Knowledge (XXG)

Ramification (mathematics)

Source đź“ť

38: 103: 692: 225:. In complex analysis, sheets can't simply fold over along a line (one variable), or codimension one subspace in the general case. The ramification set (branch locus on the base, double point set above) will be two real dimensions lower than the ambient 1028: 1741: 527: 598: 1494: 1360: 1298: 1181: 971: 726: 1329: 1267: 1212: 1126: 757: 558: 469: 434: 375: 289: 1806: 1422: 1236: 1150: 890: 781: 340: 1663: 838: 1628: 1394: 940: 1458: 403: 251: 1870: 1850: 1826: 1765: 1687: 1091: 1067: 910: 858: 805: 489: 316: 590: 1941: 155: 976: 229:, and so will not separate it into two 'sides', locally―there will be paths that trace round the branch locus, just as in the example. In 1692: 1553: 1543: 1933: 2018: 31: 1505: 494: 139: 2023: 687:{\displaystyle {\mathfrak {p}}\cdot {\mathcal {O}}_{L}={\mathfrak {p}}_{1}^{e_{1}}\cdots {\mathfrak {p}}_{k}^{e_{k}}} 1995: 2028: 1467: 158:
should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The
1557: 85: 257: 81:
differing in sign. The term is also used from the opposite perspective (branches coming together) as when a
260:
means a prime ideal factoring in an extension so as to give some repeated prime ideal factors. Namely, let
296: 49:
marked with dots, where the fibers consist of one and two points (marked in black), respectively. The map
1334: 1272: 1155: 945: 700: 1891: 1303: 1241: 1186: 1100: 1070: 731: 532: 443: 408: 349: 263: 37: 1510:
The more detailed analysis of ramification in number fields can be carried out using extensions of the
1770: 1403: 1217: 1131: 871: 762: 321: 1874: 1633: 1588: 1565: 1561: 234: 143: 1527: 1094: 230: 183: 1968: 1919: 810: 1579:. This generalizes the notions in algebraic number theory, local fields, and Dedekind domains. 1937: 1906: 1901: 1601: 1592: 1043: 1955: 1549: 1519: 1039: 437: 292: 222: 115: 1951: 1372: 918: 1959: 1947: 1572: 1461: 131: 107: 1435: 380: 1896: 1855: 1835: 1811: 1750: 1672: 1076: 1052: 895: 843: 790: 474: 301: 74: 563: 2012: 1511: 1429: 102: 1523: 1035: 221:
codimension one, the local complex example sets the pattern for higher-dimensional
97: 82: 343: 206: 70: 17: 2000: 1518:
question. In that case a quantitative measure of ramification is defined for
1031: 210: 166:
mapping shows this as a local pattern: if we exclude 0, looking at 0 < |
88:
at a point of a space, with some collapsing of the fibers of the mapping.
226: 171: 62: 41:
Schematic depiction of ramification: the fibers of almost all points in
1038:. The analogy with the Riemann surface case was already pointed out by 175: 1023:{\displaystyle {\mathcal {O}}_{L}/{\mathfrak {p}}{\mathcal {O}}_{L}} 182:-th power map (Euler–Poincaré characteristic 0), but with the whole 1996:"Splitting and ramification in number fields and Galois extensions" 1534:(non-tame) ramification. This goes beyond the geometric analogue. 101: 36: 1630:
be a morphism of schemes. The support of the quasicoherent sheaf
1736:{\displaystyle f\left(\operatorname {Supp} \Omega _{X/Y}\right)} 1526:
moves field elements with respect to the metric. A sequence of
201:
In geometric terms, ramification is something that happens in
1310: 1248: 1193: 1107: 1009: 983: 738: 615: 539: 508: 450: 415: 356: 270: 237:, by analogy, it also happens in algebraic codimension one. 45:
below consist of three points, except for two points in
1396:
are all relatively prime to the residue characteristic
130: = 0. This is the standard local picture in 1858: 1838: 1814: 1773: 1753: 1695: 1675: 1636: 1604: 1470: 1438: 1406: 1375: 1337: 1306: 1275: 1244: 1220: 1189: 1158: 1134: 1103: 1079: 1055: 979: 948: 921: 898: 874: 846: 813: 793: 765: 734: 703: 601: 566: 560:. This ideal may or may not be prime, but for finite 535: 497: 477: 446: 411: 383: 352: 324: 304: 266: 1852:is also of locally finite presentation we say that 1864: 1844: 1820: 1800: 1759: 1735: 1681: 1657: 1622: 1488: 1452: 1416: 1388: 1354: 1323: 1292: 1261: 1230: 1206: 1175: 1144: 1120: 1085: 1061: 1022: 965: 934: 904: 884: 852: 832: 799: 775: 751: 720: 686: 584: 552: 521: 483: 463: 428: 397: 369: 334: 310: 283: 1970:The Rising Sea: Foundations of algebraic geometry 522:{\displaystyle {\mathfrak {p}}{\mathcal {O}}_{L}} 246:In algebraic extensions of the rational numbers 252:Splitting of prime ideals in Galois extensions 190: â€“ 1 being the 'lost' points as the 1929:Grundlehren der mathematischen Wissenschaften 1432:theory. A finite generically Ă©tale extension 8: 1927: 1530:is defined, reifying (amongst other things) 592:, it has a factorization into prime ideals: 1591:in algebraic geometry. It serves to define 1489:{\displaystyle \operatorname {Tr} :B\to A} 53:is said to be ramified in these points of 1857: 1837: 1813: 1782: 1778: 1772: 1752: 1718: 1714: 1694: 1689:and the image of the ramification locus, 1674: 1645: 1641: 1635: 1603: 1469: 1442: 1437: 1408: 1407: 1405: 1380: 1374: 1346: 1340: 1339: 1336: 1315: 1309: 1308: 1305: 1284: 1278: 1277: 1274: 1253: 1247: 1246: 1243: 1222: 1221: 1219: 1198: 1192: 1191: 1188: 1167: 1161: 1160: 1157: 1136: 1135: 1133: 1112: 1106: 1105: 1102: 1078: 1054: 1014: 1008: 1007: 1000: 999: 994: 988: 982: 981: 978: 957: 951: 950: 947: 926: 920: 897: 876: 875: 873: 845: 818: 812: 792: 767: 766: 764: 743: 737: 736: 733: 712: 706: 705: 702: 676: 671: 666: 660: 659: 647: 642: 637: 631: 630: 620: 614: 613: 603: 602: 600: 565: 544: 538: 537: 534: 513: 507: 506: 499: 498: 496: 476: 455: 449: 448: 445: 420: 414: 413: 410: 387: 382: 361: 355: 354: 351: 326: 325: 323: 303: 275: 269: 268: 265: 27:Branching out of a mathematical structure 1238:is ramified. The latter is an ideal of 186:the Euler–PoincarĂ© characteristic is 1, 126:mapping in the complex plane, near  69:is 'branching out', in the way that the 1587:There is also corresponding notion of 134:theory, of ramification of order  118:, the basic model can be taken as the 1879: 405:we can consider the ring of integers 7: 1269:and is divisible by the prime ideal 1409: 1355:{\displaystyle {\mathfrak {p}}_{i}} 1341: 1293:{\displaystyle {\mathfrak {p}}_{i}} 1279: 1223: 1176:{\displaystyle {\mathfrak {p}}_{i}} 1162: 1137: 1001: 966:{\displaystyle {\mathfrak {p}}_{i}} 952: 877: 768: 721:{\displaystyle {\mathfrak {p}}_{i}} 707: 661: 632: 604: 500: 327: 1775: 1711: 1638: 1522:, basically by asking how far the 1324:{\displaystyle {\mathcal {O}}_{L}} 1262:{\displaystyle {\mathcal {O}}_{L}} 1207:{\displaystyle {\mathcal {O}}_{L}} 1121:{\displaystyle {\mathcal {O}}_{K}} 973:. An equivalent condition is that 752:{\displaystyle {\mathcal {O}}_{L}} 553:{\displaystyle {\mathcal {O}}_{L}} 464:{\displaystyle {\mathcal {O}}_{K}} 429:{\displaystyle {\mathcal {O}}_{L}} 370:{\displaystyle {\mathcal {O}}_{K}} 284:{\displaystyle {\mathcal {O}}_{K}} 142:for the effect of mappings on the 25: 1554:ramification theory of valuations 1544:Ramification theory of valuations 1464:is tame if and only if the trace 1428:. This condition is important in 1967:Vakil, Ravi (18 November 2017). 1034:element: it is not a product of 170:| < 1 say, we have (from the 1801:{\displaystyle \Omega _{X/Y}=0} 1417:{\displaystyle {\mathfrak {p}}} 1231:{\displaystyle {\mathfrak {p}}} 1145:{\displaystyle {\mathfrak {p}}} 1049:The ramification is encoded in 885:{\displaystyle {\mathfrak {p}}} 776:{\displaystyle {\mathfrak {p}}} 335:{\displaystyle {\mathfrak {p}}} 138:. It occurs for example in the 1614: 1480: 1369:when the ramification indices 579: 567: 1: 1658:{\displaystyle \Omega _{X/Y}} 1097:. The former is an ideal of 942:is greater than one for some 728:are distinct prime ideals of 194:sheets come together at  156:Euler–PoincarĂ© characteristic 1506:Ramification of local fields 1046:in the nineteenth century. 2045: 1924:Algebraische Zahlentheorie 1541: 1503: 1152:if and only if some ideal 833:{\displaystyle e_{i}>1} 249: 241:In algebraic number theory 95: 77:, can be seen to have two 29: 1932:. Vol. 322. Berlin: 1623:{\displaystyle f:X\to Y} 377:. For a field extension 178:mapped to itself by the 2019:Algebraic number theory 258:algebraic number theory 140:Riemann–Hurwitz formula 1928: 1866: 1846: 1822: 1802: 1761: 1737: 1683: 1659: 1624: 1490: 1454: 1418: 1390: 1356: 1325: 1294: 1263: 1232: 1208: 1177: 1146: 1122: 1087: 1063: 1024: 967: 936: 906: 886: 854: 834: 801: 777: 753: 722: 688: 586: 554: 523: 485: 465: 430: 399: 371: 336: 312: 297:algebraic number field 285: 154:In a covering map the 111: 58: 1892:Eisenstein polynomial 1867: 1847: 1823: 1803: 1762: 1738: 1684: 1660: 1625: 1583:In algebraic geometry 1491: 1455: 1419: 1391: 1389:{\displaystyle e_{i}} 1357: 1326: 1295: 1264: 1233: 1209: 1178: 1147: 1128:and is divisible by 1123: 1088: 1071:relative discriminant 1064: 1025: 968: 937: 935:{\displaystyle e_{i}} 907: 887: 855: 835: 802: 778: 754: 723: 689: 587: 555: 524: 486: 466: 431: 400: 372: 337: 313: 286: 150:In algebraic topology 105: 40: 1856: 1836: 1812: 1771: 1751: 1693: 1673: 1634: 1602: 1468: 1436: 1404: 1373: 1365:The ramification is 1335: 1304: 1273: 1242: 1218: 1187: 1156: 1132: 1101: 1077: 1053: 977: 946: 919: 896: 872: 844: 811: 791: 763: 732: 701: 599: 564: 533: 495: 475: 444: 409: 381: 350: 322: 302: 264: 30:For other uses, see 1830:formally unramified 1589:unramified morphism 1556:studies the set of 1528:ramification groups 1453:{\displaystyle B/A} 683: 654: 398:{\displaystyle L/K} 217:codimension two is 174:point of view) the 122: →  92:In complex analysis 2024:Algebraic topology 1862: 1842: 1818: 1798: 1757: 1733: 1679: 1667:ramification locus 1655: 1620: 1514:, because it is a 1486: 1450: 1414: 1386: 1352: 1321: 1290: 1259: 1228: 1204: 1173: 1142: 1118: 1095:relative different 1083: 1059: 1020: 963: 932: 914:ramification index 902: 882: 868:. In other words, 860:; otherwise it is 850: 830: 797: 773: 749: 718: 684: 658: 629: 582: 550: 519: 481: 461: 426: 395: 367: 332: 308: 281: 231:algebraic geometry 112: 110:of the square root 59: 1943:978-3-540-65399-8 1907:Branched covering 1902:Puiseux expansion 1865:{\displaystyle f} 1845:{\displaystyle f} 1821:{\displaystyle f} 1760:{\displaystyle f} 1682:{\displaystyle f} 1520:Galois extensions 1086:{\displaystyle L} 1062:{\displaystyle K} 1044:Heinrich M. Weber 905:{\displaystyle L} 853:{\displaystyle i} 800:{\displaystyle L} 491:), and the ideal 484:{\displaystyle L} 311:{\displaystyle K} 223:complex manifolds 198: = 0. 16:(Redirected from 2036: 2029:Complex analysis 2005: 1984: 1982: 1980: 1975: 1963: 1931: 1920:Neukirch, JĂĽrgen 1871: 1869: 1868: 1863: 1851: 1849: 1848: 1843: 1827: 1825: 1824: 1819: 1807: 1805: 1804: 1799: 1791: 1790: 1786: 1766: 1764: 1763: 1758: 1743:, is called the 1742: 1740: 1739: 1734: 1732: 1728: 1727: 1726: 1722: 1688: 1686: 1685: 1680: 1664: 1662: 1661: 1656: 1654: 1653: 1649: 1629: 1627: 1626: 1621: 1550:valuation theory 1495: 1493: 1492: 1487: 1462:Dedekind domains 1459: 1457: 1456: 1451: 1446: 1423: 1421: 1420: 1415: 1413: 1412: 1395: 1393: 1392: 1387: 1385: 1384: 1361: 1359: 1358: 1353: 1351: 1350: 1345: 1344: 1330: 1328: 1327: 1322: 1320: 1319: 1314: 1313: 1299: 1297: 1296: 1291: 1289: 1288: 1283: 1282: 1268: 1266: 1265: 1260: 1258: 1257: 1252: 1251: 1237: 1235: 1234: 1229: 1227: 1226: 1213: 1211: 1210: 1205: 1203: 1202: 1197: 1196: 1182: 1180: 1179: 1174: 1172: 1171: 1166: 1165: 1151: 1149: 1148: 1143: 1141: 1140: 1127: 1125: 1124: 1119: 1117: 1116: 1111: 1110: 1092: 1090: 1089: 1084: 1068: 1066: 1065: 1060: 1040:Richard Dedekind 1029: 1027: 1026: 1021: 1019: 1018: 1013: 1012: 1005: 1004: 998: 993: 992: 987: 986: 972: 970: 969: 964: 962: 961: 956: 955: 941: 939: 938: 933: 931: 930: 911: 909: 908: 903: 891: 889: 888: 883: 881: 880: 866: 865: 859: 857: 856: 851: 839: 837: 836: 831: 823: 822: 806: 804: 803: 798: 782: 780: 779: 774: 772: 771: 758: 756: 755: 750: 748: 747: 742: 741: 727: 725: 724: 719: 717: 716: 711: 710: 693: 691: 690: 685: 682: 681: 680: 670: 665: 664: 653: 652: 651: 641: 636: 635: 625: 624: 619: 618: 608: 607: 591: 589: 588: 585:{\displaystyle } 583: 559: 557: 556: 551: 549: 548: 543: 542: 528: 526: 525: 520: 518: 517: 512: 511: 504: 503: 490: 488: 487: 482: 470: 468: 467: 462: 460: 459: 454: 453: 438:integral closure 435: 433: 432: 427: 425: 424: 419: 418: 404: 402: 401: 396: 391: 376: 374: 373: 368: 366: 365: 360: 359: 341: 339: 338: 333: 331: 330: 317: 315: 314: 309: 293:ring of integers 290: 288: 287: 282: 280: 279: 274: 273: 256:Ramification in 116:complex analysis 21: 2044: 2043: 2039: 2038: 2037: 2035: 2034: 2033: 2009: 2008: 1994: 1991: 1978: 1976: 1973: 1966: 1944: 1934:Springer-Verlag 1918: 1915: 1888: 1854: 1853: 1834: 1833: 1810: 1809: 1774: 1769: 1768: 1749: 1748: 1710: 1703: 1699: 1691: 1690: 1671: 1670: 1637: 1632: 1631: 1600: 1599: 1593:Ă©tale morphisms 1585: 1573:extension field 1546: 1540: 1508: 1502: 1500:In local fields 1496:is surjective. 1466: 1465: 1434: 1433: 1402: 1401: 1376: 1371: 1370: 1338: 1333: 1332: 1331:precisely when 1307: 1302: 1301: 1276: 1271: 1270: 1245: 1240: 1239: 1216: 1215: 1190: 1185: 1184: 1159: 1154: 1153: 1130: 1129: 1104: 1099: 1098: 1075: 1074: 1051: 1050: 1030:has a non-zero 1006: 980: 975: 974: 949: 944: 943: 922: 917: 916: 894: 893: 870: 869: 863: 862: 842: 841: 814: 809: 808: 789: 788: 761: 760: 735: 730: 729: 704: 699: 698: 672: 643: 612: 597: 596: 562: 561: 536: 531: 530: 505: 493: 492: 473: 472: 447: 442: 441: 412: 407: 406: 379: 378: 353: 348: 347: 320: 319: 300: 299: 267: 262: 261: 254: 248: 243: 203:codimension two 152: 132:Riemann surface 108:Riemann surface 100: 94: 75:complex numbers 35: 28: 23: 22: 18:Tamely ramified 15: 12: 11: 5: 2042: 2040: 2032: 2031: 2026: 2021: 2011: 2010: 2007: 2006: 1990: 1989:External links 1987: 1986: 1985: 1964: 1942: 1914: 1911: 1910: 1909: 1904: 1899: 1897:Newton polygon 1894: 1887: 1884: 1861: 1841: 1817: 1797: 1794: 1789: 1785: 1781: 1777: 1756: 1731: 1725: 1721: 1717: 1713: 1709: 1706: 1702: 1698: 1678: 1665:is called the 1652: 1648: 1644: 1640: 1619: 1616: 1613: 1610: 1607: 1584: 1581: 1542:Main article: 1539: 1536: 1512:p-adic numbers 1504:Main article: 1501: 1498: 1485: 1482: 1479: 1476: 1473: 1449: 1445: 1441: 1411: 1383: 1379: 1349: 1343: 1318: 1312: 1287: 1281: 1256: 1250: 1225: 1201: 1195: 1170: 1164: 1139: 1115: 1109: 1082: 1058: 1017: 1011: 1003: 997: 991: 985: 960: 954: 929: 925: 901: 879: 849: 829: 826: 821: 817: 796: 770: 746: 740: 715: 709: 695: 694: 679: 675: 669: 663: 657: 650: 646: 640: 634: 628: 623: 617: 611: 606: 581: 578: 575: 572: 569: 547: 541: 516: 510: 502: 480: 458: 452: 436:(which is the 423: 417: 394: 390: 386: 364: 358: 329: 307: 278: 272: 247: 244: 242: 239: 151: 148: 93: 90: 73:function, for 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2041: 2030: 2027: 2025: 2022: 2020: 2017: 2016: 2014: 2003: 2002: 1997: 1993: 1992: 1988: 1972: 1971: 1965: 1961: 1957: 1953: 1949: 1945: 1939: 1935: 1930: 1925: 1921: 1917: 1916: 1912: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1889: 1885: 1883: 1881: 1877: 1876: 1859: 1839: 1831: 1815: 1795: 1792: 1787: 1783: 1779: 1754: 1746: 1729: 1723: 1719: 1715: 1707: 1704: 1700: 1696: 1676: 1668: 1650: 1646: 1642: 1617: 1611: 1608: 1605: 1596: 1594: 1590: 1582: 1580: 1578: 1574: 1570: 1567: 1563: 1559: 1555: 1551: 1545: 1537: 1535: 1533: 1529: 1525: 1521: 1517: 1513: 1507: 1499: 1497: 1483: 1477: 1474: 1471: 1463: 1447: 1443: 1439: 1431: 1430:Galois module 1427: 1399: 1381: 1377: 1368: 1363: 1362:is ramified. 1347: 1316: 1285: 1254: 1199: 1168: 1113: 1096: 1080: 1072: 1056: 1047: 1045: 1041: 1037: 1036:finite fields 1033: 1015: 995: 989: 958: 927: 923: 915: 899: 867: 847: 827: 824: 819: 815: 794: 786: 744: 713: 677: 673: 667: 655: 648: 644: 638: 626: 621: 609: 595: 594: 593: 576: 573: 570: 545: 514: 478: 456: 439: 421: 392: 388: 384: 362: 345: 305: 298: 294: 276: 259: 253: 245: 240: 238: 236: 232: 228: 224: 220: 216: 212: 208: 204: 199: 197: 193: 189: 185: 181: 177: 173: 169: 165: 162:→  161: 157: 149: 147: 145: 141: 137: 133: 129: 125: 121: 117: 109: 104: 99: 91: 89: 87: 84: 80: 76: 72: 68: 64: 56: 52: 48: 44: 39: 33: 19: 1999: 1977:. Retrieved 1969: 1923: 1873: 1829: 1808:we say that 1745:branch locus 1744: 1666: 1597: 1586: 1576: 1568: 1547: 1531: 1524:Galois group 1515: 1509: 1425: 1424:, otherwise 1397: 1366: 1364: 1048: 913: 892:ramifies in 861: 784: 696: 255: 218: 214: 202: 200: 195: 191: 187: 179: 167: 163: 159: 153: 135: 127: 123: 119: 113: 98:Branch point 83:covering map 78: 67:ramification 66: 60: 54: 50: 46: 42: 32:Ramification 783:is said to 344:prime ideal 207:knot theory 86:degenerates 71:square root 2013:Categories 2001:PlanetMath 1960:0956.11021 1913:References 1880:Vakil 2017 1875:unramified 1558:extensions 1538:In algebra 864:unramified 697:where the 250:See also: 106:Using the 96:See also: 1776:Ω 1712:Ω 1708:⁡ 1639:Ω 1615:→ 1562:valuation 1481:→ 1214:dividing 1032:nilpotent 840:for some 656:⋯ 610:⋅ 233:over any 213:); since 211:monodromy 1922:(1999). 1886:See also 227:manifold 172:homotopy 79:branches 63:geometry 1952:1697859 1832:and if 1093:by the 1073:and in 1069:by the 912:if the 759:. Then 291:be the 219:complex 1979:5 June 1958:  1950:  1940:  1571:to an 1552:, the 785:ramify 318:, and 295:of an 209:, and 205:(like 176:circle 1974:(PDF) 1878:(see 1767:. If 1566:field 1564:of a 1560:of a 1516:local 235:field 144:genus 1981:2019 1938:ISBN 1705:Supp 1598:Let 1532:wild 1426:wild 1367:tame 1042:and 825:> 215:real 184:disk 1956:Zbl 1882:). 1872:is 1828:is 1747:of 1669:of 1575:of 1548:In 1460:of 1400:of 1300:of 1183:of 807:if 787:in 529:of 471:in 440:of 346:of 114:In 61:In 2015:: 1998:. 1954:. 1948:MR 1946:. 1936:. 1926:. 1595:. 1472:Tr 342:a 146:. 65:, 2004:. 1983:. 1962:. 1860:f 1840:f 1816:f 1796:0 1793:= 1788:Y 1784:/ 1780:X 1755:f 1730:) 1724:Y 1720:/ 1716:X 1701:( 1697:f 1677:f 1651:Y 1647:/ 1643:X 1618:Y 1612:X 1609:: 1606:f 1577:K 1569:K 1484:A 1478:B 1475:: 1448:A 1444:/ 1440:B 1410:p 1398:p 1382:i 1378:e 1348:i 1342:p 1317:L 1311:O 1286:i 1280:p 1255:L 1249:O 1224:p 1200:L 1194:O 1169:i 1163:p 1138:p 1114:K 1108:O 1081:L 1057:K 1016:L 1010:O 1002:p 996:/ 990:L 984:O 959:i 953:p 928:i 924:e 900:L 878:p 848:i 828:1 820:i 816:e 795:L 769:p 745:L 739:O 714:i 708:p 678:k 674:e 668:k 662:p 649:1 645:e 639:1 633:p 627:= 622:L 616:O 605:p 580:] 577:K 574:: 571:L 568:[ 546:L 540:O 515:L 509:O 501:p 479:L 457:K 451:O 422:L 416:O 393:K 389:/ 385:L 363:K 357:O 328:p 306:K 277:K 271:O 196:z 192:n 188:n 180:n 168:z 164:z 160:z 136:n 128:z 124:z 120:z 57:. 55:Y 51:f 47:Y 43:Y 34:. 20:)

Index

Tamely ramified
Ramification

geometry
square root
complex numbers
covering map
degenerates
Branch point

Riemann surface
complex analysis
Riemann surface
Riemann–Hurwitz formula
genus
Euler–Poincaré characteristic
homotopy
circle
disk
knot theory
monodromy
complex manifolds
manifold
algebraic geometry
field
Splitting of prime ideals in Galois extensions
algebraic number theory
ring of integers
algebraic number field
prime ideal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑