Knowledge (XXG)

Initial and terminal objects

Source πŸ“

1629: 221: 1876: 1896: 1886: 798:
which preserves limits will take terminal objects to terminal objects, and any functor which preserves colimits will take initial objects to initial objects. For example, the initial object in any
1273: 606:
Initial and terminal objects are not required to exist in a given category. However, if they do exist, they are essentially unique. Specifically, if
1204: 915:
Many natural constructions in category theory can be formulated in terms of finding an initial or terminal object in a suitable category.
1925: 1920: 1221: 1181: 1136: 1244: 216:
of sets and relations, the empty set is the unique initial object, the unique terminal object, and hence the unique zero object.
199:) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in 204: 1266: 1209: 1123: 486: 1899: 1839: 1889: 1675: 1539: 1447: 1173: 309: 1848: 1492: 1430: 1353: 1026:(respectively, initial functor) is a generalization of the notion of final object (respectively, initial object). 737: 528: 339: 1879: 1835: 1440: 1259: 411:, there are no initial or terminal objects. However, in the subcategory of fields of fixed characteristic, the 317: 38: 1435: 1417: 771: 733: 524: 196: 1642: 1408: 1388: 1311: 644: 96: 57: 1524: 1363: 1001: 419: 344: 212: 160: 31: 1336: 1331: 1012: 505: 516:
of the ring of integers, is a terminal object. The empty scheme (equal to the prime spectrum of the
1680: 1628: 1558: 1554: 1358: 1037: 328: 1534: 1529: 1511: 1393: 1368: 920: 868: 826: 513: 408: 297: 1843: 1780: 1768: 1670: 1595: 1590: 1548: 1544: 1326: 1321: 1217: 1199: 1177: 1132: 982: 815: 799: 750: 640: 535: 382: 356: 220: 589:, the initial and terminal objects are the anonymous zero object. This is used frequently in 1804: 1690: 1665: 1600: 1585: 1580: 1519: 1348: 1316: 1227: 1187: 1142: 830: 476: 192: 1716: 1282: 1231: 1213: 1191: 1146: 45: 1753: 233:(whose objects are non-empty sets together with a distinguished element; a morphism from 1748: 1732: 1695: 1685: 1605: 932: 668: 570: 447: 386: 1914: 1743: 1575: 1452: 1378: 1170:
Categorical foundations. Special topics in order, topology, algebra, and sheaf theory
1100: 1023: 754: 466: 301: 286: 1497: 1398: 811: 807: 660: 1758: 497:(with no objects and no morphisms), as initial object and the terminal category, 1738: 1610: 1480: 803: 625: 412: 230: 171: 49: 1150: 17: 1790: 1728: 1341: 590: 1172:. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: 30:"Zero object" redirects here. For zero object in an algebraic structure, see 1784: 1475: 788: 785: 517: 393: 367: 184: 546:
may be characterised as an initial object in the category of co-cones from
501:(with a single object with a single identity morphism), as terminal object. 224:
Morphisms of pointed sets. The image also applies to algebraic zero objects
37:"Terminal element" redirects here. For the project management concept, see 1853: 1485: 1383: 80: 1823: 1813: 1462: 1373: 795: 490: 360: 837:
be the discrete category with a single object (denoted by β€’), and let
1818: 643:
there is an existence theorem for initial objects. Specifically, a (
825:
Initial and terminal objects may also be characterized in terms of
285:), every singleton is a zero object. Similarly, in the category of 1700: 1251: 636:
is also an initial object. The same is true for terminal objects.
429:
can be interpreted as a category: the objects are the elements of
219: 207:
and every one-point space is a terminal object in this category.
1640: 1293: 1255: 806:
will be the free object generated by the empty set (since the
304:
is a zero object. The trivial object is also a zero object in
1240: 1122:
AdΓ‘mek, JiΕ™Γ­; Herrlich, Horst; Strecker, George E. (1990).
624:
are two different initial objects, then there is a unique
348:
for details. This is the origin of the term "zero object".
144:
If an object is both initial and terminal, it is called a
1168:
Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004).
757:(a product is indeed the limit of the discrete diagram 651:
has an initial object if and only if there exist a set
359:
with unity and unity-preserving morphisms, the ring of
385:
with unity and unity-preserving morphisms, the rig of
27:
Special objects used in (mathematical) category theory
459:. This category has an initial object if and only if 1803: 1767: 1715: 1708: 1659: 1568: 1510: 1461: 1416: 1407: 1304: 1245:
article on examples of initial and terminal objects
993:is an initial object in the category of cones from 632:is an initial object then any object isomorphic to 1125:Abstract and Concrete Categories. The joy of cats 534:may be characterised as a terminal object in the 392:is an initial object. The zero rig, which is the 770:, in general). Dually, an initial object is a 1267: 8: 753:, a terminal object can be thought of as an 931:can be defined as an initial object in the 911:Relation to other categorical constructions 562:of chain complexes over a commutative ring 1895: 1885: 1712: 1656: 1637: 1413: 1301: 1290: 1274: 1260: 1252: 749:. Since the empty category is vacuously a 469:; it has a terminal object if and only if 1205:Categories for the Working Mathematician 137:, and terminal objects are also called 435:, and there is a single morphism from 396:, consisting only of a single element 493:as morphisms has the empty category, 166:is one for which every morphism into 7: 946:. Dually, a universal morphism from 851:be the unique (constant) functor to 566:, the zero complex is a zero object. 370:consisting only of a single element 898:to β€’. The functor which sends β€’ to 289:, every singleton is a zero object. 129:. Initial objects are also called 119:there exists exactly one morphism 25: 1239:This article is based in part on 1040:of an initial or terminal object 695:, there is at least one morphism 1894: 1884: 1875: 1874: 1627: 187:is the unique initial object in 111:is terminal if for every object 1077:, then for any pair of objects 875:. The functor which sends β€’ to 728:Terminal objects in a category 1212:. Vol. 5 (2nd ed.). 205:category of topological spaces 1: 1210:Graduate Texts in Mathematics 894:is a universal morphism from 79:, there exists precisely one 1011:is an initial object in the 784:and can be thought of as an 487:category of small categories 1569:Constructions on categories 1002:representation of a functor 628:between them. Moreover, if 156:is one with a zero object. 71:such that for every object 1942: 1676:Higher-dimensional algebra 1174:Cambridge University Press 366:is an initial object. The 310:category of abelian groups 287:pointed topological spaces 36: 29: 1926:Objects (category theory) 1870: 1649: 1636: 1625: 1300: 1289: 1131:. John Wiley & Sons. 1089:, the unique composition 687:such that for any object 542:. Likewise, a colimit of 340:category of vector spaces 195:. Every one-element set ( 1921:Limits (category theory) 973:is a terminal object in 954:is a terminal object in 602:Existence and uniqueness 318:category of pseudo-rings 39:work breakdown structure 1486:Cokernels and quotients 1409:Universal constructions 989:. Dually, a colimit of 969:The limit of a diagram 822:, preserves colimits). 732:may also be defined as 724:Equivalent formulations 520:) is an initial object. 1643:Higher category theory 1389:Natural transformation 225: 774:of the empty diagram 420:partially ordered set 415:is an initial object. 400:is a terminal object. 374:is a terminal object. 345:Zero object (algebra) 223: 161:strict initial object 32:zero object (algebra) 1512:Algebraic categories 1013:category of elements 902:is right adjoint to 827:universal properties 794:It follows that any 791:or categorical sum. 736:of the unique empty 647:) complete category 591:cohomology theories. 571:short exact sequence 99:notion is that of a 1681:Homotopy hypothesis 1359:Commutative diagram 1038:endomorphism monoid 879:is left adjoint to 641:complete categories 504:In the category of 329:category of modules 229:In the category of 1394:Universal property 1200:Mac Lane, Saunders 1073:has a zero object 921:universal morphism 886:A terminal object 869:universal morphism 859:An initial object 409:category of fields 381:, the category of 342:over a field. See 298:category of groups 226: 1908: 1907: 1866: 1865: 1862: 1861: 1844:monoidal category 1799: 1798: 1671:Enriched category 1623: 1622: 1619: 1618: 1596:Quotient category 1591:Opposite category 1506: 1505: 983:category of cones 816:forgetful functor 800:concrete category 751:discrete category 536:category of cones 357:category of rings 331:over a ring, and 257:being a function 16:(Redirected from 1933: 1898: 1897: 1888: 1887: 1878: 1877: 1713: 1691:Simplex category 1666:Categorification 1657: 1638: 1631: 1601:Product category 1586:Kleisli category 1581:Functor category 1426:Terminal objects 1414: 1349:Adjoint functors 1302: 1291: 1276: 1269: 1262: 1253: 1235: 1195: 1164: 1162: 1161: 1155: 1149:. Archived from 1130: 1110: 1106: 1098: 1088: 1084: 1080: 1076: 1072: 1065: 1043: 1031:Other properties 1018: 1006: 996: 992: 988: 980: 972: 965: 953: 949: 945: 930: 926: 905: 901: 897: 893: 889: 878: 874: 866: 862: 850: 831:adjoint functors 783: 769: 748: 731: 719: 709: 694: 690: 686: 682: 666: 654: 650: 635: 631: 623: 614: 588: 553:In the category 477:greatest element 474: 464: 458: 446: 440: 434: 428: 399: 373: 284: 270: 256: 244: 210:In the category 193:category of sets 169: 165: 154:pointed category 128: 118: 114: 110: 105:terminal element 91: 78: 74: 70: 66: 62: 21: 1941: 1940: 1936: 1935: 1934: 1932: 1931: 1930: 1911: 1910: 1909: 1904: 1858: 1828: 1795: 1772: 1763: 1720: 1704: 1655: 1645: 1632: 1615: 1564: 1502: 1471:Initial objects 1457: 1403: 1296: 1285: 1283:Category theory 1280: 1224: 1214:Springer-Verlag 1198: 1184: 1167: 1159: 1157: 1153: 1139: 1128: 1121: 1118: 1108: 1104: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1045: 1041: 1033: 1016: 1004: 994: 990: 986: 974: 970: 955: 951: 947: 935: 928: 924: 923:from an object 913: 903: 899: 895: 891: 887: 876: 872: 864: 860: 838: 775: 767: 758: 740: 729: 726: 711: 704: 696: 692: 688: 684: 680: 671: 664: 652: 648: 633: 629: 622: 616: 613: 607: 604: 599: 574: 560: 470: 460: 450: 442: 436: 430: 422: 397: 387:natural numbers 371: 272: 258: 246: 234: 180: 167: 163: 120: 116: 112: 108: 101:terminal object 83: 76: 72: 68: 64: 60: 46:category theory 42: 35: 28: 23: 22: 18:Terminal object 15: 12: 11: 5: 1939: 1937: 1929: 1928: 1923: 1913: 1912: 1906: 1905: 1903: 1902: 1892: 1882: 1871: 1868: 1867: 1864: 1863: 1860: 1859: 1857: 1856: 1851: 1846: 1832: 1826: 1821: 1816: 1810: 1808: 1801: 1800: 1797: 1796: 1794: 1793: 1788: 1777: 1775: 1770: 1765: 1764: 1762: 1761: 1756: 1751: 1746: 1741: 1736: 1725: 1723: 1718: 1710: 1706: 1705: 1703: 1698: 1696:String diagram 1693: 1688: 1686:Model category 1683: 1678: 1673: 1668: 1663: 1661: 1654: 1653: 1650: 1647: 1646: 1641: 1634: 1633: 1626: 1624: 1621: 1620: 1617: 1616: 1614: 1613: 1608: 1606:Comma category 1603: 1598: 1593: 1588: 1583: 1578: 1572: 1570: 1566: 1565: 1563: 1562: 1552: 1542: 1540:Abelian groups 1537: 1532: 1527: 1522: 1516: 1514: 1508: 1507: 1504: 1503: 1501: 1500: 1495: 1490: 1489: 1488: 1478: 1473: 1467: 1465: 1459: 1458: 1456: 1455: 1450: 1445: 1444: 1443: 1433: 1428: 1422: 1420: 1411: 1405: 1404: 1402: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1345: 1344: 1339: 1334: 1329: 1324: 1319: 1308: 1306: 1298: 1297: 1294: 1287: 1286: 1281: 1279: 1278: 1271: 1264: 1256: 1250: 1249: 1236: 1222: 1196: 1182: 1165: 1137: 1117: 1114: 1113: 1112: 1069:If a category 1067: 1059: 1032: 1029: 1028: 1027: 1022:The notion of 1020: 998: 967: 933:comma category 912: 909: 908: 907: 884: 763: 725: 722: 700: 683:of objects of 676: 669:indexed family 658: 620: 611: 603: 600: 598: 595: 594: 593: 567: 556: 551: 521: 514:prime spectrum 502: 480: 448:if and only if 416: 401: 375: 349: 290: 218: 217: 208: 179: 176: 54:initial object 48:, a branch of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1938: 1927: 1924: 1922: 1919: 1918: 1916: 1901: 1893: 1891: 1883: 1881: 1873: 1872: 1869: 1855: 1852: 1850: 1847: 1845: 1841: 1837: 1833: 1831: 1829: 1822: 1820: 1817: 1815: 1812: 1811: 1809: 1806: 1802: 1792: 1789: 1786: 1782: 1779: 1778: 1776: 1774: 1766: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1744:Tetracategory 1742: 1740: 1737: 1734: 1733:pseudofunctor 1730: 1727: 1726: 1724: 1722: 1714: 1711: 1707: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1658: 1652: 1651: 1648: 1644: 1639: 1635: 1630: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1576:Free category 1574: 1573: 1571: 1567: 1560: 1559:Vector spaces 1556: 1553: 1550: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1517: 1515: 1513: 1509: 1499: 1496: 1494: 1491: 1487: 1484: 1483: 1482: 1479: 1477: 1474: 1472: 1469: 1468: 1466: 1464: 1460: 1454: 1453:Inverse limit 1451: 1449: 1446: 1442: 1439: 1438: 1437: 1434: 1432: 1429: 1427: 1424: 1423: 1421: 1419: 1415: 1412: 1410: 1406: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1379:Kan extension 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1314: 1313: 1310: 1309: 1307: 1303: 1299: 1292: 1288: 1284: 1277: 1272: 1270: 1265: 1263: 1258: 1257: 1254: 1248: 1246: 1242: 1237: 1233: 1229: 1225: 1223:0-387-98403-8 1219: 1215: 1211: 1207: 1206: 1201: 1197: 1193: 1189: 1185: 1183:0-521-83414-7 1179: 1175: 1171: 1166: 1156:on 2015-04-21 1152: 1148: 1144: 1140: 1138:0-471-60922-6 1134: 1127: 1126: 1120: 1119: 1115: 1102: 1101:zero morphism 1097: 1093: 1068: 1062: 1057: 1053: 1049: 1039: 1035: 1034: 1030: 1025: 1024:final functor 1021: 1014: 1010: 1003: 999: 984: 978: 968: 963: 959: 943: 939: 934: 927:to a functor 922: 918: 917: 916: 910: 885: 882: 870: 858: 857: 856: 854: 849: 845: 841: 836: 832: 828: 823: 821: 817: 813: 809: 805: 801: 797: 792: 790: 787: 782: 778: 773: 766: 762: 756: 755:empty product 752: 747: 743: 739: 735: 723: 721: 718: 714: 708: 703: 699: 679: 675: 670: 662: 656: 646: 645:locally small 642: 637: 627: 619: 610: 601: 596: 592: 586: 582: 578: 572: 568: 565: 561: 559: 552: 549: 545: 541: 537: 533: 530: 526: 522: 519: 515: 511: 507: 503: 500: 496: 492: 488: 484: 481: 478: 473: 468: 467:least element 463: 457: 453: 449: 445: 439: 433: 426: 421: 417: 414: 410: 406: 402: 395: 391: 388: 384: 380: 376: 369: 365: 362: 358: 354: 350: 347: 346: 341: 337: 335: 330: 326: 324: 319: 315: 311: 307: 303: 302:trivial group 299: 295: 291: 288: 283: 279: 275: 269: 265: 261: 254: 250: 242: 238: 232: 228: 227: 222: 215: 214: 209: 206: 202: 198: 194: 190: 186: 182: 181: 177: 175: 173: 162: 157: 155: 151: 147: 142: 140: 136: 132: 127: 123: 106: 103:(also called 102: 98: 93: 90: 86: 82: 63:is an object 59: 55: 51: 47: 40: 33: 19: 1824: 1805:Categorified 1709:n-categories 1660:Key concepts 1498:Direct limit 1481:Coequalizers 1470: 1425: 1399:Yoneda lemma 1305:Key concepts 1295:Key concepts 1238: 1203: 1169: 1158:. Retrieved 1151:the original 1124: 1095: 1091: 1060: 1055: 1051: 1047: 1044:is trivial: 1008: 976: 961: 957: 941: 937: 914: 880: 852: 847: 843: 839: 834: 824: 819: 812:left adjoint 808:free functor 804:free objects 793: 780: 776: 764: 760: 745: 741: 727: 716: 712: 706: 701: 697: 677: 673: 661:proper class 638: 617: 608: 605: 584: 580: 576: 573:of the form 563: 557: 554: 547: 543: 539: 531: 509: 498: 494: 482: 471: 461: 455: 451: 443: 437: 431: 424: 404: 389: 378: 363: 352: 343: 333: 332: 322: 321: 313: 305: 293: 281: 277: 273: 267: 263: 259: 252: 248: 240: 236: 231:pointed sets 211: 200: 188: 158: 153: 149: 145: 143: 138: 134: 130: 125: 121: 104: 100: 94: 88: 84: 53: 43: 1773:-categories 1749:Kan complex 1739:Tricategory 1721:-categories 1611:Subcategory 1369:Exponential 1337:Preadditive 1332:Pre-abelian 626:isomorphism 413:prime field 172:isomorphism 150:null object 146:zero object 50:mathematics 1915:Categories 1791:3-category 1781:2-category 1754:∞-groupoid 1729:Bicategory 1476:Coproducts 1436:Equalizers 1342:Bicategory 1241:PlanetMath 1232:0906.18001 1192:1034.18001 1160:2008-01-15 1147:0695.18001 1116:References 871:from β€’ to 597:Properties 131:coterminal 1840:Symmetric 1785:2-functor 1525:Relations 1448:Pullbacks 789:coproduct 710:for some 663:) and an 518:zero ring 394:zero ring 368:zero ring 197:singleton 185:empty set 135:universal 1900:Glossary 1880:Category 1854:n-monoid 1807:concepts 1463:Colimits 1431:Products 1384:Morphism 1327:Concrete 1322:Additive 1312:Category 1202:(1998). 1058:) = { id 1050:) = Hom( 842: : 810:, being 491:functors 361:integers 262: : 178:Examples 81:morphism 58:category 1890:Outline 1849:n-group 1814:2-group 1769:Strict 1759:∞-topos 1555:Modules 1493:Pushout 1441:Kernels 1374:Functor 1317:Abelian 855:. Then 814:to the 796:functor 772:colimit 738:diagram 529:diagram 512:), the 508:, Spec( 506:schemes 1836:Traced 1819:2-ring 1549:Fields 1535:Groups 1530:Magmas 1418:Limits 1230:  1220:  1190:  1180:  1145:  1135:  1094:β†’ 0 β†’ 981:, the 833:. Let 734:limits 485:, the 475:has a 465:has a 407:, the 355:, the 338:, the 327:, the 308:, the 300:, any 296:, the 203:, the 191:, the 170:is an 1830:-ring 1717:Weak 1701:Topos 1545:Rings 1154:(PDF) 1129:(PDF) 1103:from 1099:is a 975:Cone( 867:is a 802:with 786:empty 569:In a 527:of a 525:limit 489:with 405:Field 398:0 = 1 372:0 = 1 336:-Vect 271:with 152:. A 139:final 56:of a 52:, an 1520:Sets 1218:ISBN 1178:ISBN 1133:ISBN 1081:and 1046:End( 1036:The 829:and 639:For 615:and 575:0 β†’ 427:, ≀) 418:Any 383:rigs 353:Ring 325:-Mod 316:the 280:) = 183:The 97:dual 95:The 1364:End 1354:CCC 1243:'s 1228:Zbl 1188:Zbl 1143:Zbl 1107:to 1085:in 1015:of 1009:Set 1007:to 985:to 950:to 890:in 863:in 820:Set 818:to 691:of 657:not 587:β†’ 0 538:to 483:Cat 441:to 403:In 379:Rig 377:In 351:In 314:Rng 294:Grp 292:In 245:to 213:Rel 201:Top 189:Set 148:or 133:or 115:in 107:): 75:in 67:in 44:In 1917:: 1842:) 1838:)( 1226:. 1216:. 1208:. 1186:. 1176:. 1141:. 1054:, 1000:A 960:↓ 940:↓ 919:A 846:β†’ 779:β†’ 744:β†’ 720:. 715:∈ 705:β†’ 659:a 583:β†’ 579:β†’ 555:Ch 523:A 454:≀ 320:, 312:, 306:Ab 266:β†’ 251:, 239:, 174:. 159:A 141:. 124:β†’ 92:. 87:β†’ 1834:( 1827:n 1825:E 1787:) 1783:( 1771:n 1735:) 1731:( 1719:n 1561:) 1557:( 1551:) 1547:( 1275:e 1268:t 1261:v 1247:. 1234:. 1194:. 1163:. 1111:. 1109:Y 1105:X 1096:Y 1092:X 1087:C 1083:Y 1079:X 1075:0 1071:C 1066:. 1064:} 1061:I 1056:I 1052:I 1048:I 1042:I 1019:. 1017:F 1005:F 997:. 995:F 991:F 987:F 979:) 977:F 971:F 966:. 964:) 962:X 958:U 956:( 952:X 948:U 944:) 942:U 938:X 936:( 929:U 925:X 906:. 904:U 900:T 896:U 892:C 888:T 883:. 881:U 877:I 873:U 865:C 861:I 853:1 848:1 844:C 840:U 835:1 781:C 777:0 768:} 765:i 761:X 759:{ 746:C 742:0 730:C 717:I 713:i 707:X 702:i 698:K 693:C 689:X 685:C 681:) 678:i 674:K 672:( 667:- 665:I 655:( 653:I 649:C 634:I 630:I 621:2 618:I 612:1 609:I 585:c 581:b 577:a 564:R 558:R 550:. 548:F 544:F 540:F 532:F 510:Z 499:1 495:0 479:. 472:P 462:P 456:y 452:x 444:y 438:x 432:P 425:P 423:( 390:N 364:Z 334:K 323:R 282:b 278:a 276:( 274:f 268:B 264:A 260:f 255:) 253:b 249:B 247:( 243:) 241:a 237:A 235:( 168:I 164:I 126:T 122:X 117:C 113:X 109:T 89:X 85:I 77:C 73:X 69:C 65:I 61:C 41:. 34:. 20:)

Index

Terminal object
zero object (algebra)
work breakdown structure
category theory
mathematics
category
morphism
dual
strict initial object
isomorphism
empty set
category of sets
singleton
category of topological spaces
Rel

pointed sets
pointed topological spaces
category of groups
trivial group
category of abelian groups
category of pseudo-rings
category of modules
category of vector spaces
Zero object (algebra)
category of rings
integers
zero ring
rigs
natural numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑