 995: 990: 989: 978: 957: 955: 954: 949: 944: 943: 932: 923: 922: 898: 896: 895: 890: 874: 872: 871: 866: 848: 846: 845: 840: 828: 826: 825: 820: 818: 817: 797: 795: 794: 789: 787: 786: 770: 768: 767: 762: 741: 739: 738: 733: 731: 730: 710: 708: 707: 702: 678: 676: 675: 670: 668: 667: 643: 641: 640: 635: 633: 632: 616: 614: 613: 608: 596: 594: 593: 588: 576: 574: 573: 568: 556: 554: 553: 548: 536: 534: 533: 528: 526: 525: 509: 507: 506: 501: 489: 487: 486: 481: 465:linear subspaces 439:canonical bundle 432:Grassmann bundle 395: 393: 392: 387: 385: 384: 379: 366: 364: 363: 358: 356: 355: 344: 327: 325: 324: 319: 308: 307: 306: 305: 300: 293: 292: 264: 262: 261: 256: 239: 238: 237: 236: 231: 224: 223: 205:invertible sheaf 189:universal bundle 178:projective space 175: 173: 172: 167: 156:is the subspace 155: 153: 152: 147: 135: 133: 132: 127: 109: 107: 106: 101: 89: 87: 86: 81: 62: 60: 59: 54: 21: 4483: 4482: 4478: 4477: 4476: 4474: 4473: 4472: 4458: 4457: 4452: 4439: 4418:Milnor, John W. 4416: 4394: 4384:Springer-Verlag 4372: 4358: 4333: 4319: 4306: 4286: 4283: 4278: 4277: 4269: 4265: 4260: 4256: 4228: 4223: 4222: 4203: 4202: 4192: 4183: 4182: 4161: 4128: 4115: 4108: 4102: 4101: 4067: 4054: 4049: 4048: 4043: 4039: 4034: 4030: 4025: 4021: 4016: 3995: 3983:Borel's theorem 3958: 3916: 3915: 3873: 3872: 3871:of sections is 3858:is a generator. 3852:infinite cyclic 3821: 3820: 3785:locally trivial 3782: 3773: 3744: 3743: 3676: 3667: 3662: 3661: 3611: 3602: 3583: 3570: 3569: 3551: 3532: 3515: 3506: 3489: 3488: 3423: 3422: 3378: 3373: 3372: 3326: 3321: 3320: 3289: 3279: 3261: 3256: 3255: 3220: 3215: 3214: 3178: 3166: 3165: 3140: 3130: 3117: 3107: 3102: 3101: 3057: 3038: 3021: 3012: 3011: 3007: 2982: 2981: 2943: 2932: 2914: 2886: 2858: 2839: 2822: 2813: 2812: 2808: 2789: 2788: 2750: 2745: 2744: 2720: 2701: 2684: 2683: 2676: 2665: 2640: 2639: 2629: 2617: 2616: 2582: 2576: 2575: 2458: 2457: 2416: 2405: 2404: 2389: 2383: 2377:given as, say, 2352: 2331: 2320: 2319: 2238: 2233: 2232: 2202: 2163: 2150: 2145: 2144: 2120: 2115: 2114: 2093: 2088: 2087: 2066: 2061: 2060: 1994: 1980: 1979: 1950: 1949: 1939: 1930: 1929: 1919: 1900: 1893: 1887: 1886: 1846: 1829: 1828: 1796: 1795: 1782: 1769: 1760: 1759: 1714: 1698: 1692: 1691: 1660: 1655: 1654: 1652: 1646: 1610: 1609: 1577: 1564: 1559: 1558: 1533: 1528: 1527: 1501: 1500: 1476: 1475: 1448: 1447: 1399: 1398: 1371: 1358: 1321: 1308: 1302: 1301: 1182: 1158: 1145: 1140: 1139: 1087: 1074: 1069: 1068: 1066: 1015: 1010: 1009: 973: 968: 967: 927: 914: 909: 908: 905: 881: 880: 851: 850: 831: 830: 809: 804: 803: 778: 773: 772: 744: 743: 722: 717: 716: 684: 683: 659: 654: 653: 624: 619: 618: 599: 598: 579: 578: 559: 558: 539: 538: 517: 512: 511: 492: 491: 472: 471: 461: 449:canonical class 437:The older term 374: 369: 368: 339: 334: 333: 295: 286: 281: 280: 226: 217: 212: 211: 158: 157: 138: 137: 112: 111: 92: 91: 72: 71: 45: 44: 23: 22: 15: 12: 11: 5: 4481: 4479: 4471: 4470: 4468:Vector bundles 4460: 4459: 4456: 4455: 4450: 4437: 4414: 4392: 4370: 4356: 4325:Harris, Joseph 4317: 4304: 4296:Addison-Wesley 4282: 4279: 4276: 4275: 4263: 4254: 4235: 4231: 4220: 4219: 4206: 4199: 4195: 4191: 4188: 4185: 4184: 4181: 4176: 4173: 4170: 4165: 4160: 4157: 4154: 4151: 4148: 4143: 4140: 4137: 4132: 4127: 4122: 4118: 4114: 4113: 4111: 4087: 4082: 4079: 4076: 4071: 4066: 4061: 4057: 4047:is open since 4037: 4028: 4018: 4017: 4015: 4012: 4011: 4010: 4005: 3991: 3985: 3980: 3974: 3972:Euler sequence 3969: 3964: 3957: 3954: 3953: 3952: 3936: 3933: 3930: 3925: 3896: 3893: 3890: 3887: 3882: 3860: 3859: 3839: 3836: 3833: 3829: 3797: 3796: 3777: 3772: 3769: 3756: 3752: 3701: 3698: 3695: 3692: 3685: 3680: 3672: 3654: 3653: 3642: 3639: 3636: 3633: 3630: 3627: 3620: 3615: 3607: 3601: 3598: 3590: 3586: 3582: 3577: 3573: 3568: 3563: 3558: 3554: 3550: 3547: 3544: 3539: 3535: 3531: 3524: 3519: 3511: 3505: 3502: 3499: 3496: 3465: 3459: 3456: 3450: 3447: 3444: 3440: 3437: 3434: 3431: 3393: 3390: 3387: 3382: 3335: 3330: 3298: 3293: 3286: 3282: 3276: 3273: 3270: 3265: 3229: 3224: 3200: 3197: 3194: 3187: 3182: 3175: 3147: 3143: 3137: 3133: 3129: 3124: 3120: 3114: 3110: 3094: 3093: 3081: 3077: 3073: 3069: 3064: 3060: 3056: 3053: 3050: 3045: 3041: 3037: 3030: 3025: 3017: 3010: 3005: 3002: 2999: 2996: 2992: 2989: 2967: 2966: 2952: 2947: 2939: 2935: 2929: 2926: 2923: 2918: 2913: 2908: 2905: 2902: 2895: 2890: 2883: 2878: 2874: 2870: 2865: 2861: 2857: 2854: 2851: 2846: 2842: 2838: 2831: 2826: 2818: 2811: 2806: 2803: 2800: 2797: 2773: 2770: 2767: 2764: 2759: 2754: 2732: 2727: 2723: 2719: 2716: 2713: 2708: 2704: 2700: 2697: 2694: 2691: 2675: 2672: 2663: 2657: 2656: 2643: 2636: 2632: 2628: 2625: 2622: 2619: 2618: 2615: 2612: 2609: 2606: 2603: 2600: 2597: 2594: 2591: 2588: 2587: 2585: 2553: 2552: 2541: 2538: 2533: on  2530: 2527: 2524: 2521: 2518: 2515: 2512: 2508: 2504: 2501: 2498: 2495: 2492: 2489: 2486: 2483: 2480: 2477: 2474: 2471: 2468: 2465: 2430: 2425: 2420: 2415: 2412: 2401:(Weil) divisor 2387: 2381: 2375: 2374: 2361: 2356: 2351: 2346: 2343: 2340: 2335: 2330: 2327: 2253: 2250: 2247: 2242: 2201: 2198: 2186: 2183: 2178: 2175: 2172: 2167: 2162: 2157: 2153: 2132: 2127: 2123: 2100: 2096: 2073: 2069: 2050: 2049: 2038: 2035: 2032: 2029: 2023: 2017: 2013: 2009: 2006: 2001: 1997: 1993: 1990: 1987: 1967: 1966: 1953: 1946: 1942: 1938: 1935: 1932: 1931: 1926: 1922: 1918: 1915: 1912: 1907: 1903: 1899: 1898: 1896: 1861: 1858: 1855: 1850: 1845: 1842: 1839: 1836: 1813: 1812: 1799: 1794: 1789: 1785: 1781: 1776: 1772: 1768: 1765: 1762: 1761: 1758: 1755: 1752: 1749: 1743: 1737: 1733: 1729: 1726: 1721: 1717: 1713: 1710: 1707: 1704: 1703: 1701: 1672: 1667: 1663: 1648: 1638: 1626: 1623: 1620: 1617: 1597: 1592: 1589: 1586: 1581: 1576: 1571: 1567: 1540: 1536: 1513: 1509: 1484: 1465: 1464: 1451: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1401: 1400: 1397: 1394: 1391: 1386: 1383: 1380: 1375: 1370: 1365: 1361: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1336: 1331: 1328: 1324: 1320: 1317: 1314: 1313: 1311: 1202: 1197: 1194: 1191: 1186: 1181: 1178: 1173: 1170: 1167: 1162: 1157: 1152: 1148: 1107: 1102: 1099: 1096: 1091: 1086: 1081: 1077: 1058: 1035: 1030: 1027: 1024: 1019: 993: 988: 985: 982: 977: 947: 942: 939: 936: 931: 926: 921: 917: 904: 901: 888: 864: 861: 858: 849:has dimension 838: 816: 812: 785: 781: 760: 757: 754: 751: 729: 725: 700: 697: 694: 691: 666: 662: 646:disjoint union 631: 627: 606: 586: 566: 546: 524: 520: 499: 479: 460: 457: 421:Bott generator 411:is called the 405:Michael Atiyah 383: 378: 354: 351: 348: 343: 317: 314: 311: 304: 299: 291: 266: 265: 254: 251: 248: 245: 242: 235: 230: 222: 165: 145: 125: 122: 119: 99: 79: 52: 24: 18:Twisting sheaf 14: 13: 10: 9: 6: 4: 3: 2: 4480: 4469: 4466: 4465: 4463: 4453: 4447: 4443: 4438: 4435: 4431: 4427: 4423: 4419: 4415: 4411: 4407: 4403: 4399: 4395: 4389: 4385: 4381: 4380: 4375: 4371: 4367: 4363: 4359: 4353: 4348: 4343: 4339: 4332: 4331: 4326: 4322: 4318: 4315: 4311: 4307: 4301: 4297: 4293: 4289: 4285: 4284: 4280: 4272: 4267: 4264: 4258: 4255: 4251: 4233: 4229: 4197: 4193: 4186: 4174: 4171: 4168: 4155: 4152: 4141: 4138: 4135: 4120: 4116: 4109: 4100: 4099: 4080: 4077: 4074: 4059: 4055: 4046: 4041: 4038: 4032: 4029: 4023: 4020: 4013: 4009: 4006: 4003: 4002:Thom spectrum 3999: 3994: 3989: 3986: 3984: 3981: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3959: 3955: 3950: 3931: 3914: 3910: 3891: 3888: 3870: 3866: 3862: 3861: 3857: 3853: 3834: 3818: 3814: 3813: 3812: 3810: 3806: 3802: 3794: 3790: 3786: 3781: 3775: 3774: 3770: 3768: 3754: 3741: 3737: 3733: 3729: 3725: 3722: 3717: 3715: 3696: 3693: 3683: 3659: 3640: 3637: 3628: 3618: 3599: 3596: 3588: 3584: 3575: 3571: 3556: 3552: 3548: 3545: 3542: 3537: 3533: 3522: 3500: 3494: 3487: 3486: 3485: 3483: 3479: 3454: 3448: 3445: 3419: 3417: 3413: 3409: 3391: 3388: 3385: 3370: 3366: 3361: 3359: 3355: 3351: 3333: 3318: 3314: 3296: 3284: 3280: 3274: 3271: 3268: 3253: 3249: 3245: 3227: 3198: 3195: 3192: 3185: 3163: 3145: 3141: 3135: 3131: 3127: 3122: 3118: 3112: 3108: 3099: 3079: 3075: 3071: 3062: 3058: 3054: 3051: 3048: 3043: 3039: 3028: 3008: 2990: 2987: 2980: 2979: 2978: 2976: 2975:relative Spec 2972: 2950: 2937: 2933: 2927: 2924: 2921: 2911: 2906: 2903: 2900: 2893: 2876: 2872: 2863: 2859: 2855: 2852: 2849: 2844: 2840: 2829: 2809: 2787: 2786: 2785: 2771: 2768: 2765: 2762: 2757: 2725: 2721: 2717: 2714: 2711: 2706: 2702: 2695: 2692: 2689: 2681: 2673: 2671: 2669: 2662: 2634: 2630: 2626: 2620: 2610: 2604: 2601: 2595: 2589: 2583: 2574: 2573: 2572: 2570: 2566: 2562: 2558: 2536: 2528: 2525: 2522: 2519: 2513: 2502: 2499: 2496: 2490: 2481: 2475: 2472: 2469: 2456: 2455: 2454: 2452: 2448: 2444: 2428: 2423: 2413: 2410: 2402: 2398: 2394: 2390: 2380: 2359: 2349: 2344: 2341: 2338: 2328: 2325: 2318: 2317: 2316: 2315: 2311: 2306: 2304: 2300: 2295: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2251: 2248: 2245: 2230: 2226: 2222: 2218: 2214: 2210: 2207: 2199: 2197: 2184: 2176: 2173: 2170: 2155: 2151: 2130: 2125: 2121: 2098: 2094: 2071: 2067: 2058: 2055: 2033: 2027: 2015: 2011: 2007: 1999: 1995: 1991: 1988: 1978: 1977: 1976: 1974: 1970: 1944: 1940: 1933: 1924: 1920: 1913: 1910: 1905: 1901: 1894: 1885: 1884: 1883: 1881: 1877: 1859: 1856: 1853: 1843: 1840: 1834: 1826: 1822: 1818: 1787: 1783: 1774: 1770: 1763: 1753: 1747: 1735: 1731: 1719: 1715: 1711: 1708: 1699: 1690: 1689: 1688: 1686: 1670: 1665: 1661: 1651: 1645: 1641: 1624: 1615: 1590: 1587: 1584: 1569: 1565: 1556: 1538: 1534: 1524: 1511: 1499: 1498:complex field 1472: 1470: 1438: 1432: 1429: 1426: 1420: 1414: 1411: 1408: 1402: 1395: 1392: 1384: 1381: 1378: 1363: 1359: 1355: 1352: 1349: 1346: 1337: 1329: 1326: 1322: 1318: 1315: 1309: 1300: 1299: 1298: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1200: 1195: 1192: 1189: 1179: 1171: 1168: 1165: 1150: 1146: 1137: 1133: 1129: 1125: 1121: 1100: 1097: 1094: 1079: 1075: 1065: 1061: 1055: 1053: 1049: 1033: 1028: 1025: 1022: 1007: 991: 986: 983: 980: 965: 961: 940: 937: 934: 919: 915: 902: 900: 886: 878: 862: 859: 856: 836: 814: 810: 801: 783: 779: 755: 749: 727: 723: 714: 695: 689: 680: 664: 660: 651: 647: 629: 625: 604: 584: 564: 544: 522: 518: 497: 477: 470: 466: 458: 456: 454: 450: 446: 445: 440: 435: 433: 429: 424: 422: 418: 414: 410: 406: 401: 399: 381: 352: 349: 346: 331: 312: 302: 279: 275: 271: 252: 246: 243: 233: 210: 209: 208: 206: 201: 199: 195: 191: 190: 184: 183: 179: 163: 143: 123: 120: 117: 97: 77: 69: 66: 50: 42: 38: 37:vector bundle 34: 30: 19: 4441: 4425: 4377: 4329: 4291: 4266: 4257: 4249: 4044: 4040: 4031: 4022: 3997: 3992: 3908: 3817:Picard group 3809:Möbius strip 3800: 3798: 3792: 3779: 3735: 3728:linear forms 3723: 3718: 3657: 3655: 3481: 3421:In general, 3420: 3411: 3407: 3364: 3362: 3357: 3353: 3349: 3316: 3312: 3251: 3247: 3243: 3161: 3097: 3095: 2977:. Now, put: 2970: 2968: 2679: 2677: 2667: 2660: 2658: 2568: 2564: 2560: 2556: 2554: 2450: 2446: 2442: 2396: 2385: 2378: 2376: 2313: 2307: 2298: 2296: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2228: 2224: 2220: 2216: 2212: 2208: 2205: 2203: 2056: 2051: 1972: 1971: 1968: 1879: 1875: 1824: 1820: 1816: 1814: 1684: 1649: 1643: 1639: 1555:direct limit 1525: 1473: 1468: 1466: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1135: 1131: 1127: 1123: 1119: 1063: 1059: 1056: 1051: 1047: 1005: 963: 960:Grassmannian 906: 681: 469:vector space 462: 442: 438: 436: 425: 412: 402: 398:Picard group 273: 267: 202: 187: 185: 181: 41:Grassmannian 32: 26: 3977:Chern class 3962:Hopf bundle 3865:line bundle 3805:total space 3732:Chern class 2571:, we have: 2303:dual bundle 877:line bundle 650:total space 417:Hopf bundle 65:dimensional 29:mathematics 4014:References 3988:Thom space 3854:, and the 2384:= 0, when 713:dual space 4190:↦ 4156:⁡ 4150:→ 3889:− 3694:− 3635:→ 3600:⁡ 3581:↦ 3567:⟶ 3546:… 3504:→ 3498:→ 3458:ˇ 3449:⁡ 3281:× 3128:− 3052:… 2934:× 2853:… 2769:⁡ 2715:… 2624:↦ 2602:≃ 2563:. Taking 2526:≥ 2500:∈ 2464:Γ 2350:⊂ 2342:− 2028:⁡ 1937:↦ 1917:→ 1874:for some 1844:× 1838:↪ 1784:γ 1775:∗ 1767:↦ 1748:⁡ 1728:→ 1622:∞ 1619:→ 1496:with the 1403:ϕ 1393:× 1356:⊆ 1350:× 1344:→ 1327:− 1323:π 1316:ϕ 1180:× 815:∗ 784:∗ 728:∗ 444:canonical 350:− 244:− 121:⊆ 68:subspaces 4462:Category 4424:(1974), 4410:13348052 4376:(1977), 4327:(1994), 4292:K-theory 4290:(1989), 3956:See also 3787:but not 3352:. Thus, 2391:are the 2059:. Since 2052:for any 1054:-space. 4434:0440554 4402:0463157 4366:1288523 4314:1043170 4281:Sources 3949:divisor 3807:is the 3789:trivial 3742:. Over 3476:is the 3414:is the 3410:= 0 in 3369:blow-up 3367:is the 3160:. Then 2301:is the 1878:and so 1553:is the 958:be the 419:. (cf. 330:divisor 272:of the 4448:  4432:  4408:  4400:  4390:  4364:  4354:  4312:  4302:  4221:where 3791:, for 3730:. Its 3096:where 2969:where 2659:where 2567:to be 2555:where 1973:Remark 31:, the 4334:(PDF) 3771:Facts 3254:) of 2449:) on 2399:is a 1289:maps 1285:onto 1257:) = ( 1225:. If 1067:over 829:. If 490:. If 207:) is 35:is a 4446:ISBN 4406:OCLC 4388:ISBN 4352:ISBN 4300:ISBN 3815:The 3783:is 3734:is − 2971:Spec 2766:Proj 2743:and 2453:by 2282:) = 2266:and 2204:The 2012:Vect 1732:Vect 1245:) + 1221:) = 907:Let 270:dual 268:the 4342:doi 4153:End 3996:as 3850:is 3778:1, 3712:of 3597:Sym 3446:Sym 3348:is 3319:in 2973:is 2403:on 1653:of 1608:as 1557:of 1134:in 962:of 802:on 577:in 451:in 423:.) 403:In 367:in 276:or 70:of 27:In 4464:: 4430:MR 4420:; 4404:, 4398:MR 4396:, 4386:, 4362:MR 4360:, 4350:, 4340:, 4323:; 4310:MR 4308:, 4298:, 4004:.) 3909:ie 3250:, 2278:, 2223:, 1642:, 1471:. 1267:bw 1265:+ 1263:av 1261:, 1253:, 1241:, 1217:, 1122:, 1062:, 899:. 434:. 332:) 200:. 4413:. 4369:. 4344:: 4250:V 4234:V 4230:p 4198:V 4194:p 4187:V 4180:) 4175:k 4172:+ 4169:n 4164:R 4159:( 4147:) 4142:k 4139:+ 4136:n 4131:R 4126:( 4121:n 4117:G 4110:{ 4086:) 4081:k 4078:+ 4075:n 4070:R 4065:( 4060:n 4056:G 4045:U 3998:n 3993:n 3935:) 3932:1 3929:( 3924:O 3895:) 3892:1 3886:( 3881:O 3838:) 3835:V 3832:( 3828:P 3801:k 3793:k 3780:k 3755:, 3751:C 3736:H 3724:H 3700:) 3697:1 3691:( 3684:n 3679:P 3671:O 3658:L 3641:, 3638:0 3632:) 3629:1 3626:( 3619:n 3614:P 3606:O 3589:i 3585:y 3576:i 3572:x 3562:] 3557:n 3553:x 3549:, 3543:, 3538:0 3534:x 3530:[ 3523:n 3518:P 3510:O 3501:I 3495:0 3482:E 3464:) 3455:E 3443:( 3439:c 3436:e 3433:p 3430:S 3412:L 3408:x 3392:1 3389:+ 3386:n 3381:A 3365:L 3358:k 3354:L 3350:y 3334:n 3329:P 3317:x 3313:x 3297:n 3292:P 3285:k 3275:1 3272:+ 3269:n 3264:A 3252:y 3248:x 3244:L 3228:n 3223:P 3199:1 3196:+ 3193:n 3186:n 3181:P 3174:A 3162:L 3146:i 3142:y 3136:j 3132:x 3123:j 3119:y 3113:i 3109:x 3098:I 3080:) 3076:I 3072:/ 3068:] 3063:n 3059:x 3055:, 3049:, 3044:0 3040:x 3036:[ 3029:n 3024:P 3016:O 3009:( 3004:c 3001:e 2998:p 2995:S 2991:= 2988:L 2951:n 2946:P 2938:k 2928:1 2925:+ 2922:n 2917:A 2912:= 2907:1 2904:+ 2901:n 2894:n 2889:P 2882:A 2877:= 2873:) 2869:] 2864:n 2860:x 2856:, 2850:, 2845:0 2841:x 2837:[ 2830:n 2825:P 2817:O 2810:( 2805:c 2802:e 2799:p 2796:S 2772:A 2763:= 2758:n 2753:P 2731:] 2726:n 2722:y 2718:, 2712:, 2707:0 2703:y 2699:[ 2696:k 2693:= 2690:A 2680:k 2668:O 2664:0 2661:x 2635:0 2631:x 2627:f 2621:f 2614:) 2611:1 2608:( 2605:O 2599:) 2596:H 2593:( 2590:O 2584:{ 2569:H 2565:D 2561:X 2557:K 2540:} 2537:U 2529:0 2523:D 2520:+ 2517:) 2514:f 2511:( 2507:| 2503:K 2497:f 2494:{ 2491:= 2488:) 2485:) 2482:D 2479:( 2476:O 2473:, 2470:U 2467:( 2451:X 2447:D 2445:( 2443:O 2429:, 2424:n 2419:P 2414:= 2411:X 2397:D 2388:i 2386:x 2382:0 2379:x 2360:n 2355:P 2345:1 2339:n 2334:P 2329:= 2326:H 2299:H 2292:L 2288:L 2284:L 2280:f 2276:L 2272:L 2268:f 2252:1 2249:+ 2246:k 2241:R 2229:L 2225:f 2221:L 2217:H 2213:k 2209:H 2185:. 2182:) 2177:k 2174:+ 2171:n 2166:R 2161:( 2156:n 2152:G 2131:. 2126:n 2122:G 2099:n 2095:G 2072:n 2068:G 2057:X 2037:) 2034:X 2031:( 2022:R 2016:n 2008:= 2005:] 2000:n 1996:G 1992:, 1989:X 1986:[ 1945:x 1941:E 1934:x 1925:n 1921:G 1914:X 1911:: 1906:E 1902:f 1895:{ 1880:E 1876:k 1860:k 1857:+ 1854:n 1849:R 1841:X 1835:E 1825:E 1821:X 1817:n 1793:) 1788:n 1780:( 1771:f 1764:f 1757:) 1754:X 1751:( 1742:R 1736:n 1725:] 1720:n 1716:G 1712:, 1709:X 1706:[ 1700:{ 1685:X 1671:. 1666:n 1662:G 1650:n 1644:k 1640:n 1625:. 1616:k 1596:) 1591:k 1588:+ 1585:n 1580:R 1575:( 1570:n 1566:G 1539:n 1535:G 1512:. 1508:C 1483:R 1469:n 1445:) 1442:) 1439:v 1436:( 1433:p 1430:, 1427:V 1424:( 1421:= 1418:) 1415:v 1412:, 1409:V 1406:( 1396:X 1390:) 1385:k 1382:+ 1379:n 1374:R 1369:( 1364:n 1360:G 1353:X 1347:U 1341:) 1338:U 1335:( 1330:1 1319:: 1310:{ 1295:X 1291:V 1287:X 1283:p 1279:V 1275:U 1271:X 1259:V 1255:w 1251:V 1249:( 1247:b 1243:v 1239:V 1237:( 1235:a 1231:V 1227:F 1223:V 1219:v 1215:V 1201:. 1196:k 1193:+ 1190:n 1185:R 1177:) 1172:k 1169:+ 1166:n 1161:R 1156:( 1151:n 1147:G 1136:V 1132:v 1128:V 1124:v 1120:V 1106:) 1101:k 1098:+ 1095:n 1090:R 1085:( 1080:n 1076:G 1064:k 1060:n 1052:k 1048:n 1034:. 1029:k 1026:+ 1023:n 1018:R 1006:n 992:; 987:k 984:+ 981:n 976:R 964:n 946:) 941:k 938:+ 935:n 930:R 925:( 920:n 916:G 887:n 863:1 860:+ 857:n 837:V 811:V 780:V 759:) 756:V 753:( 750:P 724:V 699:) 696:V 693:( 690:P 665:g 661:V 630:g 626:V 605:g 585:G 565:g 545:W 523:g 519:V 498:G 478:W 382:n 377:P 353:1 347:n 342:P 316:) 313:1 310:( 303:n 298:P 290:O 253:, 250:) 247:1 241:( 234:n 229:P 221:O 164:W 144:W 124:V 118:W 98:k 78:V 63:- 51:k 20:)

Index

Twisting sheaf
mathematics
vector bundle
Grassmannian
dimensional
subspaces
projective space
universal bundle
classifying space
characteristic classes
invertible sheaf
dual
Serre's twisting sheaf
divisor
Picard group
Michael Atiyah
complex projective space
Hopf bundle
Bott generator
projective bundle
Grassmann bundle
canonical
canonical class
algebraic geometry
linear subspaces
vector space
disjoint union
total space
dual space
linear functionals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.