Knowledge (XXG)

Tangential and normal components

Source đź“ť

28: 595: 436: 488: 274: 968: 517: 1171: 363: 791: 1054: 276:
where the first vector in the sum is the tangential component and the second one is the normal component. It follows immediately that these two vectors are perpendicular to each other.
1099: 655: 315: 842: 222: 177: 1007: 617: 703: 508: 1283: 1256: 657:
used (there exist two unit normals to any surface at a given point, pointing in opposite directions, so one of the unit normals is the negative of the other one).
441: 227: 356: 335: 198: 155: 135: 882: 716: 1347: 1325: 1377: 1104: 1305: 868: 1320: 590:{\displaystyle \mathbf {v} _{\parallel }=-{\hat {\mathbf {n} }}\times ({\hat {\mathbf {n} }}\times \mathbf {v} ),} 1013: 794: 431:{\displaystyle \mathbf {v} _{\perp }=\left(\mathbf {v} \cdot {\hat {\mathbf {n} }}\right){\hat {\mathbf {n} }}} 1061: 1205: 629: 289: 1201: 1301: 856: 706: 1193: 852: 799: 205: 160: 976: 64: 40: 1343: 602: 1309: 1216: 1197: 682: 493: 1261: 1234: 1315: 971: 341: 320: 280: 183: 140: 120: 27: 1371: 1228: 710: 620: 85: 56: 17: 1220: 1289: 666: 511: 284: 71: 36: 1224: 1200:), then the derivative gives a spanning set for the tangent bundle (it is a 483:{\displaystyle \mathbf {v} _{\parallel }=\mathbf {v} -\mathbf {v} _{\perp }} 269:{\displaystyle \mathbf {v} =\mathbf {v} _{\parallel }+\mathbf {v} _{\perp }} 1326:
Differential geometry of surfaces § Tangent vectors and normal vectors
31:
Illustration of tangential and normal components of a vector to a surface.
673: 78: 48: 47:, that vector can be decomposed uniquely as a sum of two vectors, one 1358: 1219:(as in the above description of a surface, (or more generally as) a 44: 26: 279:
To calculate the tangential and normal components, consider a
963:{\displaystyle T_{p}M=T_{p}N\oplus N_{p}N:=(T_{p}N)^{\perp }} 626:
These formulas do not depend on the particular unit normal
1292:; the cross product is special to 3 dimensions however. 1166:{\displaystyle v_{\perp }\in N_{p}N:=(T_{p}N)^{\perp }} 1264: 1237: 1107: 1064: 1016: 979: 885: 802: 719: 685: 632: 605: 520: 496: 444: 366: 344: 323: 292: 230: 208: 186: 163: 143: 123: 96:, it can be decomposed into the component tangent to 514:. Another formula for the tangential component is 63:of the vector. Similarly, a vector at a point on a 1277: 1250: 1165: 1093: 1048: 1001: 962: 836: 785: 697: 649: 611: 589: 502: 482: 430: 350: 329: 309: 268: 216: 192: 171: 149: 129: 786:{\displaystyle T_{p}N\to T_{p}M\to T_{p}M/T_{p}N} 1288:In both cases, we can again compute using the 8: 1049:{\displaystyle v=v_{\parallel }+v_{\perp }} 1308:are where the tangential component of the 844:is a generalized space of normal vectors. 1269: 1263: 1242: 1236: 1204:if and only if the parametrization is an 1157: 1144: 1125: 1112: 1106: 1082: 1069: 1063: 1040: 1027: 1015: 990: 978: 954: 941: 922: 906: 890: 884: 825: 816: 807: 801: 774: 765: 756: 740: 724: 718: 684: 636: 634: 633: 631: 604: 576: 562: 560: 559: 542: 540: 539: 527: 522: 519: 495: 474: 469: 460: 451: 446: 443: 417: 415: 414: 398: 396: 395: 387: 373: 368: 365: 343: 322: 296: 294: 293: 291: 260: 255: 245: 240: 231: 229: 209: 207: 185: 164: 162: 142: 122: 1094:{\displaystyle v_{\parallel }\in T_{p}N} 1185:is given by non-degenerate equations. 650:{\displaystyle {\hat {\mathbf {n} }}} 310:{\displaystyle {\hat {\mathbf {n} }}} 7: 25: 67:can be broken down the same way. 1342:. New York: Dover Publications. 1340:Electromagnetic fields and waves 637: 577: 563: 543: 523: 470: 461: 447: 418: 399: 388: 369: 297: 256: 241: 232: 210: 165: 157:be a point on the surface. Let 55:of the vector, and another one 1154: 1137: 951: 934: 749: 733: 641: 581: 567: 556: 547: 422: 403: 301: 1: 837:{\displaystyle T_{p}M/T_{p}N} 875:and the component normal to 871:of the component tangent to 217:{\displaystyle \mathbf {v} } 202:Then one can write uniquely 172:{\displaystyle \mathbf {v} } 100:and the component normal to 1338:Rojansky, Vladimir (1979). 1002:{\displaystyle v\in T_{p}M} 859:, and the tangent space of 283:to the surface, that is, a 1394: 1357:Crowell, Benjamin (2003). 1192:is given explicitly, via 59:to the curve, called the 51:to the curve, called the 1258:, then the gradients of 665:More generally, given a 70:More generally, given a 1285:span the normal space. 612:{\displaystyle \times } 1321:Frenet–Serret formulas 1279: 1252: 1167: 1095: 1050: 1003: 964: 838: 787: 699: 698:{\displaystyle p\in N} 651: 613: 591: 504: 503:{\displaystyle \cdot } 484: 432: 352: 331: 311: 270: 218: 194: 173: 151: 131: 84:, and a vector in the 32: 1378:Differential geometry 1280: 1278:{\displaystyle g_{i}} 1253: 1251:{\displaystyle g_{i}} 1168: 1096: 1051: 1004: 965: 855:, the above sequence 839: 788: 700: 652: 614: 592: 505: 485: 433: 353: 332: 312: 271: 219: 195: 174: 152: 132: 30: 1302:Lagrange multipliers 1262: 1235: 1194:parametric equations 1105: 1062: 1014: 977: 883: 800: 717: 707:short exact sequence 683: 630: 603: 518: 494: 442: 364: 342: 321: 290: 228: 206: 184: 161: 141: 121: 53:tangential component 18:Tangential component 1227:or intersection of 853:Riemannian manifold 117:More formally, let 1275: 1248: 1163: 1091: 1046: 999: 960: 834: 783: 695: 647: 609: 587: 500: 480: 428: 348: 327: 307: 266: 214: 190: 169: 147: 137:be a surface, and 127: 33: 644: 570: 550: 425: 406: 351:{\displaystyle x} 330:{\displaystyle S} 317:perpendicular to 304: 193:{\displaystyle x} 150:{\displaystyle x} 130:{\displaystyle S} 108:Formal definition 16:(Redirected from 1385: 1364: 1360:Light and Matter 1353: 1310:total derivative 1284: 1282: 1281: 1276: 1274: 1273: 1257: 1255: 1254: 1249: 1247: 1246: 1198:parametric curve 1172: 1170: 1169: 1164: 1162: 1161: 1149: 1148: 1130: 1129: 1117: 1116: 1100: 1098: 1097: 1092: 1087: 1086: 1074: 1073: 1057: 1055: 1053: 1052: 1047: 1045: 1044: 1032: 1031: 1008: 1006: 1005: 1000: 995: 994: 969: 967: 966: 961: 959: 958: 946: 945: 927: 926: 911: 910: 895: 894: 867:decomposes as a 843: 841: 840: 835: 830: 829: 820: 812: 811: 792: 790: 789: 784: 779: 778: 769: 761: 760: 745: 744: 729: 728: 704: 702: 701: 696: 656: 654: 653: 648: 646: 645: 640: 635: 618: 616: 615: 610: 596: 594: 593: 588: 580: 572: 571: 566: 561: 552: 551: 546: 541: 532: 531: 526: 509: 507: 506: 501: 489: 487: 486: 481: 479: 478: 473: 464: 456: 455: 450: 437: 435: 434: 429: 427: 426: 421: 416: 413: 409: 408: 407: 402: 397: 391: 378: 377: 372: 359: 357: 355: 354: 349: 336: 334: 333: 328: 316: 314: 313: 308: 306: 305: 300: 295: 275: 273: 272: 267: 265: 264: 259: 250: 249: 244: 235: 223: 221: 220: 215: 213: 201: 199: 197: 196: 191: 178: 176: 175: 170: 168: 156: 154: 153: 148: 136: 134: 133: 128: 61:normal component 43:at a point on a 21: 1393: 1392: 1388: 1387: 1386: 1384: 1383: 1382: 1368: 1367: 1356: 1350: 1337: 1334: 1306:critical points 1298: 1265: 1260: 1259: 1238: 1233: 1232: 1179: 1153: 1140: 1121: 1108: 1103: 1102: 1078: 1065: 1060: 1059: 1036: 1023: 1012: 1011: 1010: 986: 975: 974: 950: 937: 918: 902: 886: 881: 880: 821: 803: 798: 797: 770: 752: 736: 720: 715: 714: 681: 680: 663: 628: 627: 601: 600: 521: 516: 515: 492: 491: 468: 445: 440: 439: 386: 382: 367: 362: 361: 340: 339: 338: 319: 318: 288: 287: 254: 239: 226: 225: 204: 203: 182: 181: 180: 179:be a vector at 159: 158: 139: 138: 119: 118: 115: 110: 23: 22: 15: 12: 11: 5: 1391: 1389: 1381: 1380: 1370: 1369: 1366: 1365: 1354: 1348: 1333: 1330: 1329: 1328: 1323: 1318: 1316:Surface normal 1313: 1304:: constrained 1297: 1294: 1272: 1268: 1245: 1241: 1229:level surfaces 1178: 1175: 1160: 1156: 1152: 1147: 1143: 1139: 1136: 1133: 1128: 1124: 1120: 1115: 1111: 1090: 1085: 1081: 1077: 1072: 1068: 1043: 1039: 1035: 1030: 1026: 1022: 1019: 998: 993: 989: 985: 982: 972:tangent vector 957: 953: 949: 944: 940: 936: 933: 930: 925: 921: 917: 914: 909: 905: 901: 898: 893: 889: 833: 828: 824: 819: 815: 810: 806: 795:quotient space 782: 777: 773: 768: 764: 759: 755: 751: 748: 743: 739: 735: 732: 727: 723: 711:tangent spaces 709:involving the 694: 691: 688: 662: 659: 643: 639: 619:" denotes the 608: 586: 583: 579: 575: 569: 565: 558: 555: 549: 545: 538: 535: 530: 525: 510:" denotes the 499: 477: 472: 467: 463: 459: 454: 449: 424: 420: 412: 405: 401: 394: 390: 385: 381: 376: 371: 347: 326: 303: 299: 263: 258: 253: 248: 243: 238: 234: 212: 189: 167: 146: 126: 114: 111: 109: 106: 92:at a point of 24: 14: 13: 10: 9: 6: 4: 3: 2: 1390: 1379: 1376: 1375: 1373: 1362: 1361: 1355: 1351: 1349:0-486-63834-0 1345: 1341: 1336: 1335: 1331: 1327: 1324: 1322: 1319: 1317: 1314: 1311: 1307: 1303: 1300: 1299: 1295: 1293: 1291: 1286: 1270: 1266: 1243: 1239: 1230: 1226: 1222: 1218: 1214: 1209: 1207: 1203: 1199: 1195: 1191: 1186: 1184: 1176: 1174: 1158: 1150: 1145: 1141: 1134: 1131: 1126: 1122: 1118: 1113: 1109: 1088: 1083: 1079: 1075: 1070: 1066: 1041: 1037: 1033: 1028: 1024: 1020: 1017: 996: 991: 987: 983: 980: 973: 955: 947: 942: 938: 931: 928: 923: 919: 915: 912: 907: 903: 899: 896: 891: 887: 878: 874: 870: 866: 862: 858: 854: 850: 845: 831: 826: 822: 817: 813: 808: 804: 796: 780: 775: 771: 766: 762: 757: 753: 746: 741: 737: 730: 725: 721: 712: 708: 692: 689: 686: 678: 675: 671: 668: 660: 658: 624: 622: 621:cross product 606: 597: 584: 573: 553: 536: 533: 528: 513: 497: 475: 465: 457: 452: 410: 392: 383: 379: 374: 345: 324: 286: 282: 277: 261: 251: 246: 236: 187: 144: 124: 112: 107: 105: 103: 99: 95: 91: 87: 86:tangent space 83: 80: 76: 73: 68: 66: 62: 58: 57:perpendicular 54: 50: 46: 42: 38: 29: 19: 1359: 1339: 1296:Applications 1287: 1221:hypersurface 1212: 1210: 1189: 1187: 1182: 1180: 1177:Computations 876: 872: 864: 860: 848: 846: 679:and a point 676: 669: 664: 625: 598: 278: 116: 101: 97: 93: 89: 81: 74: 69: 60: 52: 34: 1290:dot product 1196:(such as a 970:Thus every 705:, we get a 667:submanifold 661:Submanifold 512:dot product 285:unit vector 281:unit normal 72:submanifold 37:mathematics 1332:References 1217:implicitly 1009:splits as 869:direct sum 39:, given a 1225:level set 1215:is given 1206:immersion 1159:⊥ 1119:∈ 1114:⊥ 1076:∈ 1071:∥ 1042:⊥ 1029:∥ 984:∈ 956:⊥ 916:⊕ 750:→ 734:→ 690:∈ 642:^ 607:× 574:× 568:^ 554:× 548:^ 537:− 529:∥ 498:⋅ 476:⊥ 466:− 453:∥ 438:and thus 423:^ 404:^ 393:⋅ 375:⊥ 302:^ 262:⊥ 247:∥ 224:as a sum 1372:Category 1181:Suppose 674:manifold 79:manifold 1312:vanish. 1223:) as a 599:where " 490:where " 113:Surface 65:surface 49:tangent 1346:  1058:where 857:splits 360:Then, 41:vector 1202:basis 851:is a 672:of a 77:of a 45:curve 1344:ISBN 1231:for 1101:and 793:The 1211:If 1208:). 1188:If 863:at 847:If 337:at 88:to 35:In 1374:: 1173:. 1135::= 932::= 879:: 713:: 623:. 104:. 1363:. 1352:. 1271:i 1267:g 1244:i 1240:g 1213:N 1190:N 1183:N 1155:) 1151:N 1146:p 1142:T 1138:( 1132:N 1127:p 1123:N 1110:v 1089:N 1084:p 1080:T 1067:v 1056:, 1038:v 1034:+ 1025:v 1021:= 1018:v 997:M 992:p 988:T 981:v 952:) 948:N 943:p 939:T 935:( 929:N 924:p 920:N 913:N 908:p 904:T 900:= 897:M 892:p 888:T 877:N 873:N 865:p 861:M 849:M 832:N 827:p 823:T 818:/ 814:M 809:p 805:T 781:N 776:p 772:T 767:/ 763:M 758:p 754:T 747:M 742:p 738:T 731:N 726:p 722:T 693:N 687:p 677:M 670:N 638:n 585:, 582:) 578:v 564:n 557:( 544:n 534:= 524:v 471:v 462:v 458:= 448:v 419:n 411:) 400:n 389:v 384:( 380:= 370:v 358:. 346:x 325:S 298:n 257:v 252:+ 242:v 237:= 233:v 211:v 200:. 188:x 166:v 145:x 125:S 102:N 98:N 94:N 90:M 82:M 75:N 20:)

Index

Tangential component

mathematics
vector
curve
tangent
perpendicular
surface
submanifold
manifold
tangent space
unit normal
unit vector
dot product
cross product
submanifold
manifold
short exact sequence
tangent spaces
quotient space
Riemannian manifold
splits
direct sum
tangent vector
parametric equations
parametric curve
basis
immersion
implicitly
hypersurface

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑