Knowledge

Teapot effect

Source 📝

385:
the lower edge of the spout at an angle of less than 45°. In part, this only becomes apparent when one considers the normal maximum fill level: the glass carafe on the far right, for example, appears at first glance to be a poor pourer because of its slender neck. However, since such vessels are generally filled at most up to the edge of the round part of the flask, an advantageous rise at the neck is then obtained when pouring horizontally.Upward angle for the liquid when pouring. With the two lower jugs on the right, the high position of the spout (above the maximum filling level) means that the vessel has to be tilted quite a bit before pouring, so that the spout can also be pushed up directly after the edge (against gravity). indicates.
1376:
nun auch die nichttropfende Schnaupe. Das Problem des Tropfens ist fĂŒr den Gastronomiesektor aufgrund verschmutzter Tischdecken natĂŒrlich ein besonderes Ärgernis. UnzĂ€hlige Testreihen bringen verschiedene Lösungen hervor, von denen die Rille in der Kannenwandung, wie sie das Geschirr der Porzellanfabrik WalkĂŒre aufweist, sich als zuverlĂ€ssig erweist und dementsprechend patentiert wird. Der Stolz dieser Erfindung wird auch nach außen hin sichtbar, indem man den speziell damit versehenen Servicen ein P, wie Patent, hinzufĂŒgte. Werbeblatt, Gastronomiegeschirr, Kannenmodell 604P. "P" kennzeichnet die Patentierung fĂŒr die nichttropfende Schnaupe.
25: 405: 282:, which states that an increase in the speed of a fluid is always accompanied by a decrease in its pressure. When tea is poured from a teapot, the liquid's speed increases as it flows through the narrowing spout. This decrease in pressure was what Reiner thought to cause the liquid to dribble down the side of the pot. However, a 2021 study found the primary cause of the phenomenon to be an interaction of 330:
constant, regardless of where an imaginary cross section (perpendicular to the flow) is located. So the same amount of mass must flow in through one cross-sectional area as flows out of another. One can now conclude from this, but also observe in reality, that the flow accelerates at bottlenecks and the streamlines are bundled. This situation describes the continuity equation for non-turbulent flows.
241: 142: 1254:
AushĂ€ngeschild fĂŒr ein gut gefĂŒhrtes CafĂ©. Nach dem Ausgiessen sollte keine FlĂŒssigkeit mehr an der Außenwand der Kanne entlanglaufen und kein Tropfen an der TĂŒlle hĂ€ngen bleiben. Es gab einige absonderlich wirkende Versuche, FlĂŒssigkeit am Ablaufen zu hindern. So sollten beispielsweise ablaufende Tropfen durch Rillen in der Kannenwandung aufgehalten werden. Bereits 1929 fĂŒhrte die
373: 729: 360:
level of the can, the spout material, the viscosity of the liquid and the pouring angle. Since, apart from the fill level, most of the influencing variables cannot be changed (at least not sufficiently precisely in practice), the only way to avoid the teapot effect is usually to choose a suitable geometry for the pot.
1407:
SPECIAL ANNOUNCEMENT: We are now, in 2012, correcting an error we made in the year 1999, when we failed to include one winner's name. We now correct that, awarding a share of the 1999 physics prize to Joseph Keller. Professor Keller is also a co-winner of the 2012 Ig Nobel physics prize, making him a
363:
Another phenomenon is the reduction in air pressure between the spout and the jet of liquid due to the entrainment of gas molecules (one-sided water jet pumping effect), so that the air pressure on the opposite side would push the jet of liquid to the spout side. However, under the conditions usually
380:
A good jug should, regardless of fashion, have a spout with a tear-off edge (i.e. no rounded edge) to make it more difficult to run around the edge. More importantly, the spout should first lead upwards (regardless of the position in which the jug is held). As a result, the liquid would be forced to
384:
The image on the right shows three vessels with poor pouring behavior. Even in a horizontal position, that is standing on the table, the bottom edges of the spouts do not point upwards. Behind are four vessels with good flow characteristics resulting from well formed tips. Here, the liquid rises at
359:
Since the flow conditions can be described mathematically, a critical outflow velocity is also defined. If it falls below when pouring, the liquid flows down the pot; it drips. Theoretically, this speed could be precisely calculated for a specific can geometry, the current air pressure and the fill
1375:
Das Interesse der "Porzellanfabrik WalkĂŒre" richtete sich dabei weniger auf das schmucklose Erscheinungsbild eines Porzellangegenstandes, sondern vielmehr auf den wortwörtlich verstandenen funktionalen Nutzen. Ausdruck dieses Bestrebens ist neben der bereits zum Standard gewordenen Deckelhalterung
347:
The pressure in the flow is reduced at the edge of the can spout. However, since the air pressure on the outside of the flow is the same everywhere, there is a pressure difference that pushes the liquid to the edge. Depending on the materials used, the outside of the spout is now wetted during the
310:
According to the Bernoulli explanation, the liquid is pressed against the inner edge of the spout when pouring out, because the pressure conditions at the end, the edge, change significantly; the surrounding air pressure pushes the liquid towards the spout. With the help of a suitable pot geometry
391:
The teapot effect does not occur with bottles because the slender neck of the bottle always points upwards when pouring; the current would therefore have to "flow uphill" a long way. Bottle-like containers are therefore often used for liquid chemicals in the laboratory. Certain materials are also
1253:
Eine tropfende Schnaupe ist nicht nur bei den Kannen, die in der Gastronomie eingesetzt werden, ein Ärgernis. Was an funktionalen MĂ€ngeln im Haushaltsgebrauch noch toleriert werden kann, ist in der Gastronomie ein ernsthaftes Problem. Verschmutzte TischtĂŒcher und vertropfte Untertassen sind kein
338:
But what happens to the pressure conditions in the flow if you change the flow speed? The scientist Daniel Bernoulli dealt with this question as early as the beginning of the 18th century. Based on the considerations of continuity mentioned above, and incorporating the conservation of energy, he
499: 329:
In hydrodynamics, the behavior of flowing liquids is illustrated by flow lines. They run in the same direction as the flow itself. If the outflowing liquid hits an edge, the flow is compressed into a smaller cross-section. It only does not break off if the flow rate of liquid particles remains
1223: 1275:
Kannen mit einer nichttropfenden Schnaupe ein. Infolge einer Bohrung durch den Ausguß und einer dĂŒnnen Rille auf der Innenseite der TĂŒlle strömt die FlĂŒssigkeit nach dem Aufrichten der Kanne durch Kapillarkraft zurĂŒck. Die Herstellung eines Tropfenfangs mit einer Bohrung ist heute
669: 306:
tried to explain this effect scientifically. In fact, there are two phenomena that contribute to this effect: on the one hand, the Bernoulli equation is used to explain it, on the other hand, the adhesion between the liquid and the spout material is also important.
381:
flow upwards after going around the edge of the spout when pouring, but this is prevented by gravity. The flow can thus resist wetting even when pouring slowly and the liquid does not reach the downwardly inclined part of the spout and the body of the jug.
311:(or a sufficiently high pouring speed) it can be avoided that the liquid reaches the spout and thus triggers the teapot effect. Laws of hydrodynamics (flow theory) describe this situation, the relevant ones are explained in the following sections. 1408:
two-time Ig Nobel winner. The corrected citation is:1999 PHYSICS PRIZE: Len Fisher for calculating the optimal way to dunk a biscuit, and Jean-Marc Vanden-Broeck and Joseph Keller , for calculating how to make a teapot spout that does not drip.
351:
The unwanted teapot effect only occurs when pouring slowly and carefully. In fast pouring, the liquid flows out of the spout in an arc without dripping, so it is given a relatively high velocity with which the liquid moves away from the edge (see
1756:"FlĂŒssigkeitenmechanik - Wiener Forscher erklĂ€rt, warum Tee aus der Kanne danebengeht - Wenn ein FlĂŒssigkeitsstrahl nicht trifft, sondern am BehĂ€lter entlangfließt, heißt das Teekanneneffekt. Nun gibt es eine detaillierte ErklĂ€rung dafĂŒr" 1276:
produktionstechnisch zu aufwendig. Viele Versuche und Testreihen waren und sind nötig, um den idealen Neigungswinkel von AusgĂŒssen zu finden, damit die FlĂŒssigkeit beim Aufrichten des GefĂ€ĂŸes ohne zu tropfen in die Schnaupe zurĂŒcklĂ€uft.
485: 65:, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Knowledge. 339:
linked the two quantities of pressure and speed. The core statement of the Bernoulli equation is that the pressure in a liquid falls where the velocity increases (and vice versa): Flow according to Bernoulli and Venturi.
1032: 392:
used there to prevent dripping, for example glass, which can be easily shaped or even ground to create the sharpest possible edges, or Teflon, for example, which reduces the adhesion effect described above.
356:
outflow velocity). The pressure difference resulting from the Bernoulli equation is then not sufficient to influence the flow to such an extent that the liquid is pushed around the edge of the spout.
321:
is sometimes mentioned in this context, but it is rarely cited in the scientific literature and is therefore not precisely defined. Often several different phenomena seem to be mixed up in this one.
388:
To avoid the teapot effect, the pot can be filled less, so that a larger tilting angle is necessary from the start. However, the effect or the ideal filling level again depends on the can geometry.
583: 75: 574:"Dribble, dribble, dribble — Physicists say they've finally solved the teapot effect—for real this time - Is due to interplay of inertial viscous capillary forces—but gravity's less relevant" 1033:
https://web.archive.org/web/20230128230443/https://cauldonceramics.com/products/re-engineered-ian-mcintyre-brown-betty-4-cup-teapot-with-infuser-in-rockingham-brown-by-cauldon-ceramics
1715: 1636: 314:
Since adhesion also plays a role, the material of the spout or the type of liquid (water, alcohol or oil, for example) is also relevant for the occurrence of the teapot effect.
1797: 1837: 1706:"I'm a little teapot — Dribble no more: Physics can help combat that pesky "teapot effect" - Dutch scientists devised a model to predict flow rate when dribbling will occur" 1059: 348:
flow process. At this point, additional interfacial forces occur : the liquid runs as a narrow trickle along the spout and can until it detaches from the underside.
1793: 1235:
In 80 Tassen um die Welt: Gastlichkeit und Porzellan - Ein Beitrag zur Geschichte des Porzellans fĂŒr die Gastronomie vom Ende des 19. Jahrhunderts bis in Gegenwart
299: 949:
Ziegler, Alfred; Wodzinski, Ruth (2001) . "Die Physik des Fliegens als Bestandteil eines Unterrichts zur Strömungslehre: Zielsetzungen und BegrĂŒndungen".
270:
coined the term "teapot effect" in 1956 to describe the tendency of liquid to dribble down the side of a vessel while pouring. Reiner received his PhD at
1487: 956: 573: 1422: 85:
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
1665: 1583: 670:"Developed liquid film passing a smoothed and wedge-shaped trailing edge: small-scale analysis and the 'teapot effect' at large Reynolds numbers" 1755: 1742: 792: 782: 1705: 1353:]. Schriften und Kataloge des Deutschen Porzellanmuseums (DPM) (in German). Vol. 58 (1 ed.). Hohenberg an der Eger, Germany: 290:. The study found that the smaller the angle between the container wall and the liquid surface, the more the teapot effect is slowed down. 1450: 1351:"Going with the times" - 100th anniversary of porcelain manufacturer WalkĂŒre (1899–1999) - A medium-sized industrial company in transition 641: 1765: 1626: 1605: 1143: 1237:. Schriften und Kataloge des Deutschen Porzellanmuseums (DPM) (in German). Vol. 46 (1 ed.). Hohenberg an der Eger, Germany: 93: 1785: 1592:"Was tun wenn die Teekanne tropft? Benetzungseigenschaften auf mikroskopischer Skala bestimmen das makroskopische Strömungsverhalten" 1362: 1246: 225: 1833: 1749: 1317: 932: 741: 1689: 1817: 1024: 495: 1609: 656: 163: 159: 1292: 1011: 992: 206: 1028: 1475: 880: 866: 538: 524: 178: 1346:"Mit der Zeit gehen" - 100 Jahre Porzellanfabrik WalkĂŒre (1899–1999) - Ein mittelstĂ€ndiges Industrieunternehmen im Wandel 1901: 1047: 185: 106:
Content in this edit is translated from the existing German Knowledge article at ]; see its history for attribution.
1661: 1192: 1183: 683: 674: 616: 1656: 1585: 1529: 1354: 1238: 989:"Tropfenfangrinne an der Innenseite der Ausgussschnauze von Gefaessen, insbesondere Kannen fuer Kaffee, Tee usw." 925: 1402: 1076:
patents) model No. 301 for 1œ cups and model No. 304 for 4 cups, presumably manufactured in the 1920s or 1930s.)
808: 192: 101: 1379:(1+195+1 pages) (NB. The print run of this publication is limited to 1000 pieces. The corresponding patent is 279: 1465: 950: 1891: 1520: 1174: 1134: 1095: 152: 1385: 1071: 1776: 1443:"The pot of gold - Design & Invention: It is a problem that has confounded scientists for generations" 1380: 1066: 450: 353: 174: 70: 1415: 122: 1651: 1515: 1265: 767: 1543: 1255: 1196: 1152: 1138: 1113: 1099: 884: 818: 697: 625: 604: 274:
in 1913 and made significant contributions to the development of the study of flow behavior known as
455: 1851: 1498: 1085: 1080: 813: 303: 1567: 1533: 1214: 955:(Book, CD) (in German). Arbeitsgruppe Didaktik der Physik, UniversitĂ€t Kassel. pp. 549–552. 952:
VortrÀge / Physikertagung, Deutsche Physikalische Gesellschaft, Fachausschuss Didaktik der Physik
834: 721: 687: 264:
from a container runs down the spout or the body of the vessel instead of flowing out in an arc.
115: 1270: 1871: 1856: 1442: 1083:(1984-10-01). "The troublesome teapot effect, or why a poured liquid clings to the container". 608: 1738: 1559: 1358: 1242: 1104: 928: 788: 778: 713: 97: 1906: 1896: 1551: 1511: 1479: 1204: 1160: 1121: 892: 826: 705: 633: 542: 460: 445: 318: 287: 199: 772: 1547: 1200: 1156: 1117: 1029:
https://web.archive.org/web/20230128230232/https://www.teaforum.org/viewtopic.php?t=1980
888: 822: 701: 629: 1596: 1307: 257: 37: 1332: 830: 404: 1885: 1866: 1681: 1571: 1470: 1340: 1336: 1230: 1218: 968: 917: 871: 862: 725: 529: 520: 267: 1813: 1733:(2020). "6. Kettles and Agitation - 6.1. The Teapot Effect". In Zimmer, Jean (ed.). 1279:(1+2+186+2 pages) (NB. The print run of this publication is limited to 1000 pieces.) 1760: 1710: 1591: 1555: 1008:"Non-drip spouts for coffee and like pots with a spout opening directed downwardly" 578: 490: 1344: 1284: 1007: 988: 1179:"The teapot effect: sheet-forming flows with deflection, wetting and hysteresis" 141: 1209: 1178: 240: 717: 1061:(NB. Picture shows the anti-drip groove and pinhole underneath the spout of 1563: 1730: 1507: 1039: 764:
Wie der Kork-KrĂŒmel ans Weinglas kommt - Physik fĂŒr Genießer und Entdecker
486:"Why Teapots Always Drip – Scientists Finally Explain the "Teapot Effect"" 1861: 1631: 1312: 1260: 709: 440: 275: 1483: 838: 762:
Dittmar-Ilgen, Hannelore (2007) . "Immer Ärger mit tröpfelnden Kannen".
1875: 1062: 668:
Scheichl, Bernhard; Bowles, Robert I.; Pasias, Georgios (2021-11-10) .
283: 271: 261: 104:
to the source of your translation. A model attribution edit summary is
974:(NB. Calls the effect "coffeepot effect" rather than "teapot effect".) 896: 637: 546: 1814:"Pours for thought? [The teapot effect: theory and practice]" 1786:"The maths behind the annoying teapot effect — and how to prevent it" 1394: 1164: 1125: 922:
Deformation, Strain and Flow - An Elementary Introduction To Rheology
1538: 1040:"Melitta Kaffeekannen No. 301 u. 304, D.R.P. fĂŒr 1 1/2 und 4 Tassen" 1516:"Wetting controls separation of inertial flows from solid surfaces" 692: 372: 371: 239: 1852:
https://feldlilie.wordpress.com/2012/01/19/physikfrage-12485521/
62: 399: 135: 18: 364:
prevailing when pouring tea, this effect will hardly appear.
1872:
https://teehaus-bachfischer.de/tropfenfaenger-fuer-teekannen
1857:
https://www.stevenabbott.co.uk/practical-coatings/Teapot.php
971:(bzw. "Kaffeekanneneffekt"-ein Tropfen folgt der OberflÀche) 1229:
TrÀger, Susanne (1996). "Die nichttropfende Schnaupe". In
278:. Reiner believed the teapot effect could be explained by 74:
to this template: there are already 1,887 articles in the
415: 1339:; Symossek, Ronja (1999). "Sortimentumstellung". In 757: 755: 753: 751: 749: 58: 1241:/ Druckhaus MĂŒnch GmbH, Selb, Germany. p. 27. 166:. Unsourced material may be challenged and removed. 1867:https://www.kalkspatzforum.de/viewtopic.php?t=2417 1627:"Wie man tropfende Teekannen in den Griff bekommt" 1794:Spektrum der Wissenschaft Verlagsgesellschaft mbH 244:Diagram of tea running down the spout of a teapot 1416:"Functional Teapot Options & Rules of Thumb" 567: 565: 563: 1089:. Vol. 251, no. 10. pp. 144–152. 766:(in German) (1 ed.). Stuttgart, Germany: 480: 478: 100:accompanying your translation by providing an 49:Click for important translation instructions. 36:expand this article with text translated from 857: 855: 817:. Vol. 214, no. 6. pp. 84–92. 8: 1737:(1 ed.). Scott Rao. pp. 127–144 . 991:(in German). 1928. German patent DE457585C. 1283:Hesselberth, John (January–February 1997). 260:phenomenon that occurs when a liquid being 1141:(1989) . "Pouring flows with separation". 1537: 1208: 691: 226:Learn how and when to remove this message 1764:(in Austrian German). Vienna, Austria: 474: 1862:https://thiru.de/pages/teekanne-tropft 1652:"Ever Wonder About the Teapot Effect?" 1335:; Zehentmeier, Sabine; Meyer, Rudolf; 79: 7: 1876:https://sterntee.de/navi.php?a=15902 1606:Wiley-VCH Verlag GmbH & Co. KGaA 164:adding citations to reliable sources 1790:SciLogs - Heidelberg Laureate Forum 1766:STANDARD Verlagsgesellschaft m.b.H. 1144:Physics of Fluids A: Fluid Dynamics 809:"Applications of the Coanda Effect" 1704:Ouellette, Jennifer (2019-05-17). 1044:Mein Sammlerportal & sampor.de 572:Ouellette, Jennifer (2021-11-10). 298:Around 1950, researchers from the 14: 1405:from the original on 2023-01-28. 831:10.1038/scientificamerican0666-84 112:{{Translated|de|Teekanneneffekt}} 1466:"How to stop a teapot dribbling" 1102:(1986-05-19) . "Pouring Flows". 1025:Alcock, Lindley & Bloore Ltd 403: 140: 23: 1840:from the original on 2024-01-29 1820:from the original on 2023-01-28 1800:from the original on 2023-01-28 1718:from the original on 2023-01-29 1692:from the original on 2022-09-25 1668:from the original on 2023-01-28 1639:from the original on 2023-01-28 1612:from the original on 2023-01-28 1490:from the original on 2023-01-29 1453:from the original on 2023-01-29 1428:from the original on 2023-01-28 1320:from the original on 2023-01-29 1295:from the original on 2023-01-28 1050:from the original on 2023-01-29 1014:from the original on 2023-01-29 995:from the original on 2023-01-29 959:from the original on 2023-01-29 732:from the original on 2023-01-28 647:from the original on 2022-03-13 586:from the original on 2023-01-28 525:"The teapot effect...a problem" 502:from the original on 2023-01-28 496:Vienna University of Technology 151:needs additional citations for 1625:Lossau, Norbert (2010-06-22). 1556:10.1103/PhysRevLett.104.084503 1285:"How to Make Drip-Free Spouts" 1046:(in German). Berlin, Germany. 110:You may also add the template 1: 1476:American Institute of Physics 881:American Institute of Physics 539:American Institute of Physics 1784:Mihai, Andrei (2021-12-01). 1735:The Physics of Filter Coffee 1441:Dillon, Frank (2009-05-11). 1038:Sakowski, Christian (2023). 16:Phenomenon in fluid dynamics 1590:Mugele, Frieder G. (2010). 1414:Bolton, David (Fall 2007). 1010:. 1938 . GB patent 477613. 300:Technion Institute in Haifa 82:will aid in categorization. 1923: 1662:ASTC Science World Society 1193:Cambridge University Press 1184:Journal of Fluid Mechanics 1065:coffee pots (protected by 926:H. K. Lewis & Co. Ltd. 807:Reba, Imants (June 1966). 684:Cambridge University Press 675:Journal of Fluid Mechanics 617:Journal of Applied Physics 57:Machine translation, like 1682:"Why Do Teapots Dribble?" 1530:American Physical Society 1355:Deutsches Porzellanmuseum 1239:Deutsches Porzellanmuseum 1210:10.1017/S0022112094004027 38:the corresponding article 1604:(6). Weinheim, Germany: 1395:"Ig Nobel Prize Winners" 1175:Scriven, Laurence Edward 1135:Vanden-Broeck, Jean-Marc 1096:Vanden-Broeck, Jean-Marc 686:: A25-1–A25-40, S1–S12. 1792:. Heidelberg, Germany: 1521:Physical Review Letters 121:For more guidance, see 1777:Austria Presse Agentur 1510:; Clanet, Christophe; 1308:"A groovy kind of pot" 1256:Porzellanfabrik Weiden 451:Stall (fluid dynamics) 412:This section is empty. 377: 245: 1832:Hinze, Betsy (2023). 1812:Jones, David (2022). 1680:Robert (2017-02-03). 1357:. pp. 101–105 . 1173:Kistler, Stephan F.; 1139:Keller, Joseph Bishop 1100:Keller, Joseph Bishop 867:"Teapot means Coanda" 605:Keller, Joseph Bishop 375: 280:Bernoulli's principle 243: 123:Knowledge:Translation 94:copyright attribution 1834:"Teapot Cheat Sheet" 1081:Walker, Jearl Dalton 710:10.1017/jfm.2021.612 160:improve this article 1548:2010PhRvL.104h4503D 1499:The Daily Telegraph 1484:10.1063/PT.5.023796 1399:Improbable Research 1201:1994JFM...263...19K 1157:1989PhFlA...1..156V 1118:1986PhFl...29.3958V 1086:Scientific American 889:1967PhT....20e..15R 823:1966SciAm.214f..84R 814:Scientific American 702:2021JFM...926A..25S 630:1957JAP....28..859K 325:Continuity equation 304:New York University 1902:Coffee preparation 1816:. Jones the Pots. 1686:guernseyDonkey.com 777:. pp. 21–25. 523:(September 1956). 378: 334:Bernoulli equation 302:(Israel) and from 246: 102:interlanguage link 1751:(xvi+249+3 pages) 1744:978-0-578-24608-6 1508:Ybert, Christophe 1112:(12): 3958–3961. 1105:Physics of Fluids 897:10.1063/1.3034300 793:978-3-7776-1440-3 784:978-3-7776-1440-3 638:10.1063/1.1722875 547:10.1063/1.3060089 432: 431: 236: 235: 228: 210: 134: 133: 50: 46: 1914: 1848: 1846: 1845: 1828: 1826: 1825: 1808: 1806: 1805: 1780: 1774: 1773: 1748: 1726: 1724: 1723: 1700: 1698: 1697: 1676: 1674: 1673: 1647: 1645: 1644: 1629:. Wissenschaft. 1620: 1618: 1617: 1582: 1580: 1579: 1541: 1512:Bocquet, LydĂ©ric 1502: 1496: 1495: 1461: 1459: 1458: 1436: 1434: 1433: 1427: 1421:. CLC Ceramics. 1420: 1410: 1389: 1378: 1372: 1371: 1328: 1326: 1325: 1303: 1301: 1300: 1278: 1274: 1264: 1222: 1212: 1168: 1165:10.1063/1.857542 1129: 1126:10.1063/1.865735 1090: 1075: 1058: 1056: 1055: 1022: 1020: 1019: 1003: 1001: 1000: 975: 973: 965: 964: 946: 940: 938: 914: 908: 906: 904: 903: 859: 850: 848: 846: 845: 804: 798: 796: 776: 768:S. Hirzel Verlag 759: 744: 740: 738: 737: 695: 665: 659: 655: 653: 652: 646: 613: 601: 595: 594: 592: 591: 569: 558: 556: 554: 553: 517: 511: 510: 508: 507: 482: 464: 427: 424: 414:You can help by 407: 400: 288:capillary forces 252:, also known as 231: 224: 220: 217: 211: 209: 168: 144: 136: 113: 107: 81: 80:|topic= 78:, and specifying 63:Google Translate 48: 44: 27: 26: 19: 1922: 1921: 1917: 1916: 1915: 1913: 1912: 1911: 1882: 1881: 1843: 1841: 1831: 1823: 1821: 1811: 1803: 1801: 1783: 1771: 1769: 1754: 1745: 1731:GagnĂ©, Jonathan 1729: 1721: 1719: 1703: 1695: 1693: 1679: 1671: 1669: 1650: 1642: 1640: 1624: 1615: 1613: 1589: 1577: 1575: 1514:(2010-02-26) . 1505: 1493: 1491: 1464: 1456: 1454: 1440: 1431: 1429: 1425: 1418: 1413: 1393: 1383: 1373:. p. 105: 1369: 1367: 1365: 1341:Siemen, Wilhelm 1337:Siemen, Wilhelm 1331: 1323: 1321: 1306: 1298: 1296: 1282: 1268: 1258: 1249: 1231:Siemen, Wilhelm 1228: 1177:(1994-04-26) . 1172: 1133: 1094: 1079: 1069: 1053: 1051: 1037: 1017: 1015: 1006: 998: 996: 987: 984: 982:Further reading 979: 978: 962: 960: 948: 947: 943: 935: 916: 915: 911: 901: 899: 861: 860: 853: 843: 841: 806: 805: 801: 785: 770: 761: 760: 747: 735: 733: 667: 666: 662: 650: 648: 644: 611: 609:"Teapot Effect" 603: 602: 598: 589: 587: 571: 570: 561: 551: 549: 519: 518: 514: 505: 503: 484: 483: 476: 471: 458: 437: 428: 422: 419: 398: 370: 345: 336: 327: 296: 232: 221: 215: 212: 175:"Teapot effect" 169: 167: 157: 145: 130: 129: 128: 111: 105: 51: 28: 24: 17: 12: 11: 5: 1920: 1918: 1910: 1909: 1904: 1899: 1894: 1892:Fluid dynamics 1884: 1883: 1880: 1879: 1869: 1864: 1859: 1854: 1849: 1829: 1809: 1781: 1752: 1743: 1727: 1701: 1677: 1664:. 2015-10-18. 1648: 1622: 1597:Physik Journal 1594:. Brennpunkt. 1587: 1503: 1478:. 2009-10-28. 1462: 1445:. Department. 1438: 1411: 1391: 1363: 1329: 1316:. 1998-12-08. 1304: 1280: 1266:Gebr. Bauscher 1251:. p. 27: 1247: 1226: 1170: 1151:(1): 156–158. 1131: 1092: 1077: 1035: 1004: 983: 980: 977: 976: 941: 933: 924:(3 ed.). 918:Reiner, Markus 909: 863:Reiner, Markus 851: 799: 783: 745: 660: 624:(8): 859–864. 596: 559: 521:Reiner, Markus 512: 498:. 2022-01-09. 473: 472: 470: 467: 466: 465: 456:Spout (teapot) 453: 448: 443: 436: 433: 430: 429: 410: 408: 397: 394: 369: 366: 344: 341: 335: 332: 326: 323: 295: 292: 258:fluid dynamics 234: 233: 148: 146: 139: 132: 131: 127: 126: 119: 108: 86: 83: 71:adding a topic 66: 55: 52: 45:(January 2023) 33: 32: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1919: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1889: 1887: 1877: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1839: 1835: 1830: 1819: 1815: 1810: 1799: 1795: 1791: 1787: 1782: 1778: 1767: 1763: 1762: 1757: 1753: 1750: 1746: 1740: 1736: 1732: 1728: 1717: 1713: 1712: 1707: 1702: 1691: 1687: 1683: 1678: 1667: 1663: 1659: 1658: 1657:Science World 1653: 1649: 1638: 1635:(in German). 1634: 1633: 1628: 1623: 1611: 1607: 1603: 1600:(in German). 1599: 1598: 1593: 1588: 1586: 1584: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1540: 1535: 1531: 1527: 1523: 1522: 1517: 1513: 1509: 1506:Duez, Cyril; 1504: 1500: 1489: 1485: 1481: 1477: 1473: 1472: 1471:Physics Today 1467: 1463: 1452: 1448: 1444: 1439: 1424: 1417: 1412: 1409: 1404: 1400: 1396: 1392: 1387: 1382: 1377: 1366: 1364:3-927793-57-4 1360: 1356: 1352: 1348: 1347: 1342: 1338: 1334: 1333:Seißer, Peter 1330: 1319: 1315: 1314: 1309: 1305: 1294: 1290: 1286: 1281: 1277: 1272: 1267: 1262: 1257: 1250: 1248:3-927793-45-0 1244: 1240: 1236: 1232: 1227: 1224: 1220: 1216: 1211: 1206: 1202: 1198: 1194: 1190: 1186: 1185: 1180: 1176: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1145: 1140: 1136: 1132: 1127: 1123: 1119: 1115: 1111: 1107: 1106: 1101: 1097: 1093: 1088: 1087: 1082: 1078: 1073: 1068: 1064: 1060: 1049: 1045: 1041: 1036: 1034: 1030: 1026: 1013: 1009: 1005: 994: 990: 986: 985: 981: 972: 970: 969:Coanda-Effekt 958: 954: 953: 945: 942: 936: 930: 927: 923: 919: 913: 910: 898: 894: 890: 886: 882: 878: 874: 873: 872:Physics Today 868: 864: 858: 856: 852: 840: 836: 832: 828: 824: 820: 816: 815: 810: 803: 800: 797:(172+4 pages) 794: 790: 786: 780: 774: 769: 765: 758: 756: 754: 752: 750: 746: 743:(40+12 pages) 742: 731: 727: 723: 719: 715: 711: 707: 703: 699: 694: 689: 685: 681: 677: 676: 671: 664: 661: 657: 643: 639: 635: 631: 627: 623: 619: 618: 610: 606: 600: 597: 585: 581: 580: 575: 568: 566: 564: 560: 548: 544: 540: 536: 532: 531: 530:Physics Today 526: 522: 516: 513: 501: 497: 493: 492: 487: 481: 479: 475: 468: 462: 457: 454: 452: 449: 447: 446:Coandă effect 444: 442: 439: 438: 434: 426: 417: 413: 409: 406: 402: 401: 395: 393: 389: 386: 382: 374: 367: 365: 361: 357: 355: 349: 342: 340: 333: 331: 324: 322: 320: 319:Coandă effect 315: 312: 308: 305: 301: 293: 291: 289: 285: 281: 277: 273: 269: 268:Markus Reiner 265: 263: 259: 255: 251: 250:teapot effect 242: 238: 230: 227: 219: 208: 205: 201: 198: 194: 191: 187: 184: 180: 177: â€“  176: 172: 171:Find sources: 165: 161: 155: 154: 149:This article 147: 143: 138: 137: 124: 120: 117: 109: 103: 99: 95: 91: 87: 84: 77: 76:main category 73: 72: 67: 64: 60: 56: 54: 53: 47: 41: 39: 34:You can help 30: 21: 20: 1878:drop catcher 1842:. Retrieved 1822:. Retrieved 1802:. Retrieved 1789: 1775:– via 1770:. Retrieved 1761:Der Standard 1759: 1734: 1720:. Retrieved 1711:Ars Technica 1709: 1694:. Retrieved 1685: 1670:. Retrieved 1655: 1641:. Retrieved 1630: 1614:. Retrieved 1601: 1595: 1576:. Retrieved 1525: 1519: 1497:– via 1492:. Retrieved 1469: 1455:. Retrieved 1446: 1430:. Retrieved 1406: 1398: 1374: 1368:. Retrieved 1350: 1345: 1322:. Retrieved 1311: 1310:. Sci/Tech. 1297:. Retrieved 1288: 1252: 1234: 1188: 1182: 1148: 1142: 1109: 1103: 1084: 1052:. Retrieved 1043: 1016:. Retrieved 997:. Retrieved 967: 961:. Retrieved 951: 944: 934:0-71860162-9 921: 912: 900:. Retrieved 876: 870: 865:(May 1967). 842:. Retrieved 812: 802: 763: 734:. Retrieved 679: 673: 663: 649:. Retrieved 621: 615: 599: 588:. Retrieved 579:Ars Technica 577: 550:. Retrieved 534: 528: 515: 504:. Retrieved 491:SciTechDaily 489: 423:January 2023 420: 416:adding to it 411: 396:Drip catcher 390: 387: 383: 379: 376:Pot examples 362: 358: 350: 346: 337: 328: 316: 313: 309: 297: 266: 253: 249: 247: 237: 222: 216:January 2023 213: 203: 196: 189: 182: 170: 158:Please help 153:verification 150: 98:edit summary 89: 69: 43: 35: 1539:0910.3306v1 1447:Irish Times 1384: [ 1269: [ 1259: [ 1070: [ 939:(347 pages) 869:. Letters. 771: [ 459: [ 368:Consequence 1886:Categories 1844:2024-01-29 1824:2023-01-28 1804:2023-01-28 1772:2023-01-28 1768:2021-11-08 1722:2022-07-02 1696:2023-01-28 1684:. Trivia. 1672:2023-01-28 1643:2023-01-28 1616:2023-01-28 1578:2023-01-29 1532:: 084503. 1494:2023-01-28 1457:2023-01-29 1432:2023-01-29 1370:2024-04-26 1324:2023-01-29 1299:2023-01-29 1289:Clay Times 1225:(44 pages) 1054:2023-01-29 1018:2023-01-29 999:2023-01-29 963:2023-01-29 902:2023-01-28 844:2023-01-28 736:2023-01-28 693:2011.12168 651:2023-01-28 590:2022-07-02 552:2023-01-28 506:2022-07-02 469:References 354:Torricelli 186:newspapers 1621:(2 pages) 1608:: 18–19. 1572:118601911 1437:(2 pages) 1401:. 2023 . 1219:123277240 1195:: 19–62. 1169:(3 pages) 1130:(4 pages) 1091:(9 pages) 849:(9 pages) 726:235444365 718:0022-1120 658:(6 pages) 254:dribbling 116:talk page 68:Consider 40:in German 1838:Archived 1818:Archived 1798:Archived 1716:Archived 1690:Archived 1666:Archived 1637:Archived 1632:Die Welt 1610:Archived 1574:. 084503 1564:20366936 1488:Archived 1451:Archived 1423:Archived 1403:Archived 1390:476417.) 1318:Archived 1313:BBC News 1293:Archived 1048:Archived 1012:Archived 993:Archived 957:Archived 920:(1969). 907:(1 page) 839:24930967 730:Archived 642:Archived 607:(1957). 584:Archived 557:(1 page) 500:Archived 441:Adhesion 435:See also 294:Research 276:rheology 92:provide 1907:Pottery 1897:Teapots 1544:Bibcode 1343:(ed.). 1233:(ed.). 1197:Bibcode 1153:Bibcode 1114:Bibcode 1063:Melitta 885:Bibcode 819:Bibcode 698:Bibcode 626:Bibcode 284:inertia 272:TU Wien 256:, is a 200:scholar 114:to the 96:in the 42:. 1741:  1570:  1562:  1474:(10). 1381:D.R.P. 1361:  1245:  1217:  1067:D.R.P. 931:  883:: 15. 837:  791:  781:  724:  716:  541:: 16. 343:Impact 262:poured 202:  195:  188:  181:  173:  1568:S2CID 1534:arXiv 1528:(8). 1426:(PDF) 1419:(PDF) 1388:] 1349:[ 1273:] 1263:] 1215:S2CID 1074:] 879:(5). 835:JSTOR 775:] 722:S2CID 688:arXiv 645:(PDF) 612:(PDF) 537:(9). 463:] 207:JSTOR 193:books 59:DeepL 1739:ISBN 1560:PMID 1359:ISBN 1243:ISBN 929:ISBN 789:ISBN 779:ISBN 714:ISSN 317:The 286:and 248:The 179:news 90:must 88:You 1552:doi 1526:104 1480:doi 1205:doi 1189:263 1161:doi 1122:doi 893:doi 827:doi 706:doi 680:926 634:doi 543:doi 418:. 162:by 61:or 1888:: 1874:, 1836:. 1796:. 1788:. 1758:. 1714:. 1708:. 1688:. 1660:. 1654:. 1566:. 1558:. 1550:. 1542:. 1524:. 1518:. 1486:. 1468:. 1449:. 1397:. 1386:de 1291:. 1287:. 1271:de 1261:de 1213:. 1203:. 1191:. 1187:. 1181:. 1159:. 1147:. 1137:; 1120:. 1110:29 1108:. 1098:; 1072:de 1042:. 1031:, 1027:, 1023:, 966:. 891:. 877:20 875:. 854:^ 833:. 825:. 811:. 787:. 773:de 748:^ 728:. 720:. 712:. 704:. 696:. 682:. 678:. 672:. 640:. 632:. 622:28 620:. 614:. 582:. 576:. 562:^ 533:. 527:. 494:. 488:. 477:^ 461:de 1847:. 1827:. 1807:. 1779:. 1747:. 1725:. 1699:. 1675:. 1646:. 1619:. 1602:9 1581:. 1554:: 1546:: 1536:: 1501:. 1482:: 1460:. 1435:. 1327:. 1302:. 1221:. 1207:: 1199:: 1167:. 1163:: 1155:: 1149:1 1128:. 1124:: 1116:: 1057:. 1021:. 1002:. 937:. 905:. 895:: 887:: 847:. 829:: 821:: 795:. 739:. 708:: 700:: 690:: 654:. 636:: 628:: 593:. 555:. 545:: 535:9 509:. 425:) 421:( 229:) 223:( 218:) 214:( 204:· 197:· 190:· 183:· 156:. 125:. 118:.

Index

the corresponding article
DeepL
Google Translate
adding a topic
main category
copyright attribution
edit summary
interlanguage link
talk page
Knowledge:Translation

verification
improve this article
adding citations to reliable sources
"Teapot effect"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

fluid dynamics
poured
Markus Reiner
TU Wien
rheology
Bernoulli's principle
inertia
capillary forces

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑