Knowledge

Chebotarev's density theorem

Source 📝

1767: 1476: 448:, obtained from the field of rational numbers by adjoining a primitive root of unity of a given order. For example, the ordinary integer primes group into four classes, each with probability 1/4, according to their pattern of splitting in the ring of integers corresponding to the 8th roots of unity. In this case, the field extension has degree 4 and is 1762:{\displaystyle \sum _{p\leq x,p\not \mid {\mathfrak {f}}(\rho )}\chi _{\rho }({\text{Fr}}_{p})\log p=rx+O{\biggl (}{\frac {x^{\beta }}{\beta }}+x\exp {\biggl (}{\frac {-c(dn)^{-4}\log x}{3\log {\mathfrak {f}}(\rho )+{\sqrt {\log x}}}}{\biggr )}(dn\log(x{\mathfrak {f}}(\rho )){\biggr )},} 1123: 2110:
The Chebotarev density theorem reduces the problem of classifying Galois extensions of a number field to that of describing the splitting of primes in extensions. Specifically, it implies that as a Galois extension of
976: 388:
From this description, it appears that as one considers larger and larger primes, the frequency of a prime splitting completely approaches 1/2, and likewise for the primes that remain primes in
436: 2076: 1306: 821:
is abelian the classes of course each have size 1. For the case of a non-abelian group of order 6 they have size 1, 2 and 3, and there are correspondingly (for example) 50% of primes
1218: 921: 1271: 1904: 1348: 307: 1402: 382: 141: 68: 1869: 473: 393: 1375: 1245: 90:
in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes
1468: 1830: 1810: 1422: 1177: 2148: 825:
that have an order 2 element as their Frobenius. So these primes have residue degree 2, so they split into exactly three prime ideals in a degree 6 extension of
1790: 1442: 329: 2153: 2430: 396:
demonstrates that this is indeed the case. Even though the prime numbers themselves appear rather erratically, splitting of the primes in the extension
2401:
Tschebotareff, N. (1926), "Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören",
2346: 460:
established the framework for investigating this pattern and proved a special case of the theorem. The general statement was proved by
935: 192:
Then the theorem says that the asymptotic distribution of these invariants is uniform over the group, so that a conjugacy class with
2384: 575:
hence by the Chebotarev density theorem, primes are asymptotically uniformly distributed among different residue classes coprime to
162:
among all primes. More generally, splitting behavior can be specified by assigning to (almost) every prime number an invariant, its
86:. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime 2338: 461: 2435: 1118:{\displaystyle {\frac {|C|}{|G|}}{\Bigl (}\mathrm {li} (x)+O{\bigl (}{\sqrt {x}}(n\log x+\log |\Delta |){\bigr )}{\Bigr )},} 231:
is congruent to 1 mod 4, then it factors into a product of two distinct prime gaussian integers, or "splits completely"; if
926:
The statement is valid when the density refers to either the natural density or the analytic density of the set of primes.
402: 227:, he observed that the ordinary prime numbers may factor further in this new set of integers. In fact, if a prime 2029: 1276: 1914:
The statement of the Chebotarev density theorem can be generalized to the case of an infinite Galois extension
456:. It turned out that the Galois group of the extension plays a key role in the pattern of splitting of primes. 1190: 667: 34: 2293: 521: 118: 886: 2094:
A consequence of this version of the theorem is that the Frobenius elements of the unramified primes of
1250: 600: 1874: 730: 217: 2298: 2202: 1311: 253: 2005:
that is stable under conjugation and whose boundary has Haar measure zero. Then, the set of primes
1380: 706: 336: 103: 124: 51: 544: 2324: 1839: 1353: 1223: 2380: 2372: 2342: 784: 449: 163: 79: 1447: 2410: 2360: 2303: 2278: 1815: 596: 529: 453: 445: 221: 42: 2394: 2356: 2315: 1795: 1407: 1162: 17: 2390: 2364: 2352: 2311: 788: 765: 714: 619: 457: 167: 71: 1143:
The effective form of Chebotarev's density theory becomes much weaker without GRH. Take
2123:
that split completely in it. A related corollary is that if almost all prime ideals of
1775: 1427: 314: 2226:
Lagarias, J.C.; Odlyzko, A.M. (1977). "Effective Versions of the Chebotarev Theorem".
2424: 795: 675: 171: 75: 38: 2379:(Revised reprint of the 1968 original ed.), Wellesley, MA: A K Peters, Ltd., 1833: 647: 27:
Describes statistically the splitting of primes in a given Galois extension of Q
1993:. The Chebotarev density theorem in this situation can be stated as follows: 1906:
term can be ignored. The implicit constant of this expression is absolute.
559:
is simply its residue class because the number of distinct primes into which
2171:
This particular example already follows from the Frobenius result, because
543:
is abelian and can be canonically identified with the group of invertible
634:. Its 'splitting type' is the list of degrees of irreducible factors of 2414: 2307: 489: 235:
is congruent to 3 mod 4, then it remains prime, or is "inert"; and if
1220:
to be the Artin conductor of this representation. Suppose that, for
472:
The Chebotarev density theorem may be viewed as a generalisation of
524:. This is a special case of the Chebotarev density theorem for the 444:
Similar statistical laws also hold for splitting of primes in the
1970:
is compact in this topology, there is a unique Haar measure μ on
2091:
is finite (the Haar measure is then just the counting measure).
74:. Generally speaking, a prime integer will factor into several 1350:
is entire; that is, the Artin conjecture is satisfied for all
1128:
where the constant implied in the big-O notation is absolute,
2245:. Providence, RI: American Mathematical Society. p. 111. 1966:
is a profinite group equipped with the Krull topology. Since
476:. A quantitative form of Dirichlet's theorem states that if 591:
give an earlier result of Frobenius in this area. Suppose
239:
is 2 then it becomes a product of the square of the prime
805:
then the theorem says that asymptotically a proportion |
705:; in other words by choosing an ordering of α and its 2032: 1877: 1842: 1818: 1798: 1778: 1479: 1450: 1430: 1410: 1383: 1356: 1314: 1279: 1253: 1226: 1193: 1165: 979: 889: 405: 339: 317: 256: 127: 54: 857:
that is stable under conjugation. The set of primes
113:
A special case that is easier to state says that if
787:of a prime (ideal), which is in fact an associated 2377:Abelian l-adic representations and elliptic curves 2179:is more demanding than having the same cycle type. 2070: 1898: 1863: 1824: 1804: 1784: 1761: 1462: 1436: 1416: 1396: 1369: 1342: 1300: 1265: 1239: 1212: 1171: 1117: 915: 588: 430: 376: 323: 301: 147:, then the prime numbers that completely split in 135: 62: 1986:there is an associated Frobenius conjugacy class 1751: 1704: 1611: 1575: 1179:to be a nontrivial irreducible representation of 1107: 1016: 813:| of primes have associated Frobenius element as 752:states that for any given choice of Π the primes 431:{\displaystyle \mathbb {Z} \subset \mathbb {Z} } 2175:is a symmetric group. In general, conjugacy in 2119:is uniquely determined by the set of primes of 946:is a finite Galois extension with Galois group 869:and whose associated Frobenius conjugacy class 841:be a finite Galois extension of a number field 713:is faithfully represented as a subgroup of the 2149:Splitting of prime ideals in Galois extensions 934:The Generalized Riemann hypothesis implies an 474:Dirichlet's theorem on arithmetic progressions 394:Dirichlet's theorem on arithmetic progressions 196:elements occurs with frequency asymptotic to 166:, which is a representative of a well-defined 2334:Grundlehren der mathematischen Wissenschaften 1100: 1046: 107: 8: 2332: 2241:Iwaniec, Henryk; Kowalski, Emmanuel (2004). 2071:{\displaystyle {\frac {\mu (X)}{\mu (G)}}.} 1301:{\displaystyle \rho \otimes {\bar {\rho }}} 247:; we say that 2 "ramifies". For instance, 452:, with the Galois group isomorphic to the 2297: 2187: 2185: 2033: 2031: 1888: 1882: 1876: 1841: 1817: 1812:is trivial and is otherwise 0, and where 1797: 1777: 1750: 1749: 1731: 1730: 1703: 1702: 1686: 1668: 1667: 1638: 1616: 1610: 1609: 1586: 1580: 1574: 1573: 1540: 1535: 1525: 1504: 1503: 1484: 1478: 1449: 1429: 1409: 1388: 1382: 1361: 1355: 1325: 1313: 1287: 1286: 1278: 1252: 1231: 1225: 1195: 1194: 1192: 1164: 1106: 1105: 1099: 1098: 1090: 1082: 1051: 1045: 1044: 1021: 1015: 1014: 1006: 998: 991: 983: 980: 978: 890: 888: 415: 414: 407: 406: 404: 368: 338: 316: 255: 129: 128: 126: 56: 55: 53: 37:describes statistically the splitting of 2277:Lenstra, H. W.; Stevenhagen, P. (1996), 2154:Grothendieck–Katz p-curvature conjecture 1922:that is unramified outside a finite set 567:)/m, where m is multiplicative order of 2164: 614:) a monic integer polynomial such that 1213:{\displaystyle {\mathfrak {f}}(\rho )} 938:of the Chebotarev density theorem: if 2083:This reduces to the finite case when 1424:. Then there is an absolute positive 958:, the number of unramified primes of 768:δ, with δ equal to the proportion of 551:. The splitting invariant of a prime 106:in his thesis in 1922, published in ( 7: 2279:"Chebotarëv and his density theorem" 646:factorizes in some fashion over the 496:, then the proportion of the primes 243:and the invertible gaussian integer 102:goes to infinity. It was proved by 2431:Theorems in algebraic number theory 1732: 1669: 1505: 1196: 1147:to be a finite Galois extension of 916:{\displaystyle {\frac {\#X}{\#G}}.} 1954:). In this case, the Galois group 1404:to be the character associated to 1266:{\displaystyle \rho \otimes \rho } 1087: 1025: 1022: 966:with Frobenius conjugacy class in 901: 893: 779:The statement of the more general 441:follows a simple statistical law. 25: 1899:{\displaystyle x^{\beta }/\beta } 697:is a permutation of the roots of 468:Relation with Dirichlet's theorem 2203:"The Chebotarev Density Theorem" 1871:; if there is no such zero, the 954:a union of conjugacy classes of 756:for which the splitting type of 589:Lenstra & Stevenhagen (1996) 462:Nikolai Grigoryevich Chebotaryov 2255:Corollary VII.13.10 of Neukirch 1946:is unramified in the extension 1930:(i.e. if there is a finite set 666:, then the splitting type is a 220:first introduced the notion of 121:which is a Galois extension of 2286:The Mathematical Intelligencer 2264:Corollary VII.13.7 of Neukirch 2059: 2053: 2045: 2039: 1858: 1846: 1746: 1743: 1737: 1724: 1709: 1680: 1674: 1635: 1625: 1546: 1531: 1516: 1510: 1343:{\displaystyle L(\rho _{0},s)} 1337: 1318: 1292: 1207: 1201: 1095: 1091: 1083: 1058: 1035: 1029: 1007: 999: 992: 984: 626:. It makes sense to factorise 535:. Indeed, the Galois group of 425: 419: 365: 352: 302:{\displaystyle 5=(1+2i)(1-2i)} 296: 281: 278: 263: 98:, tends to a certain limit as 1: 1397:{\displaystyle \chi _{\rho }} 733:, which gives a 'cycle type' 377:{\displaystyle 2=-i(1+i)^{2}} 136:{\displaystyle \mathbb {Q} } 63:{\displaystyle \mathbb {Q} } 31:Chebotarev's density theorem 18:Tchebotarev density theorem 2452: 2329:Algebraische Zahlentheorie 1864:{\displaystyle L(\rho ,s)} 1140:, and Δ its discriminant. 94:less than a large integer 2337:. Vol. 322. Berlin: 2201:Lenstra, Hendrik (2006). 1370:{\displaystyle \rho _{0}} 1240:{\displaystyle \rho _{0}} 829:with it as Galois group. 587:In their survey article, 776:that have cycle type Π. 741:), again a partition of 2228:Algebraic Number Fields 1938:such that any prime of 1463:{\displaystyle x\geq 2} 1247:a subrepresentation of 865:that are unramified in 674:. Considering also the 467: 35:algebraic number theory 2436:Analytic number theory 2333: 2243:Analytic Number Theory 2191:Section I.2.2 of Serre 2106:Important consequences 2072: 1900: 1865: 1826: 1825:{\displaystyle \beta } 1806: 1786: 1763: 1464: 1438: 1418: 1398: 1371: 1344: 1302: 1267: 1241: 1214: 1173: 1119: 917: 630:modulo a prime number 522:Euler totient function 432: 378: 325: 303: 212:History and motivation 137: 119:algebraic number field 64: 2403:Mathematische Annalen 2073: 1901: 1866: 1834:exceptional real zero 1827: 1807: 1805:{\displaystyle \rho } 1787: 1764: 1465: 1439: 1419: 1417:{\displaystyle \rho } 1399: 1372: 1345: 1303: 1268: 1242: 1215: 1174: 1172:{\displaystyle \rho } 1120: 918: 601:rational number field 446:cyclotomic extensions 433: 379: 326: 304: 138: 65: 2127:split completely in 2030: 1875: 1840: 1816: 1796: 1776: 1477: 1448: 1428: 1408: 1381: 1354: 1312: 1277: 1251: 1224: 1191: 1163: 977: 887: 750:theorem of Frobenius 731:cycle representation 707:algebraic conjugates 403: 337: 315: 254: 218:Carl Friedrich Gauss 125: 52: 1910:Infinite extensions 794:of elements of the 783:is in terms of the 508:is asymptotic to 1/ 104:Nikolai Chebotaryov 2415:10.1007/BF01206606 2373:Serre, Jean-Pierre 2308:10.1007/BF03027290 2068: 1974:. For every prime 1896: 1861: 1822: 1802: 1782: 1759: 1520: 1460: 1434: 1414: 1394: 1367: 1340: 1298: 1263: 1237: 1210: 1169: 1151:with Galois group 1115: 913: 845:with Galois group 781:Chebotarev theorem 484:is an integer and 428: 374: 321: 309:splits completely; 299: 133: 108:Tschebotareff 1926 80:algebraic integers 60: 2348:978-3-540-65399-8 2063: 1785:{\displaystyle r} 1700: 1697: 1595: 1538: 1480: 1437:{\displaystyle c} 1295: 1132:is the degree of 1056: 1012: 936:effective version 930:Effective Version 908: 785:Frobenius element 662:is the degree of 324:{\displaystyle 3} 164:Frobenius element 16:(Redirected from 2443: 2417: 2397: 2368: 2336: 2325:Neukirch, Jürgen 2318: 2301: 2283: 2265: 2262: 2256: 2253: 2247: 2246: 2238: 2232: 2231: 2223: 2217: 2216: 2214: 2212: 2207: 2198: 2192: 2189: 2180: 2169: 2077: 2075: 2074: 2069: 2064: 2062: 2048: 2034: 2024:⊆ X has density 1905: 1903: 1902: 1897: 1892: 1887: 1886: 1870: 1868: 1867: 1862: 1831: 1829: 1828: 1823: 1811: 1809: 1808: 1803: 1791: 1789: 1788: 1783: 1768: 1766: 1765: 1760: 1755: 1754: 1736: 1735: 1708: 1707: 1701: 1699: 1698: 1687: 1673: 1672: 1656: 1646: 1645: 1617: 1615: 1614: 1596: 1591: 1590: 1581: 1579: 1578: 1545: 1544: 1539: 1536: 1530: 1529: 1519: 1509: 1508: 1469: 1467: 1466: 1461: 1443: 1441: 1440: 1435: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1393: 1392: 1376: 1374: 1373: 1368: 1366: 1365: 1349: 1347: 1346: 1341: 1330: 1329: 1307: 1305: 1304: 1299: 1297: 1296: 1288: 1272: 1270: 1269: 1264: 1246: 1244: 1243: 1238: 1236: 1235: 1219: 1217: 1216: 1211: 1200: 1199: 1178: 1176: 1175: 1170: 1124: 1122: 1121: 1116: 1111: 1110: 1104: 1103: 1094: 1086: 1057: 1052: 1050: 1049: 1028: 1020: 1019: 1013: 1011: 1010: 1002: 996: 995: 987: 981: 922: 920: 919: 914: 909: 907: 899: 891: 876:is contained in 729:by means of its 597:Galois extension 530:cyclotomic field 454:Klein four-group 437: 435: 434: 429: 418: 410: 383: 381: 380: 375: 373: 372: 330: 328: 327: 322: 308: 306: 305: 300: 222:complex integers 142: 140: 139: 134: 132: 72:rational numbers 69: 67: 66: 61: 59: 43:Galois extension 21: 2451: 2450: 2446: 2445: 2444: 2442: 2441: 2440: 2421: 2420: 2400: 2387: 2371: 2349: 2339:Springer-Verlag 2323: 2299:10.1.1.116.9409 2281: 2276: 2273: 2268: 2263: 2259: 2254: 2250: 2240: 2239: 2235: 2225: 2224: 2220: 2210: 2208: 2205: 2200: 2199: 2195: 2190: 2183: 2170: 2166: 2162: 2145: 2131:, then in fact 2108: 2049: 2035: 2028: 2027: 2023: 2001:be a subset of 1992: 1912: 1878: 1873: 1872: 1838: 1837: 1814: 1813: 1794: 1793: 1774: 1773: 1657: 1634: 1618: 1582: 1534: 1521: 1475: 1474: 1446: 1445: 1444:such that, for 1426: 1425: 1406: 1405: 1384: 1379: 1378: 1357: 1352: 1351: 1321: 1310: 1309: 1275: 1274: 1249: 1248: 1227: 1222: 1221: 1189: 1188: 1161: 1160: 997: 982: 975: 974: 932: 900: 892: 885: 884: 875: 853:be a subset of 835: 789:conjugacy class 766:natural density 725:. We can write 724: 715:symmetric group 657: 620:splitting field 585: 545:residue classes 470: 458:Georg Frobenius 401: 400: 364: 335: 334: 313: 312: 252: 251: 214: 168:conjugacy class 123: 122: 78:in the ring of 50: 49: 28: 23: 22: 15: 12: 11: 5: 2449: 2447: 2439: 2438: 2433: 2423: 2422: 2419: 2418: 2409:(1): 191–228, 2398: 2385: 2369: 2347: 2320: 2319: 2272: 2269: 2267: 2266: 2257: 2248: 2233: 2218: 2193: 2181: 2163: 2161: 2158: 2157: 2156: 2151: 2144: 2141: 2107: 2104: 2081: 2080: 2079: 2078: 2067: 2061: 2058: 2055: 2052: 2047: 2044: 2041: 2038: 2021: 1990: 1911: 1908: 1895: 1891: 1885: 1881: 1860: 1857: 1854: 1851: 1848: 1845: 1821: 1801: 1781: 1770: 1769: 1758: 1753: 1748: 1745: 1742: 1739: 1734: 1729: 1726: 1723: 1720: 1717: 1714: 1711: 1706: 1696: 1693: 1690: 1685: 1682: 1679: 1676: 1671: 1666: 1663: 1660: 1655: 1652: 1649: 1644: 1641: 1637: 1633: 1630: 1627: 1624: 1621: 1613: 1608: 1605: 1602: 1599: 1594: 1589: 1585: 1577: 1572: 1569: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1543: 1533: 1528: 1524: 1518: 1515: 1512: 1507: 1502: 1499: 1496: 1493: 1490: 1487: 1483: 1459: 1456: 1453: 1433: 1413: 1391: 1387: 1364: 1360: 1339: 1336: 1333: 1328: 1324: 1320: 1317: 1294: 1291: 1285: 1282: 1262: 1259: 1256: 1234: 1230: 1209: 1206: 1203: 1198: 1168: 1126: 1125: 1114: 1109: 1102: 1097: 1093: 1089: 1085: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1055: 1048: 1043: 1040: 1037: 1034: 1031: 1027: 1024: 1018: 1009: 1005: 1001: 994: 990: 986: 962:of norm below 931: 928: 924: 923: 912: 906: 903: 898: 895: 873: 834: 831: 720: 653: 584: 581: 469: 466: 439: 438: 427: 424: 421: 417: 413: 409: 386: 385: 371: 367: 363: 360: 357: 354: 351: 348: 345: 342: 332: 320: 310: 298: 295: 292: 289: 286: 283: 280: 277: 274: 271: 268: 265: 262: 259: 213: 210: 209: 208: 190: 189: 160: 159: 151:have density 131: 58: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2448: 2437: 2434: 2432: 2429: 2428: 2426: 2416: 2412: 2408: 2404: 2399: 2396: 2392: 2388: 2386:1-56881-077-6 2382: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2344: 2340: 2335: 2330: 2326: 2322: 2321: 2317: 2313: 2309: 2305: 2300: 2295: 2291: 2287: 2280: 2275: 2274: 2270: 2261: 2258: 2252: 2249: 2244: 2237: 2234: 2229: 2222: 2219: 2204: 2197: 2194: 2188: 2186: 2182: 2178: 2174: 2168: 2165: 2159: 2155: 2152: 2150: 2147: 2146: 2142: 2140: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2105: 2103: 2101: 2098:are dense in 2097: 2092: 2090: 2086: 2065: 2056: 2050: 2042: 2036: 2026: 2025: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1995: 1994: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1934:of primes of 1933: 1929: 1926:of primes of 1925: 1921: 1917: 1909: 1907: 1893: 1889: 1883: 1879: 1855: 1852: 1849: 1843: 1835: 1819: 1799: 1779: 1756: 1740: 1727: 1721: 1718: 1715: 1712: 1694: 1691: 1688: 1683: 1677: 1664: 1661: 1658: 1653: 1650: 1647: 1642: 1639: 1631: 1628: 1622: 1619: 1606: 1603: 1600: 1597: 1592: 1587: 1583: 1570: 1567: 1564: 1561: 1558: 1555: 1552: 1549: 1541: 1526: 1522: 1513: 1500: 1497: 1494: 1491: 1488: 1485: 1481: 1473: 1472: 1471: 1457: 1454: 1451: 1431: 1411: 1389: 1385: 1362: 1358: 1334: 1331: 1326: 1322: 1315: 1289: 1283: 1280: 1260: 1257: 1254: 1232: 1228: 1204: 1186: 1182: 1166: 1158: 1154: 1150: 1146: 1141: 1139: 1135: 1131: 1112: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1053: 1041: 1038: 1032: 1003: 988: 973: 972: 971: 969: 965: 961: 957: 953: 949: 945: 941: 937: 929: 927: 910: 904: 896: 883: 882: 881: 879: 872: 868: 864: 860: 856: 852: 848: 844: 840: 832: 830: 828: 824: 820: 816: 812: 808: 804: 800: 797: 793: 790: 786: 782: 777: 775: 771: 767: 763: 759: 755: 751: 746: 744: 740: 736: 732: 728: 723: 719: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 677: 673: 669: 665: 661: 656: 652: 649: 645: 641: 637: 633: 629: 625: 621: 617: 613: 609: 605: 602: 598: 594: 590: 582: 580: 578: 574: 570: 566: 562: 558: 555:not dividing 554: 550: 546: 542: 538: 534: 531: 527: 523: 519: 515: 511: 507: 503: 500:congruent to 499: 495: 491: 487: 483: 479: 475: 465: 463: 459: 455: 451: 447: 442: 422: 411: 399: 398: 397: 395: 391: 369: 361: 358: 355: 349: 346: 343: 340: 333: 318: 311: 293: 290: 287: 284: 275: 272: 269: 266: 260: 257: 250: 249: 248: 246: 242: 238: 234: 230: 226: 223: 219: 211: 206: 202: 199: 198: 197: 195: 187: 183: 179: 176: 175: 174: 173: 169: 165: 158: 154: 153: 152: 150: 146: 120: 116: 111: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 48:of the field 47: 44: 40: 36: 32: 19: 2406: 2402: 2376: 2328: 2292:(2): 26–37, 2289: 2285: 2260: 2251: 2242: 2236: 2227: 2221: 2209:. Retrieved 2196: 2176: 2172: 2167: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2109: 2099: 2095: 2093: 2088: 2084: 2082: 2018: 2014: 2010: 2006: 2002: 1998: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1915: 1913: 1771: 1184: 1180: 1156: 1152: 1148: 1144: 1142: 1137: 1133: 1129: 1127: 967: 963: 959: 955: 951: 947: 943: 939: 933: 925: 880:has density 877: 870: 866: 862: 858: 854: 850: 846: 842: 838: 836: 826: 822: 818: 814: 810: 806: 802: 801:. If we fix 798: 796:Galois group 791: 780: 778: 773: 769: 761: 757: 753: 749: 747: 742: 738: 734: 726: 721: 717: 710: 702: 698: 694: 690: 686: 682: 678: 676:Galois group 671: 663: 659: 654: 650: 643: 639: 635: 631: 627: 623: 615: 611: 607: 603: 592: 586: 576: 572: 568: 564: 563:splits is φ( 560: 556: 552: 548: 540: 536: 532: 525: 517: 513: 509: 505: 501: 497: 493: 485: 481: 477: 471: 443: 440: 389: 387: 244: 240: 236: 232: 228: 224: 215: 204: 200: 193: 191: 185: 181: 177: 172:Galois group 161: 156: 148: 144: 114: 112: 99: 95: 91: 87: 83: 76:ideal primes 45: 30: 29: 1187:, and take 1155:and degree 764:is Π has a 648:prime field 583:Formulation 41:in a given 2425:Categories 2365:0956.11021 2271:References 2230:: 409–464. 2017:such that 1183:of degree 143:of degree 2375:(1998) , 2294:CiteSeerX 2051:μ 2037:μ 1894:β 1884:β 1850:ρ 1820:β 1800:ρ 1741:ρ 1722:⁡ 1692:⁡ 1678:ρ 1665:⁡ 1651:⁡ 1640:− 1620:− 1607:⁡ 1593:β 1588:β 1553:⁡ 1527:ρ 1523:χ 1514:ρ 1489:≤ 1482:∑ 1455:≥ 1412:ρ 1390:ρ 1386:χ 1359:ρ 1323:ρ 1293:¯ 1290:ρ 1284:⊗ 1281:ρ 1261:ρ 1258:⊗ 1255:ρ 1229:ρ 1205:ρ 1167:ρ 1088:Δ 1080:⁡ 1068:⁡ 902:# 894:# 833:Statement 668:partition 520:) is the 464:in 1922. 412:⊂ 384:ramifies. 347:− 331:is inert; 288:− 2327:(1999). 2143:See also 1792:is 1 if 1501:∤ 512:, where 2395:1484415 2357:1697859 2316:1395088 2013:not in 1982:not in 1942:not in 1377:. Take 1159:. Take 817:. When 689:, each 642:, i.e. 599:of the 571:modulo 490:coprime 450:abelian 170:in the 2393:  2383:  2363:  2355:  2345:  2314:  2296:  2211:7 June 1832:is an 1772:where 950:, and 849:. Let 606:, and 117:is an 39:primes 2282:(PDF) 2206:(PDF) 2160:Notes 1136:over 685:over 670:Π of 658:. If 618:is a 595:is a 241:(1+i) 216:When 2381:ISBN 2343:ISBN 2213:2018 1997:Let 837:Let 760:mod 748:The 638:mod 547:mod 504:mod 2411:doi 2361:Zbl 2304:doi 2009:of 1978:of 1958:of 1836:of 1719:log 1689:log 1662:log 1648:log 1604:exp 1550:log 1273:or 1077:log 1065:log 970:is 861:of 809:|/| 772:in 701:in 693:in 681:of 622:of 528:th 516:=φ( 492:to 488:is 178:Gal 110:). 82:of 70:of 33:in 2427:: 2407:95 2405:, 2391:MR 2389:, 2359:. 2353:MR 2351:. 2341:. 2331:. 2312:MR 2310:, 2302:, 2290:18 2288:, 2284:, 2184:^ 2139:. 2135:= 2115:, 2102:. 2087:/ 1962:/ 1950:/ 1918:/ 1537:Fr 1470:, 1308:, 745:. 709:, 579:. 573:N; 392:. 245:-i 188:). 155:1/ 2413:: 2367:. 2306:: 2215:. 2177:G 2173:G 2137:K 2133:L 2129:L 2125:K 2121:K 2117:L 2113:K 2100:G 2096:L 2089:K 2085:L 2066:. 2060:) 2057:G 2054:( 2046:) 2043:X 2040:( 2022:v 2019:F 2015:S 2011:K 2007:v 2003:G 1999:X 1991:v 1988:F 1984:S 1980:K 1976:v 1972:G 1968:G 1964:K 1960:L 1956:G 1952:K 1948:L 1944:S 1940:K 1936:K 1932:S 1928:K 1924:S 1920:K 1916:L 1890:/ 1880:x 1859:) 1856:s 1853:, 1847:( 1844:L 1780:r 1757:, 1752:) 1747:) 1744:) 1738:( 1733:f 1728:x 1725:( 1716:n 1713:d 1710:( 1705:) 1695:x 1684:+ 1681:) 1675:( 1670:f 1659:3 1654:x 1643:4 1636:) 1632:n 1629:d 1626:( 1623:c 1612:( 1601:x 1598:+ 1584:x 1576:( 1571:O 1568:+ 1565:x 1562:r 1559:= 1556:p 1547:) 1542:p 1532:( 1517:) 1511:( 1506:f 1498:p 1495:, 1492:x 1486:p 1458:2 1452:x 1432:c 1363:0 1338:) 1335:s 1332:, 1327:0 1319:( 1316:L 1233:0 1208:) 1202:( 1197:f 1185:n 1181:G 1157:d 1153:G 1149:Q 1145:L 1138:Q 1134:L 1130:n 1113:, 1108:) 1101:) 1096:) 1092:| 1084:| 1074:+ 1071:x 1062:n 1059:( 1054:x 1047:( 1042:O 1039:+ 1036:) 1033:x 1030:( 1026:i 1023:l 1017:( 1008:| 1004:G 1000:| 993:| 989:C 985:| 968:C 964:x 960:K 956:G 952:C 948:G 944:K 942:/ 940:L 911:. 905:G 897:X 878:X 874:v 871:F 867:L 863:K 859:v 855:G 851:X 847:G 843:K 839:L 827:Q 823:p 819:G 815:C 811:G 807:C 803:C 799:G 792:C 774:G 770:g 762:p 758:P 754:p 743:n 739:g 737:( 735:c 727:g 722:n 718:S 711:G 703:K 699:P 695:G 691:g 687:Q 683:K 679:G 672:n 664:P 660:n 655:p 651:F 644:P 640:p 636:P 632:p 628:P 624:P 616:K 612:t 610:( 608:P 604:Q 593:K 577:N 569:p 565:N 561:p 557:N 553:p 549:N 541:Q 539:/ 537:K 533:K 526:N 518:N 514:n 510:n 506:N 502:a 498:p 494:N 486:a 482:2 480:≥ 478:N 426:] 423:i 420:[ 416:Z 408:Z 390:Z 370:2 366:) 362:i 359:+ 356:1 353:( 350:i 344:= 341:2 319:3 297:) 294:i 291:2 285:1 282:( 279:) 276:i 273:2 270:+ 267:1 264:( 261:= 258:5 237:p 233:p 229:p 225:Z 207:. 205:n 203:/ 201:k 194:k 186:Q 184:/ 182:K 180:( 157:n 149:K 145:n 130:Q 115:K 100:N 96:N 92:p 88:p 84:K 57:Q 46:K 20:)

Index

Tchebotarev density theorem
algebraic number theory
primes
Galois extension
rational numbers
ideal primes
algebraic integers
Nikolai Chebotaryov
Tschebotareff 1926
algebraic number field
Frobenius element
conjugacy class
Galois group
Carl Friedrich Gauss
complex integers
Dirichlet's theorem on arithmetic progressions
cyclotomic extensions
abelian
Klein four-group
Georg Frobenius
Nikolai Grigoryevich Chebotaryov
Dirichlet's theorem on arithmetic progressions
coprime
Euler totient function
cyclotomic field
residue classes
Lenstra & Stevenhagen (1996)
Galois extension
rational number field
splitting field

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.