Knowledge

Twistronics

Source 📝

20: 1625: 180: 278:
effects of the alignment between the two layers appears to create "puddle" regions which trap electrons into a stable lattice. Because this stable lattice consists only of electrons, it is the first non-atomic lattice observed and suggests new opportunities to confine, control, measure, and transport electrons.
162:
Publication of these discoveries has generated a host of theoretical papers seeking to understand and explain the phenomena as well as numerous experiments using varying numbers of layers, twist angles and other materials. Subsequent works showed that electronic properties of the stack can also be
277:
Between 2-D layers for bismuth selenide and a dichalcogenide, researchers at the Northeastern University in Boston, discovered that at a specific degrees of twist a new lattice layer, consisting of only pure electrons, would develop between the two 2-D elemental layers. The quantum and physical
1073:
Cao, Yuan; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Ashoori, Ray C.; Jarillo-Herrero, Pablo (5 April 2018). "Correlated insulator behaviour at half-filling in magic-angle
150:
between two graphene sheets radically changes. In 2017, the research group of Efthimios Kaxiras at Harvard University used detailed quantum mechanics calculations to reduce uncertainty in the twist angle between two graphene layers that can induce extraordinary behavior of electrons in this
159:, found that the magic angle resulted in the unusual electrical properties that MacDonald and Bistritzer had predicted. At 1.1 degrees rotation at sufficiently low temperatures, electrons move from one layer to the other, creating a lattice and the phenomenon of superconductivity. 228:, at a temperature of 1.7 K (−271.45 °C; −456.61 °F). They created two bilayer devices that acted as an insulator instead of a conductor without a magnetic field. Increasing the field strength turned the second device into a superconductor. 133:
in Chile found that for a certain angle close to 1 degree the band of the electronic structure of twisted bilayer graphene became completely flat, and because of that theoretical property, they suggested that collective behavior might be possible. In 2011
108:
hypothesized that pressing two misaligned graphene sheets together might yield new electrical properties, and separately proposed that graphene might offer a route to superconductivity, but he did not combine the two ideas. In 2010 researchers in
551:
Tritsaris, Georgios A.; Carr, Stephen; Zhu, Ziyan; Xie, Yiqi; Torrisi, Steven B.; Tang, Jing; Mattheakis, Marios; Larson, Daniel; Kaxiras, Efthimios (2020-01-30). "Electronic structure calculations of twisted multi-layer graphene superlattices".
1011:
Mesple, Florie; Missaoui, Ahmed; Cea, Tommaso; Huder, Loic; Guinea, Francisco; Trambly de Laissardière, Guy; Chapelier, Claude; Renard, Vincent T. (17 September 2021). "Heterostrain Determines Flat Bands in Magic-Angle Twisted Graphene Layers".
356:
Carr, Stephen; Massatt, Daniel; Fang, Shiang; Cazeaux, Paul; Luskin, Mitchell; Kaxiras, Efthimios (17 February 2017). "Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle".
286:
A three layer construction, consisting of two layers of graphene with a 2-D layer of boron nitride, has been shown to exhibit superconductivity, insulation and ferromagnetism. In 2021, this was achieved on a single graphene flake.
413:
Jarillo-Herrero, Pablo; Kaxiras, Efthimios; Taniguchi, Takashi; Watanabe, Kenji; Fang, Shiang; Fatemi, Valla; Cao, Yuan (2018-03-06). "Magic-angle graphene superlattices: a new platform for unconventional superconductivity".
808:
Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo (5 March 2018). "Unconventional superconductivity in magic-angle graphene superlattices".
629:
Li, Guohong; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. (February 2010). "Observation of Van Hove singularities in twisted graphene layers".
674:
Suárez Morell, E.; Correa, J. D.; Vargas, P.; Pacheco, M.; Barticevic, Z. (13 September 2010). "Flat bands in slightly twisted bilayer graphene: Tight-binding calculations".
183:
A twistronics animation. Here, we have 2 overlaid sheets, one of which rotates a total of 90 degrees. We see that as the angle of rotation changes, so does the periodicity.
1379: 743: 231:
A further advance in twistronics is the discovery of a method of turning the superconductive paths on and off by application of a small voltage differential.
130: 209: 1136: 1479: 201: 156: 146:
using a simple theoretical model found that for the previously found "magic angle" the amount of energy a free electron would require to
1568: 1372: 70:, that depends sensitively on the angle between the layers. The term was first introduced by the research group of Efthimios Kaxiras at 101: 525: 269:. Further spectroscopic studies of twisted bilayer graphene revealed strong electron-electron correlations at the magic angle. 1365: 1629: 1595: 1434: 139: 901: 1656: 1600: 1536: 1444: 925: 125:
and demonstrating that the twist angle has a strong effect on the band structure by measuring greatly renormalized
1337: 873: 1583: 1543: 327: 55: 605: 1160: 1548: 1521: 318: 254: 1211: 1558: 1553: 1526: 118: 105: 1484: 1429: 1388: 258: 193: 152: 89: 77: 19: 1531: 1494: 1474: 1419: 1250: 1186: 1093: 1031: 973: 830: 762: 693: 648: 571: 483: 376: 239:
Experiments have also been done using combinations of graphene layers with other materials that form
126: 299:– a method for altering the properties of two-dimensional materials by introducing controlled stress 1588: 1563: 1287: 244: 1605: 1117: 1083: 1055: 1021: 963: 854: 820: 752: 719: 683: 638: 587: 561: 449: 423: 392: 366: 205: 135: 114: 81: 71: 1651: 1268: 1109: 1047: 846: 790: 501: 441: 248: 217: 147: 32: 1311: 1573: 1489: 1258: 1241: 1101: 1039: 991: 981: 838: 811: 780: 770: 709: 701: 656: 579: 491: 433: 384: 266: 240: 225: 221: 122: 59: 24: 1414: 530: 314: 143: 85: 67: 16:
Study of how the angle between layers of 2-D materials changes their electrical properties
1161:"Twisted physics: Magic angle graphene produces switchable patterns of superconductivity" 1254: 1097: 1035: 977: 834: 766: 697: 652: 575: 487: 380: 1578: 878: 785: 738: 306: 262: 63: 1645: 1610: 1059: 723: 591: 331: 323: 296: 168: 396: 1514: 1121: 1043: 858: 453: 164: 224:
where one layer was rotated by an angle of 1.1° relative to the other, forming a
1509: 1504: 1439: 986: 951: 302: 1263: 1236: 705: 583: 496: 471: 388: 1469: 1409: 110: 1499: 1424: 775: 1272: 1113: 1051: 850: 794: 505: 445: 62:
have been shown to have vastly different electronic behavior, ranging from
1338:"Magic angle makes graphene simultaneously superconducting and insulating" 606:"Allan MacDonald Wins Wolf Prize in Physics | College of Natural Sciences" 179: 996: 310: 261:
effects were produced at a 1.17° angle, which could be used to implement
243:
in the form of atomically thin sheets that are held together by the weak
197: 92:
for their theoretical and experimental work on twisted bilayer graphene.
28: 1357: 1105: 842: 714: 437: 213: 1137:"Graphene superlattices could be used for superconducting transistors" 874:"New twist on graphene gets materials scientists hot under the collar" 660: 36: 926:"Experiments explore the mysteries of 'magic' angle superconductors" 1288:"Physicists may have accidentally discovered a new state of matter" 1088: 1026: 968: 825: 566: 428: 371: 192:
The theoretical predictions of superconductivity were confirmed by
167:
especially near the magic angle allowing potential applications in
757: 688: 643: 178: 1361: 1212:"Physicists discover new quantum trick for graphene: magnetism" 54:) is the study of how the angle (the twist) between layers of 74:
in their theoretical treatment of graphene superlattices.
58:
can change their electrical properties. Materials such as
121:
discovered twisted bilayer graphene through its defining
1187:"1 + 1 does not equal 2 for graphene-like 2-D materials" 737:
Bistritzer, Rafi; MacDonald, Allan H. (26 July 2011).
526:"How Twisted Graphene Became the Big Thing in Physics" 950:
Bi, Zhen; Yuan, Noah F. Q.; Fu, Liang (2019-07-31).
1462: 1402: 1395: 902:"What's the Magic Behind Graphene's 'Magic' Angle?" 472:"How 'magic angle' graphene is stirring up physics" 744:Proceedings of the National Academy of Sciences 253:in July 2019 found that with the addition of a 739:"Moiré bands in twisted double-layer graphene" 326:– the study of local extrema, valleys, in the 1373: 1237:"Spectroscopy of graphene with a magic twist" 8: 27:created by overlapping two skewed sheets of 1624: 1399: 1380: 1366: 1358: 1262: 1185:University of Sheffield (March 6, 2019). 1087: 1025: 995: 985: 967: 824: 784: 774: 756: 713: 687: 642: 565: 495: 427: 370: 131:Federico Santa María Technical University 1312:"A talented 2-D material gets a new gig" 210:National Institute for Materials Science 18: 343: 1480:Differential technological development 216:, Japan. In 2018 they verified that 1286:Castañón, Laura (February 27, 2020). 247:. For example, a study published in 157:Massachusetts Institute of Technology 7: 519: 517: 515: 465: 463: 408: 406: 351: 349: 347: 257:between two graphene sheets, unique 1569:Future-oriented technology analysis 1235:Scheurer, Mathias S. (2019-07-31). 872:Chang, Kenneth (30 October 2019). 14: 900:Freedman, David H. (2019-05-28). 524:Freedman, David H. (2019-04-30). 151:two-dimensional system. In 2018, 1623: 952:"Designing flat bands by strain" 470:Gibney, Elizabeth (2019-01-02). 129:. Also in 2010 researchers from 102:National University of Singapore 1336:Irving, Michael (2021-05-06). 1044:10.1103/PhysRevLett.127.126405 188:Superconduction and insulation 1: 1596:Technology in science fiction 1435:Nanoelectromechanical systems 305:– the study of the intrinsic 140:University of Texas at Austin 987:10.1103/PhysRevB.100.035448 1673: 1601:Technology readiness level 1537:Technological unemployment 1445:Thermal copper pillar bump 1264:10.1038/d41586-019-02285-1 1135:Wang, Brian (2018-03-07). 706:10.1103/PhysRevB.82.121407 497:10.1038/d41586-018-07848-2 389:10.1103/PhysRevB.95.075420 1619: 1584:Technological singularity 1544:Technological convergence 1074:graphene superlattices". 328:electronic band structure 56:two-dimensional materials 1210:Than, Ker (2019-07-26). 584:10.1088/2053-1583/ab8f62 155:, an experimentalist at 1549:Technological evolution 1522:Exploratory engineering 1014:Physical Review Letters 776:10.1073/pnas.1108174108 1559:Technology forecasting 1554:Technological paradigm 1527:Proactionary principle 184: 163:strongly dependent on 127:van Hove singularities 119:Piscataway, New Jersey 106:Antonio H. Castro Neto 88:were awarded the 2020 40: 1485:Disruptive innovation 1430:Molecular electronics 1389:Emerging technologies 259:orbital ferromagnetic 255:boron nitride lattice 194:Pablo Jarillo-Herrero 182: 153:Pablo Jarillo-Herrero 90:Wolf Prize in Physics 78:Pablo Jarillo-Herrero 22: 1532:Technological change 1475:Collingridge dilemma 1420:Flexible electronics 204:and colleagues from 1589:Technology scouting 1564:Accelerating change 1255:2019Natur.572...40S 1106:10.1038/nature26154 1098:2018Natur.556...80C 1036:2021PhRvL.127l6405M 978:2019PhRvB.100c5448B 843:10.1038/nature26160 835:2018Natur.556...43C 767:2011PNAS..10812233B 751:(30): 12233–12237. 698:2010PhRvB..82l1407S 653:2010NatPh...6..109L 576:2020TDM.....7c5028T 488:2019Natur.565...15G 438:10.1038/nature26160 381:2017PhRvB..95g5420C 319:solid-state devices 313:and its associated 245:Van der Waals force 1606:Technology roadmap 1167:. October 30, 2019 206:Harvard University 185: 136:Allan H. MacDonald 115:Rutgers University 82:Allan H. MacDonald 72:Harvard University 41: 1657:Superconductivity 1639: 1638: 1458: 1457: 1141:NextBigFuture.com 956:Physical Review B 676:Physical Review B 661:10.1038/nphys1463 359:Physical Review B 273:Electron puddling 267:quantum computers 218:superconductivity 113:'s laboratory at 33:hexagonal lattice 1664: 1627: 1626: 1574:Horizon scanning 1490:Ephemeralization 1400: 1382: 1375: 1368: 1359: 1352: 1351: 1349: 1348: 1333: 1327: 1326: 1324: 1323: 1308: 1302: 1301: 1299: 1298: 1283: 1277: 1276: 1266: 1232: 1226: 1225: 1223: 1222: 1207: 1201: 1200: 1198: 1197: 1182: 1176: 1175: 1173: 1172: 1157: 1151: 1150: 1148: 1147: 1132: 1126: 1125: 1091: 1070: 1064: 1063: 1029: 1008: 1002: 1001: 999: 989: 971: 947: 941: 940: 938: 937: 922: 916: 915: 913: 912: 897: 891: 890: 888: 886: 869: 863: 862: 828: 805: 799: 798: 788: 778: 760: 734: 728: 727: 717: 691: 671: 665: 664: 646: 626: 620: 619: 617: 616: 602: 596: 595: 569: 548: 542: 541: 539: 538: 521: 510: 509: 499: 467: 458: 457: 431: 410: 401: 400: 374: 353: 241:heterostructures 235:Heterostructures 222:bilayer graphene 196:and his student 60:bilayer graphene 1672: 1671: 1667: 1666: 1665: 1663: 1662: 1661: 1642: 1641: 1640: 1635: 1615: 1454: 1415:Electronic nose 1391: 1386: 1356: 1355: 1346: 1344: 1335: 1334: 1330: 1321: 1319: 1318:. March 4, 2020 1310: 1309: 1305: 1296: 1294: 1285: 1284: 1280: 1249:(7767): 40–41. 1234: 1233: 1229: 1220: 1218: 1209: 1208: 1204: 1195: 1193: 1184: 1183: 1179: 1170: 1168: 1159: 1158: 1154: 1145: 1143: 1134: 1133: 1129: 1082:(7699): 80–84. 1072: 1071: 1067: 1010: 1009: 1005: 949: 948: 944: 935: 933: 924: 923: 919: 910: 908: 906:Quanta Magazine 899: 898: 894: 884: 882: 871: 870: 866: 819:(7699): 43–50. 807: 806: 802: 736: 735: 731: 673: 672: 668: 628: 627: 623: 614: 612: 604: 603: 599: 550: 549: 545: 536: 534: 531:Quanta Magazine 523: 522: 513: 482:(7737): 15–18. 469: 468: 461: 422:(7699): 43–50. 412: 411: 404: 355: 354: 345: 340: 315:magnetic moment 293: 284: 275: 237: 190: 177: 175:Characteristics 144:Rafi Bistritzer 98: 86:Rafi Bistritzer 68:superconductive 17: 12: 11: 5: 1670: 1668: 1660: 1659: 1654: 1644: 1643: 1637: 1636: 1634: 1633: 1620: 1617: 1616: 1614: 1613: 1608: 1603: 1598: 1593: 1592: 1591: 1586: 1581: 1576: 1571: 1566: 1556: 1551: 1546: 1541: 1540: 1539: 1529: 1524: 1519: 1518: 1517: 1512: 1507: 1502: 1492: 1487: 1482: 1477: 1472: 1466: 1464: 1460: 1459: 1456: 1455: 1453: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1406: 1404: 1397: 1393: 1392: 1387: 1385: 1384: 1377: 1370: 1362: 1354: 1353: 1328: 1303: 1278: 1227: 1202: 1177: 1152: 1127: 1065: 1020:(12): 126405. 1003: 942: 917: 892: 879:New York Times 864: 800: 729: 682:(12): 121407. 666: 637:(2): 109–113. 631:Nature Physics 621: 610:cns.utexas.edu 597: 543: 511: 459: 402: 342: 341: 339: 336: 335: 334: 332:semiconductors 321: 300: 292: 289: 283: 282:Ferromagnetism 280: 274: 271: 236: 233: 189: 186: 176: 173: 97: 94: 64:non-conductive 15: 13: 10: 9: 6: 4: 3: 2: 1669: 1658: 1655: 1653: 1650: 1649: 1647: 1632: 1631: 1622: 1621: 1618: 1612: 1611:Transhumanism 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1561: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1538: 1535: 1534: 1533: 1530: 1528: 1525: 1523: 1520: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1497: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1467: 1465: 1461: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1407: 1405: 1401: 1398: 1394: 1390: 1383: 1378: 1376: 1371: 1369: 1364: 1363: 1360: 1343: 1339: 1332: 1329: 1317: 1313: 1307: 1304: 1293: 1289: 1282: 1279: 1274: 1270: 1265: 1260: 1256: 1252: 1248: 1244: 1243: 1238: 1231: 1228: 1217: 1213: 1206: 1203: 1192: 1188: 1181: 1178: 1166: 1162: 1156: 1153: 1142: 1138: 1131: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1090: 1085: 1081: 1077: 1069: 1066: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1028: 1023: 1019: 1015: 1007: 1004: 998: 997:1721.1/135558 993: 988: 983: 979: 975: 970: 965: 962:(3): 035448. 961: 957: 953: 946: 943: 931: 927: 921: 918: 907: 903: 896: 893: 881: 880: 875: 868: 865: 860: 856: 852: 848: 844: 840: 836: 832: 827: 822: 818: 814: 813: 804: 801: 796: 792: 787: 782: 777: 772: 768: 764: 759: 754: 750: 746: 745: 740: 733: 730: 725: 721: 716: 711: 707: 703: 699: 695: 690: 685: 681: 677: 670: 667: 662: 658: 654: 650: 645: 640: 636: 632: 625: 622: 611: 607: 601: 598: 593: 589: 585: 581: 577: 573: 568: 563: 560:(3): 035028. 559: 555: 547: 544: 533: 532: 527: 520: 518: 516: 512: 507: 503: 498: 493: 489: 485: 481: 477: 473: 466: 464: 460: 455: 451: 447: 443: 439: 435: 430: 425: 421: 417: 409: 407: 403: 398: 394: 390: 386: 382: 378: 373: 368: 365:(7): 075420. 364: 360: 352: 350: 348: 344: 337: 333: 329: 325: 324:Valleytronics 322: 320: 316: 312: 308: 304: 301: 298: 297:Straintronics 295: 294: 290: 288: 281: 279: 272: 270: 268: 264: 260: 256: 252: 251: 246: 242: 234: 232: 229: 227: 226:moiré pattern 223: 219: 215: 211: 207: 203: 199: 195: 187: 181: 174: 172: 170: 169:straintronics 166: 160: 158: 154: 149: 145: 141: 137: 132: 128: 124: 123:moiré pattern 120: 116: 112: 107: 103: 95: 93: 91: 87: 83: 79: 75: 73: 69: 65: 61: 57: 53: 49: 45: 38: 34: 30: 26: 25:moiré pattern 23:Atomic scale 21: 1628: 1515:Robot ethics 1449: 1345:. Retrieved 1341: 1331: 1320:. Retrieved 1315: 1306: 1295:. Retrieved 1291: 1281: 1246: 1240: 1230: 1219:. Retrieved 1215: 1205: 1194:. Retrieved 1190: 1180: 1169:. Retrieved 1164: 1155: 1144:. Retrieved 1140: 1130: 1079: 1075: 1068: 1017: 1013: 1006: 959: 955: 945: 934:. Retrieved 932:. 2019-07-31 929: 920: 909:. Retrieved 905: 895: 883:. Retrieved 877: 867: 816: 810: 803: 748: 742: 732: 715:10533/144840 679: 675: 669: 634: 630: 624: 613:. Retrieved 609: 600: 557: 554:2D Materials 553: 546: 535:. Retrieved 529: 479: 475: 419: 415: 362: 358: 285: 276: 249: 238: 230: 191: 165:heterostrain 161: 99: 76: 51: 47: 43: 42: 35:composed of 1579:Moore's law 1510:Neuroethics 1505:Cyberethics 1450:Twistronics 1440:Spintronics 1403:Electronics 303:Spintronics 220:existed in 52:electronics 44:Twistronics 1646:Categories 1470:Automation 1410:E-textiles 1347:2021-05-09 1322:2020-03-04 1297:2020-02-27 1221:2019-07-27 1196:2019-08-01 1171:2020-02-06 1146:2019-05-03 1089:1802.00553 1027:2012.02475 969:1902.10146 936:2019-07-31 911:2019-05-28 826:1803.02342 615:2024-09-24 567:2001.11633 537:2019-05-05 429:1803.02342 372:1611.00649 338:References 111:Eva Andrei 104:physicist 1500:Bioethics 1425:Memristor 1342:New Atlas 1060:227305789 758:1009.4203 724:117926220 689:1012.4320 644:0912.2102 592:211004085 100:In 2007, 1652:Graphene 1316:Phys.org 1292:Phys.org 1273:31367024 1216:phys.org 1191:phys.org 1165:phys.org 1114:29512654 1052:34597066 930:Phys.org 851:29512651 795:21730173 506:30602751 446:29512651 397:27148700 311:electron 291:See also 208:and the 198:Yuan Cao 29:graphene 1251:Bibcode 1122:4601086 1094:Bibcode 1032:Bibcode 974:Bibcode 859:4655887 831:Bibcode 786:3145708 763:Bibcode 694:Bibcode 649:Bibcode 572:Bibcode 484:Bibcode 454:4655887 377:Bibcode 309:of the 250:Science 214:Tsukuba 96:History 1495:Ethics 1463:Topics 1396:Fields 1271:  1242:Nature 1120:  1112:  1076:Nature 1058:  1050:  885:29 Sep 857:  849:  812:Nature 793:  783:  722:  590:  504:  476:Nature 452:  444:  416:Nature 395:  263:memory 148:tunnel 142:) and 46:(from 39:atoms. 37:carbon 1118:S2CID 1084:arXiv 1056:S2CID 1022:arXiv 964:arXiv 855:S2CID 821:arXiv 753:arXiv 720:S2CID 684:arXiv 639:arXiv 588:S2CID 562:arXiv 450:S2CID 424:arXiv 393:S2CID 367:arXiv 48:twist 1630:List 1269:PMID 1110:PMID 1048:PMID 887:2020 847:PMID 791:PMID 502:PMID 442:PMID 307:spin 138:(of 84:and 50:and 31:, a 1259:doi 1247:572 1102:doi 1080:556 1040:doi 1018:127 992:hdl 982:doi 960:100 839:doi 817:556 781:PMC 771:doi 749:108 710:hdl 702:doi 657:doi 580:doi 492:doi 480:565 434:doi 420:556 385:doi 330:of 317:in 265:in 212:in 202:MIT 200:of 117:in 66:to 1648:: 1340:. 1314:. 1290:. 1267:. 1257:. 1245:. 1239:. 1214:. 1189:. 1163:. 1139:. 1116:. 1108:. 1100:. 1092:. 1078:. 1054:. 1046:. 1038:. 1030:. 1016:. 990:. 980:. 972:. 958:. 954:. 928:. 904:. 876:. 853:. 845:. 837:. 829:. 815:. 789:. 779:. 769:. 761:. 747:. 741:. 718:. 708:. 700:. 692:. 680:82 678:. 655:. 647:. 633:. 608:. 586:. 578:. 570:. 556:. 528:. 514:^ 500:. 490:. 478:. 474:. 462:^ 448:. 440:. 432:. 418:. 405:^ 391:. 383:. 375:. 363:95 361:. 346:^ 171:. 80:, 1381:e 1374:t 1367:v 1350:. 1325:. 1300:. 1275:. 1261:: 1253:: 1224:. 1199:. 1174:. 1149:. 1124:. 1104:: 1096:: 1086:: 1062:. 1042:: 1034:: 1024:: 1000:. 994:: 984:: 976:: 966:: 939:. 914:. 889:. 861:. 841:: 833:: 823:: 797:. 773:: 765:: 755:: 726:. 712:: 704:: 696:: 686:: 663:. 659:: 651:: 641:: 635:6 618:. 594:. 582:: 574:: 564:: 558:7 540:. 508:. 494:: 486:: 456:. 436:: 426:: 399:. 387:: 379:: 369::

Index


moiré pattern
graphene
hexagonal lattice
carbon
two-dimensional materials
bilayer graphene
non-conductive
superconductive
Harvard University
Pablo Jarillo-Herrero
Allan H. MacDonald
Rafi Bistritzer
Wolf Prize in Physics
National University of Singapore
Antonio H. Castro Neto
Eva Andrei
Rutgers University
Piscataway, New Jersey
moiré pattern
van Hove singularities
Federico Santa María Technical University
Allan H. MacDonald
University of Texas at Austin
Rafi Bistritzer
tunnel
Pablo Jarillo-Herrero
Massachusetts Institute of Technology
heterostrain
straintronics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.