Knowledge (XXG)

Type-II superconductor

Source đź“ť

31: 78: 302: 280:
generalizes these ideas. In the limit of very short coherence length the vortex solution is identical to London's fluxoid, where the vortex core is approximated by a sharp cutoff rather than a gradual vanishing of superconducting condensate near the vortex center. Abrikosov found that the vortices
166:
of the superconductor-normal metal boundary. Ginzburg and Landau pointed out the possibility of type-II superconductors that should form inhomogeneous state in strong magnetic fields. However, at that time, all known superconductors were type-I, and they commented that there was no experimental
329:
If a superconductor is cooled in a field, the field can be trapped, which can allow the superconductor to be suspended over a magnet, with the potential for a frictionless joint or bearing. The worth of flux pinning is seen through many implementations such as lifts, frictionless joints, and
73:(a). A mixed state (b), in which some field lines are captured in magnetic field vortices, occurs only in Type-II superconductors within a limited region of the graph. Beyond this region, the superconductive property breaks down, and the material behaves as a normal conductor (c). 489:, they can be easily machined into wires. Recently, however, 2nd generation superconducting tapes are allowing replacement of cheaper niobium-based wires with much more expensive, but superconductive at much higher temperatures and magnetic fields "2nd generation" tapes. 260:. Ginzburg and Landau showed that this leads to negative energy of the interface between superconducting and normal phases. The existence of the negative interface energy was also known since the mid-1930s from the early works by the London brothers. A negative 305: 309: 308: 304: 303: 310: 272:
demonstrated that a magnetic flux can penetrate a superconductor via a topological defect that has integer phase winding and carries quantized magnetic flux. Onsager and Feynman demonstrated that quantum vortices should form in superfluids.
307: 103:
is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the formation of
264:
suggests that the system should be unstable against maximizing the number of such interfaces. This instability was not observed until the experiments of Shubnikov in 1936 where two critical fields were found.
258: 285:. Near a so-called upper critical magnetic field, the problem of a superconductor in an external field is equivalent to the problem of vortex state in a rotating superfluid, discussed by 167:
motivation to consider precise structure of type-II superconducting state. The theory for the behavior of the type-II superconducting state in magnetic field was greatly improved by
306: 1230: 697: 963: 900: 831: 938: 1322: 1060: 1170: 609: 1258: 979: 350: 207: 1175: 893: 684:
Abrikosov, A. A. (1957). On the magnetic properties of superconductors of the second group. Soviet Physics-JETP, 5, 1174-1182.
958: 593: 330:
transportation. The thinner the superconducting layer, the stronger the pinning that occurs when exposed to magnetic fields.
928: 1299: 1151: 1095: 1070: 1201: 1130: 277: 168: 30: 1146: 1065: 444: 933: 203: 155: 217: 1353: 1253: 1248: 886: 953: 626:
Rjabinin, J. N.; Shubnikow, L. W. (1935). "Magnetic Properties and Critical Currents of Supra-conducting Alloys".
1206: 163: 89: 42: 381:, one of the most common superconductors in applied superconductivity), as well as intermetallic compounds like 989: 211: 1040: 1332: 1191: 1123: 1243: 1216: 1196: 389: 192: 396:
ceramic materials which have achieved the highest superconducting critical temperatures. These include La
1113: 323: 159: 1317: 378: 377:
are also type-II superconductors. Metal alloy superconductors can also exhibit type-II behavior (e.g.,
1273: 772: 719: 635: 540: 505:
Wells, Frederick S.; Pan, Alexey V.; Wang, X. Renshaw; Fedoseev, Sergey A.; Hilgenkamp, Hans (2015).
464: 69:
are labeled. In the lower region of this graph, both type-I and type-II superconductors display the
1304: 1055: 1015: 814:
Feynman, R.P. (1955), "Application of Quantum Mechanics to Liquid Helium", in WP Halperin (ed.),
796: 651: 530: 437: 432:), which is famous as the first material to achieve superconductivity above the boiling point of 142:
experimentally discovered the type-II superconductors. In 1950, the theory of the two types of
27:
Superconductor characterized by the formation of magnetic vortices in an applied magnetic field
1080: 909: 827: 788: 589: 566: 96: 1289: 1263: 1035: 1010: 943: 819: 780: 727: 643: 556: 548: 468: 261: 105: 1312: 846: 382: 1045: 433: 290: 176: 151: 143: 127: 119:. The vortex density increases with increasing field strength. At a higher critical field 70: 475:
wires. These materials are type-II superconductors with substantial upper critical field
776: 723: 710:
London, F. (1948-09-01). "On the Problem of the Molecular Theory of Superconductivity".
639: 544: 1050: 994: 984: 948: 561: 506: 109: 81: 34:
Superconductive behavior under varying magnetic field and temperature. The graph shows
17: 823: 268:
In 1952 an observation of type-II superconductivity was also reported by Zavaritskii.
1347: 800: 343: 188: 139: 35: 126:, superconductivity is destroyed. Type-II superconductors do not exhibit a complete 1085: 1075: 1030: 1025: 655: 440: 319: 286: 269: 184: 172: 1211: 1020: 482:, and in contrast to, for example, the cuprate superconductors with even higher 472: 183:. Quantum vortex solution in a superconductor is also very closely related to 180: 923: 393: 362: 353:
are type-II superconductors. While most elemental superconductors are type-I,
147: 792: 507:"Analysis of low-field isotropic vortex glass containing vortex groups in YBa 869:
Rosen, J., Ph.D., & Quinn, L. "Superconductivity". In K. Cullen (ed.),
731: 570: 77: 314:
Position memory due to vortex pinning in a high temperature superconductor
1238: 358: 784: 417: 374: 370: 354: 346: 552: 647: 429: 425: 421: 339: 878: 610:
Magnetic properties and critical currents of superconducting alloys
535: 214:. According to Ginzburg–Landau theory, in a type-II superconductor 1294: 1268: 409: 366: 300: 76: 195:
was awarded for the theory of type-II superconductivity in 2003.
1327: 413: 85: 882: 460: 456: 763:
Onsager, L. (March 1949). "Statistical hydrodynamics".
326:, since they cannot be penetrated by magnetic fields. 112:. This occurs above a certain critical field strength 220: 1282: 1229: 1184: 1160: 1139: 1103: 1094: 1003: 972: 916: 519:
thin films visualized by scanning SQUID microscopy"
281:arrange themselves into a regular array known as a 338:Type-II superconductors are usually made of metal 252: 847:"Journal of Experimental and Theoretical Physics" 586:Introduction to Superconductivity, Second Edition 698:"Type II superconductors and the vortex lattice" 455:Strong superconducting electromagnets (used in 253:{\displaystyle \lambda /\xi >1/{\sqrt {2}}} 894: 608:Rjabinin, J. N. and Schubnikow, L.W. (1935) " 8: 322:becomes possible. This is not possible with 692: 690: 318:In the vortex state, a phenomenon known as 1100: 901: 887: 879: 818:, vol. 1, Elsevier, pp. 17–53, 614:Physikalische Zeitschrift der Sowjetunion 560: 534: 243: 238: 224: 219: 212:London magnetic field penetration depth λ 29: 668:Ginzburg, V.L. and Landau, L.D. (1950) 497: 365:are elemental type-II superconductors. 171:, who was elaborating on the ideas by 191:quantization in superconductors. The 7: 743: 741: 816:Progress in Low Temperature Physics 48:. Critical magnetic flux densities 25: 700:, Nobel Lecture, December 8, 2003 871:Encyclopedia of physical science 752:(2nd ed.). New York: Dover. 351:high-temperature superconductors 208:superconducting coherence length 388:Other type-II examples are the 1: 824:10.1016/s0079-6417(08)60077-3 588:. New York, NY: McGraw-Hill. 471:wires or, for higher fields, 62:and the critical temperature 616:, vol. 7, no.1, pp. 122–125. 445:ideally hard superconductors 443:, the cuprates are close to 169:Alexei Alexeyevich Abrikosov 467:) often use coils wound of 138:In 1935, J.N. Rjabinin and 1370: 1231:Technological applications 973:Characteristic parameters 146:was further developed by 108:with an applied external 90:scanning SQUID microscopy 990:London penetration depth 1283:List of superconductors 1161:By critical temperature 179:of quantum vortices in 158:. In their argument, a 106:magnetic field vortices 18:Type-II superconductors 748:London, Fritz (1961). 732:10.1103/PhysRev.74.562 436:(77 K). Due to strong 324:type-I superconductors 315: 254: 204:Ginzburg–Landau theory 193:Nobel Prize in Physics 156:Ginzburg–Landau theory 101:type-II superconductor 92: 74: 929:Bean's critical state 465:particle accelerators 313: 255: 160:type-I superconductor 80: 33: 1104:By magnetic response 670:Zh. Eksp. Teor. Fiz. 584:Tinkham, M. (1996). 218: 43:absolute temperature 1056:persistent currents 1041:Little–Parks effect 777:1949NCim....6S.279O 724:1948PhRv...74..562L 640:1935Natur.135..581R 545:2015NatSR...5E8677W 1016:Andreev reflection 1011:Abrikosov vortices 785:10.1007/BF02780991 523:Scientific Reports 316: 250: 154:in their paper on 93: 84:in a 200-nm-thick 75: 1354:Superconductivity 1341: 1340: 1259:quantum computing 1225: 1224: 1081:superdiamagnetism 910:Superconductivity 833:978-0-444-53307-4 696:A. A. Abrikosov, 553:10.1038/srep08677 311: 248: 210:Îľ in addition to 97:superconductivity 41:as a function of 16:(Redirected from 1361: 1290:bilayer graphene 1264:Rutherford cable 1176:room temperature 1171:high temperature 1101: 1061:proximity effect 1036:Josephson effect 980:coherence length 903: 896: 889: 880: 874: 867: 861: 860: 858: 857: 843: 837: 836: 811: 805: 804: 765:Il Nuovo Cimento 760: 754: 753: 745: 736: 735: 707: 701: 694: 685: 682: 676: 666: 660: 659: 648:10.1038/135581a0 623: 617: 606: 600: 599: 581: 575: 574: 564: 538: 502: 469:niobium-titanium 379:niobium–titanium 312: 276:A 1957 paper by 262:interface energy 259: 257: 256: 251: 249: 244: 242: 228: 82:Quantum vortices 21: 1369: 1368: 1364: 1363: 1362: 1360: 1359: 1358: 1344: 1343: 1342: 1337: 1308: 1278: 1221: 1180: 1167:low temperature 1156: 1135: 1090: 1046:Meissner effect 999: 995:Silsbee current 968: 934:Ginzburg–Landau 912: 907: 877: 868: 864: 855: 853: 845: 844: 840: 834: 813: 812: 808: 771:(S2): 279–287. 762: 761: 757: 747: 746: 739: 712:Physical Review 709: 708: 704: 695: 688: 683: 679: 667: 663: 625: 624: 620: 607: 603: 596: 583: 582: 578: 518: 514: 510: 504: 503: 499: 495: 487: 480: 453: 434:liquid nitrogen 407: 403: 399: 336: 301: 299: 291:Richard Feynman 278:A. A. Abrikosov 216: 215: 206:introduced the 201: 177:Richard Feynman 152:Vitaly Ginzburg 144:superconductors 136: 128:Meissner effect 124: 117: 88:film imaged by 71:Meissner effect 67: 60: 53: 28: 23: 22: 15: 12: 11: 5: 1367: 1365: 1357: 1356: 1346: 1345: 1339: 1338: 1336: 1335: 1330: 1325: 1320: 1315: 1310: 1306: 1302: 1297: 1292: 1286: 1284: 1280: 1279: 1277: 1276: 1271: 1266: 1261: 1256: 1251: 1246: 1244:electromagnets 1241: 1235: 1233: 1227: 1226: 1223: 1222: 1220: 1219: 1214: 1209: 1204: 1199: 1194: 1188: 1186: 1185:By composition 1182: 1181: 1179: 1178: 1173: 1168: 1164: 1162: 1158: 1157: 1155: 1154: 1152:unconventional 1149: 1143: 1141: 1140:By explanation 1137: 1136: 1134: 1133: 1128: 1127: 1126: 1121: 1116: 1107: 1105: 1098: 1096:Classification 1092: 1091: 1089: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1007: 1005: 1001: 1000: 998: 997: 992: 987: 985:critical field 982: 976: 974: 970: 969: 967: 966: 961: 956: 954:Mattis–Bardeen 951: 946: 941: 939:Kohn–Luttinger 936: 931: 926: 920: 918: 914: 913: 908: 906: 905: 898: 891: 883: 876: 875: 862: 851:www.jetp.ac.ru 838: 832: 806: 755: 737: 718:(5): 562–573. 702: 686: 677: 661: 618: 601: 594: 576: 516: 512: 508: 496: 494: 491: 485: 478: 463:machines, and 452: 451:Important uses 449: 405: 401: 397: 335: 332: 298: 295: 283:vortex lattice 247: 241: 237: 234: 231: 227: 223: 200: 197: 135: 132: 122: 115: 110:magnetic field 65: 58: 51: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1366: 1355: 1352: 1351: 1349: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1287: 1285: 1281: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1236: 1234: 1232: 1228: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1202:heavy fermion 1200: 1198: 1195: 1193: 1190: 1189: 1187: 1183: 1177: 1174: 1172: 1169: 1166: 1165: 1163: 1159: 1153: 1150: 1148: 1145: 1144: 1142: 1138: 1132: 1131:ferromagnetic 1129: 1125: 1122: 1120: 1117: 1115: 1112: 1111: 1109: 1108: 1106: 1102: 1099: 1097: 1093: 1087: 1084: 1082: 1079: 1077: 1076:supercurrents 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1008: 1006: 1002: 996: 993: 991: 988: 986: 983: 981: 978: 977: 975: 971: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 921: 919: 915: 911: 904: 899: 897: 892: 890: 885: 884: 881: 872: 866: 863: 852: 848: 842: 839: 835: 829: 825: 821: 817: 810: 807: 802: 798: 794: 790: 786: 782: 778: 774: 770: 766: 759: 756: 751: 744: 742: 738: 733: 729: 725: 721: 717: 713: 706: 703: 699: 693: 691: 687: 681: 678: 674: 671: 665: 662: 657: 653: 649: 645: 641: 637: 634:(3415): 581. 633: 629: 622: 619: 615: 611: 605: 602: 597: 591: 587: 580: 577: 572: 568: 563: 558: 554: 550: 546: 542: 537: 532: 528: 524: 520: 501: 498: 492: 490: 488: 481: 474: 470: 466: 462: 458: 450: 448: 446: 442: 439: 435: 431: 427: 423: 419: 415: 411: 395: 391: 386: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 345: 344:complex oxide 341: 333: 331: 327: 325: 321: 296: 294: 292: 288: 284: 279: 274: 271: 266: 263: 245: 239: 235: 232: 229: 225: 221: 213: 209: 205: 198: 196: 194: 190: 189:magnetic flux 186: 182: 178: 174: 170: 165: 162:had positive 161: 157: 153: 149: 145: 141: 140:Lev Shubnikov 133: 131: 129: 125: 118: 111: 107: 102: 98: 91: 87: 83: 79: 72: 68: 61: 54: 47: 44: 40: 37: 36:magnetic flux 32: 19: 1212:oxypnictides 1147:conventional 1118: 1086:superstripes 1031:flux pumping 1026:flux pinning 1021:Cooper pairs 870: 865: 854:. Retrieved 850: 841: 815: 809: 768: 764: 758: 749: 715: 711: 705: 680: 672: 669: 664: 631: 627: 621: 613: 604: 585: 579: 526: 522: 500: 483: 476: 454: 387: 337: 328: 320:flux pinning 317: 297:Flux pinning 287:Lars Onsager 282: 275: 270:Fritz London 267: 202: 199:Vortex state 185:Fritz London 173:Lars Onsager 137: 120: 113: 100: 94: 63: 56: 49: 45: 38: 1071:SU(2) color 1051:Homes's law 750:Superfluids 473:niobium-tin 383:niobium–tin 187:'s work on 181:superfluids 164:free energy 1207:iron-based 1066:reentrance 856:2021-04-11 595:0486435032 536:1807.06746 493:References 459:scanners, 394:perovskite 363:technetium 148:Lev Landau 1004:Phenomena 801:186224016 793:0029-6341 517:7−x 334:Materials 230:ξ 222:λ 1348:Category 1239:cryotron 1197:cuprates 1192:covalent 949:Matthias 917:Theories 571:25728772 529:: 8677. 359:vanadium 347:ceramics 1333:more... 1217:organic 773:Bibcode 720:Bibcode 656:4113840 636:Bibcode 562:4345321 541:Bibcode 441:pinning 418:Yttrium 390:cuprate 375:silicon 371:diamond 369:-doped 355:niobium 134:History 1110:Types 944:London 830:  799:  791:  675:, 1064 654:  628:Nature 592:  569:  559:  438:vortex 426:Copper 422:Barium 412:, and 361:, and 349:. All 340:alloys 1323:TBCCO 1295:BSCCO 1274:wires 1269:SQUID 797:S2CID 652:S2CID 531:arXiv 430:Oxide 410:BSCCO 367:Boron 1328:YBCO 1318:NbTi 1313:NbSn 1300:LBCO 828:ISBN 789:ISSN 590:ISBN 567:PMID 414:YBCO 402:0.15 398:1.85 373:and 289:and 233:> 175:and 150:and 99:, a 86:YBCO 55:and 1305:MgB 1254:NMR 1249:MRI 1124:1.5 964:WHH 959:RVB 924:BCS 820:doi 781:doi 728:doi 644:doi 632:135 612:", 557:PMC 549:doi 461:NMR 457:MRI 404:CuO 342:or 293:. 95:In 1350:: 1119:II 849:. 826:, 795:. 787:. 779:. 767:. 740:^ 726:. 716:74 714:. 689:^ 673:20 650:. 642:. 630:. 565:. 555:. 547:. 539:. 525:. 521:. 511:Cu 486:c2 479:c2 447:. 408:, 400:Ba 385:. 357:, 130:. 123:c2 116:c1 59:C2 52:C1 1307:2 1114:I 902:e 895:t 888:v 873:. 859:. 822:: 803:. 783:: 775:: 769:6 734:. 730:: 722:: 658:. 646:: 638:: 598:. 573:. 551:: 543:: 533:: 527:5 515:O 513:3 509:2 484:H 477:H 428:- 424:- 420:- 416:( 406:4 392:- 246:2 240:/ 236:1 226:/ 121:H 114:H 66:C 64:T 57:B 50:B 46:T 39:B 20:)

Index

Type-II superconductors

magnetic flux
absolute temperature
Meissner effect

Quantum vortices
YBCO
scanning SQUID microscopy
superconductivity
magnetic field vortices
magnetic field
Meissner effect
Lev Shubnikov
superconductors
Lev Landau
Vitaly Ginzburg
Ginzburg–Landau theory
type-I superconductor
free energy
Alexei Alexeyevich Abrikosov
Lars Onsager
Richard Feynman
superfluids
Fritz London
magnetic flux
Nobel Prize in Physics
Ginzburg–Landau theory
superconducting coherence length
London magnetic field penetration depth λ

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑