Knowledge

Tensor product bundle

Source 📝

442: 313: 259: 483: 354:
To construct a tensor-product bundle over a paracompact base, first note the construction is clear for trivial bundles. For the general case, if the base is compact, choose
94: 60: 476: 507: 409:) with the desired fibers. Finally, use the approximation argument to handle a non-compact base. See Hatcher for a general direct approach. 469: 316: 97: 502: 335: 272: 449: 224: 24: 193:) is trivial. Thus, the set of the isomorphism classes of all line bundles on some topological space 152: 262: 73: 214: 453: 218: 45: 496: 32: 198: 17: 423: 175: 164: 16:
Not to be confused with a tensor bundle, a vector bundle whose section is a
441: 189:
is (isomorphic to) a trivial bundle by the previous example, as End(
221:
of a vector bundle in a similar way. For example, a section of
457: 275: 227: 76: 48: 307: 253: 88: 54: 477: 8: 308:{\displaystyle \Lambda ^{p}T^{*}M\otimes E} 484: 470: 290: 280: 274: 242: 232: 226: 75: 47: 347: 321:-form with values in a vector bundle 7: 438: 436: 277: 254:{\displaystyle \Lambda ^{p}T^{*}M} 229: 197:forms an abelian group called the 14: 151:is canonically isomorphic to the 62:) is a vector bundle, denoted by 440: 124:is a trivial line bundle, then 98:tensor product of vector spaces 1: 181:has tensor inverse: in fact, 456:. You can help Knowledge by 508:Differential geometry stubs 70:, whose fiber over a point 524: 435: 379:in the same way. Then let 15: 336:Tensor product of modules 452:-related article is a 309: 255: 213:One can also define a 90: 89:{\displaystyle x\in X} 56: 503:Differential geometry 450:differential geometry 387:be the subbundle of ( 310: 256: 91: 57: 25:differential geometry 273: 225: 74: 46: 424:Vector Bundles and 372:is trivial. Choose 153:endomorphism bundle 305: 251: 86: 52: 465: 464: 269:and a section of 55:{\displaystyle X} 42:(over same space 515: 486: 479: 472: 444: 437: 410: 407: 396: 377: 370: 359: 352: 314: 312: 311: 306: 295: 294: 285: 284: 260: 258: 257: 252: 247: 246: 237: 236: 95: 93: 92: 87: 61: 59: 58: 53: 523: 522: 518: 517: 516: 514: 513: 512: 493: 492: 491: 490: 433: 419: 414: 413: 405: 394: 375: 368: 357: 353: 349: 344: 332: 286: 276: 271: 270: 238: 228: 223: 222: 215:symmetric power 211: 116: 107: 72: 71: 44: 43: 21: 12: 11: 5: 521: 519: 511: 510: 505: 495: 494: 489: 488: 481: 474: 466: 463: 462: 445: 431: 430: 418: 415: 412: 411: 346: 345: 343: 340: 339: 338: 331: 328: 304: 301: 298: 293: 289: 283: 279: 250: 245: 241: 235: 231: 219:exterior power 210: 207: 112: 103: 85: 82: 79: 51: 33:vector bundles 29:tensor product 13: 10: 9: 6: 4: 3: 2: 520: 509: 506: 504: 501: 500: 498: 487: 482: 480: 475: 473: 468: 467: 461: 459: 455: 451: 446: 443: 439: 434: 429: 427: 421: 420: 416: 408: 401: 397: 390: 386: 382: 378: 371: 364: 360: 351: 348: 341: 337: 334: 333: 329: 327: 325: 324: 320: 317:differential 302: 299: 296: 291: 287: 281: 268: 266: 263:differential 248: 243: 239: 233: 220: 216: 208: 206: 204: 200: 196: 192: 188: 184: 180: 177: 172: 170: 166: 162: 158: 154: 150: 146: 141: 139: 135: 131: 127: 123: 118: 115: 111: 106: 102: 99: 83: 80: 77: 69: 65: 49: 41: 37: 34: 30: 26: 19: 458:expanding it 447: 432: 425: 403: 399: 392: 388: 384: 380: 373: 366: 362: 355: 350: 322: 318: 264: 212: 202: 199:Picard group 194: 190: 186: 182: 178: 173: 168: 160: 156: 148: 144: 142: 137: 133: 129: 125: 121: 120:Example: If 119: 113: 109: 104: 100: 67: 63: 39: 35: 28: 22: 18:tensor field 176:line bundle 174:Example: A 165:dual bundle 497:Categories 417:References 361:such that 422:Hatcher, 300:⊗ 292:∗ 278:Λ 244:∗ 230:Λ 159:), where 143:Example: 81:∈ 330:See also 209:Variants 136:for any 428:-Theory 217:and an 163:is the 96:is the 27:, the 448:This 406:' 398:) ⊗ ( 395:' 376:' 369:' 358:' 342:Notes 315:is a 267:-form 261:is a 454:stub 155:End( 201:of 167:of 31:of 23:In 499:: 402:⊕ 391:⊕ 383:⊗ 365:⊕ 326:. 205:. 185:⊗ 171:. 147:⊗ 140:. 132:= 128:⊗ 117:. 108:⊗ 66:⊗ 38:, 485:e 478:t 471:v 460:. 426:K 404:F 400:F 393:E 389:E 385:F 381:E 374:F 367:E 363:E 356:E 323:E 319:p 303:E 297:M 288:T 282:p 265:p 249:M 240:T 234:p 203:X 195:X 191:L 187:L 183:L 179:L 169:E 161:E 157:E 149:E 145:E 138:E 134:E 130:O 126:E 122:O 114:x 110:F 105:x 101:E 84:X 78:x 68:F 64:E 50:X 40:F 36:E 20:.

Index

tensor field
differential geometry
vector bundles
tensor product of vector spaces
endomorphism bundle
dual bundle
line bundle
Picard group
symmetric power
exterior power
differential p-form
differential p-form with values in a vector bundle E
Tensor product of modules
Vector Bundles and K-Theory
Stub icon
differential geometry
stub
expanding it
v
t
e
Categories
Differential geometry
Differential geometry stubs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.