Knowledge

Tarski–Seidenberg theorem

Source 📝

149:. This complexity is optimal, as there are examples where the output has a double exponential number of connected components. This algorithm is therefore fundamental, and it is widely used in 304: 702: 236: 566: 459: 507:, the projection of an algebraic set may be non-algebraic. Thus the existence of real algebraic sets with non-algebraic projections does not rely on the fact that the 868: 414:
algebraic sets. For these sets the theorem fails, i.e. projections of algebraic sets need not be algebraic. As a simple example consider the
142: 831: 797: 742: 173:
of sets defined by a finite number of polynomial equations and inequalities, that is by a finite number of statements of the form
863: 150: 788:. Translations of Mathematical Monographs. Vol. 88. Translated from the Russian by Smilka Zdravkovska. Providence, RI: 649:
and points. The final condition for such a collection to be an o-minimal structure is that the projection map on the first
789: 115: 40:-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The 765: 247: 576: 575:-axis is the half-line [0, ∞), a semialgebraic set that cannot be obtained from algebraic sets by (finite) 179: 134: 33: 146: 646: 53: 512: 111: 596: 508: 61: 29: 722: 170: 130: 126: 92: 65: 49: 734: 532: 428: 827: 793: 781: 757: 738: 162: 138: 119: 819: 803: 769: 488:≠ 0. This is a semialgebraic set, but it is not an algebraic set as the algebraic sets in 807: 773: 110:) is equivalent to a similar formula without quantifiers. An important consequence is the 815: 727: 580: 504: 406:
If we only define sets using polynomial equations and not inequalities then we define
857: 620: ≥ 1 such that we can take finite unions and complements of the subsets in 407: 45: 44:—also known as the Tarski–Seidenberg projection property—is named after 847: 57: 17: 310: 497: 415: 464:
This is a perfectly good algebraic set, but projecting it down by sending (
519: 41: 764:. London Mathematical Society Lecture Note Series. Vol. 248. 680:. The Tarski–Seidenberg theorem tells us that this holds if 64:
constructed from polynomial equations and inequalities by
703:
Decidability of first-order theories of the real numbers
145:, which allows quantifier elimination over the reals in 374:). Then the Tarski–Seidenberg theorem states that if 535: 431: 250: 182: 137:
that is too high for using the method on a computer.
726: 560: 453: 298: 230: 591:This result confirmed that semialgebraic sets in 28: + 1)-dimensional space defined by 299:{\displaystyle q(x_{1},\ldots ,x_{n})>0\,} 8: 820:"Real Algebraic Tools in Stochastic Games" 231:{\displaystyle p(x_{1},\ldots ,x_{n})=0\,} 540: 534: 450: 430: 295: 280: 261: 249: 227: 212: 193: 181: 714: 503:This example shows also that, over the 762:Tame topology and o-minimal structures 484:produces the set of points satisfying 826:. Dordrecht: Kluwer. pp. 57–75. 7: 689:is the set of semialgebraic sets in 603:. These are collections of subsets 526:, which is defined by the equation 143:cylindrical algebraic decomposition 14: 824:Stochastic Games and Applications 629:and the result will still be in 151:computational algebraic geometry 133:, the resulting algorithm has a 733:. New York: Springer. pp.  869:Theorems in algebraic geometry 320:. We define a projection map 286: 254: 218: 186: 1: 790:American Mathematical Society 595:form what is now known as an 645:are simply finite unions of 394:) is a semialgebraic set in 141:introduced the algorithm of 638:, moreover the elements of 402:Failure with algebraic sets 36:can be projected down onto 885: 766:Cambridge University Press 561:{\displaystyle y^{2}-x=0.} 378:is a semialgebraic set in 848:Tarski–Seidenberg theorem 454:{\displaystyle xy-1=0.\,} 22:Tarski–Seidenberg theorem 571:Its projection onto the 422:defined by the equation 135:computational complexity 864:Real algebraic geometry 518:Another example is the 511:of real numbers is not 147:double exponential time 587:Relation to structures 562: 455: 300: 232: 125:Although the original 54:quantifier elimination 24:states that a set in ( 782:Khovanskii, Askold G. 661:must send subsets in 563: 500:and the finite sets. 456: 386: ≥ 1, then 301: 233: 60:, that is that every 56:is possible over the 533: 513:algebraically closed 429: 332:by sending a point ( 248: 180: 30:polynomial equations 729:Algorithmic Algebra 723:Mishra, Bhubaneswar 597:o-minimal structure 328: →  129:of the theorem was 66:logical connectives 558: 451: 296: 228: 120:real-closed fields 52:. It implies that 50:Abraham Seidenberg 850:at PlanetMath.org 758:van den Dries, L. 653:coordinates from 163:semialgebraic set 139:George E. Collins 876: 837: 811: 777: 749: 748: 732: 719: 567: 565: 564: 559: 545: 544: 460: 458: 457: 452: 305: 303: 302: 297: 285: 284: 266: 265: 237: 235: 234: 229: 217: 216: 198: 197: 105: 97: 86: 78: 70: 884: 883: 879: 878: 877: 875: 874: 873: 854: 853: 844: 834: 816:Neyman, Abraham 814: 800: 780: 756: 753: 752: 745: 721: 720: 716: 711: 699: 688: 679: 670: 644: 637: 628: 611: 589: 581:set complements 536: 531: 530: 505:complex numbers 427: 426: 404: 373: 364: 357: 347: 338: 276: 257: 246: 245: 208: 189: 178: 177: 159: 103: 95: 84: 76: 68: 12: 11: 5: 882: 880: 872: 871: 866: 856: 855: 852: 851: 843: 842:External links 840: 839: 838: 832: 812: 798: 778: 751: 750: 743: 713: 712: 710: 707: 706: 705: 698: 695: 684: 675: 671:to subsets in 665: 642: 633: 624: 607: 588: 585: 579:, unions, and 569: 568: 557: 554: 551: 548: 543: 539: 462: 461: 449: 446: 443: 440: 437: 434: 408:algebraic sets 403: 400: 369: 362: 352: 343: 336: 307: 306: 294: 291: 288: 283: 279: 275: 272: 269: 264: 260: 256: 253: 239: 238: 226: 223: 220: 215: 211: 207: 204: 201: 196: 192: 188: 185: 158: 155: 13: 10: 9: 6: 4: 3: 2: 881: 870: 867: 865: 862: 861: 859: 849: 846: 845: 841: 835: 833:1-4020-1492-9 829: 825: 821: 817: 813: 809: 805: 801: 799:0-8218-4547-0 795: 791: 787: 783: 779: 775: 771: 767: 763: 759: 755: 754: 746: 744:0-387-94090-1 740: 736: 731: 730: 724: 718: 715: 708: 704: 701: 700: 696: 694: 692: 687: 683: 678: 674: 668: 664: 660: 656: 652: 648: 641: 636: 632: 627: 623: 619: 615: 610: 606: 602: 598: 594: 586: 584: 582: 578: 577:intersections 574: 555: 552: 549: 546: 541: 537: 529: 528: 527: 525: 521: 516: 514: 510: 506: 501: 499: 495: 491: 487: 483: 479: 475: 471: 467: 447: 444: 441: 438: 435: 432: 425: 424: 423: 421: 417: 413: 409: 401: 399: 397: 393: 389: 385: 381: 377: 372: 368: 361: 355: 351: 346: 342: 335: 331: 327: 323: 319: 315: 312: 292: 289: 281: 277: 273: 270: 267: 262: 258: 251: 244: 243: 242: 224: 221: 213: 209: 205: 202: 199: 194: 190: 183: 176: 175: 174: 172: 168: 164: 156: 154: 152: 148: 144: 140: 136: 132: 128: 123: 121: 117: 113: 109: 101: 94: 90: 82: 74: 67: 63: 59: 55: 51: 47: 46:Alfred Tarski 43: 39: 35: 31: 27: 23: 19: 823: 785: 761: 728: 717: 690: 685: 681: 676: 672: 666: 662: 658: 654: 650: 639: 634: 630: 625: 621: 617: 613: 608: 604: 600: 592: 590: 572: 570: 523: 517: 502: 496:itself, the 493: 489: 485: 481: 477: 473: 469: 465: 463: 419: 411: 410:rather than 405: 395: 391: 387: 383: 379: 375: 370: 366: 359: 353: 349: 344: 340: 333: 329: 325: 321: 317: 313: 308: 240: 169:is a finite 166: 160: 131:constructive 124: 112:decidability 107: 99: 88: 80: 72: 37: 34:inequalities 25: 21: 15: 311:polynomials 93:quantifiers 18:mathematics 858:Categories 808:0728.12002 786:Fewnomials 774:0953.03045 709:References 669: +1 647:intervals 616:for each 547:− 498:empty set 439:− 416:hyperbola 382:for some 356: +1 271:… 203:… 157:Statement 818:(2003). 784:(1991). 760:(1998). 725:(1993). 697:See also 520:parabola 324: : 365:, ..., 339:, ..., 114:of the 100:for all 62:formula 42:theorem 830:  806:  796:  772:  741:  737:–347. 358:) to ( 116:theory 108:exists 91:) and 20:, the 509:field 472:) in 171:union 127:proof 58:reals 828:ISBN 794:ISBN 739:ISBN 492:are 412:semi 316:and 309:for 290:> 241:and 48:and 32:and 804:Zbl 770:Zbl 735:345 657:to 612:of 599:on 522:in 480:in 476:to 418:in 165:in 118:of 102:), 89:not 83:), 81:and 75:), 16:In 860:: 822:. 802:. 792:. 768:. 693:. 583:. 556:0. 515:. 468:, 448:0. 398:. 348:, 161:A 153:. 122:. 73:or 836:. 810:. 776:. 747:. 691:R 686:n 682:S 677:n 673:S 667:n 663:S 659:R 655:R 651:n 643:1 640:S 635:n 631:S 626:n 622:S 618:n 614:R 609:n 605:S 601:R 593:R 573:x 553:= 550:x 542:2 538:y 524:R 494:R 490:R 486:x 482:R 478:x 474:R 470:y 466:x 445:= 442:1 436:y 433:x 420:R 396:R 392:X 390:( 388:π 384:n 380:R 376:X 371:n 367:x 363:1 360:x 354:n 350:x 345:n 341:x 337:1 334:x 330:R 326:R 322:π 318:q 314:p 293:0 287:) 282:n 278:x 274:, 268:, 263:1 259:x 255:( 252:q 225:0 222:= 219:) 214:n 210:x 206:, 200:, 195:1 191:x 187:( 184:p 167:R 106:( 104:∃ 98:( 96:∀ 87:( 85:¬ 79:( 77:∧ 71:( 69:∨ 38:n 26:n

Index

mathematics
polynomial equations
inequalities
theorem
Alfred Tarski
Abraham Seidenberg
quantifier elimination
reals
formula
logical connectives
quantifiers
decidability
theory
real-closed fields
proof
constructive
computational complexity
George E. Collins
cylindrical algebraic decomposition
double exponential time
computational algebraic geometry
semialgebraic set
union
polynomials
algebraic sets
hyperbola
empty set
complex numbers
field
algebraically closed

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.