Knowledge

Condensed matter physics

Source 📝

665: 1024: 2465: 1389: 1472: 1266: 6137: 2379: 42: 984:, launched in 1963. The name "condensed matter physics" emphasized the commonality of scientific problems encountered by physicists working on solids, liquids, plasmas, and other complex matter, whereas "solid state physics" was often associated with restricted industrial applications of metals and semiconductors. In the 1960s and 70s, some physicists felt the more comprehensive name better fit the funding environment and 6565: 678: 2139: 6589: 1760:, wherein complex assemblies of particles behave in ways dramatically different from their individual constituents. For example, a range of phenomena related to high temperature superconductivity are understood poorly, although the microscopic physics of individual electrons and lattices is well known. Similarly, models of condensed matter systems have been studied where 6601: 6577: 6019: 2002:. In a single-component system, a classical phase transition occurs at a temperature (at a specific pressure) where there is an abrupt change in the order of the system For example, when ice melts and becomes water, the ordered hexagonal crystal structure of ice is modified to a hydrogen bonded, mobile arrangement of water molecules. 2082:
methods successively average out the shortest wavelength fluctuations in stages while retaining their effects into the next stage. Thus, the changes of a physical system as viewed at different size scales can be investigated systematically. The methods, together with powerful computer simulation,
818:
The diversity of systems and phenomena available for study makes condensed matter physics the most active field of contemporary physics: one third of all American physicists self-identify as condensed matter physicists, and the Division of Condensed Matter Physics is the largest division of the
2075:. However, it can only roughly explain continuous phase transition for ferroelectrics and type I superconductors which involves long range microscopic interactions. For other types of systems that involves short range interactions near the critical point, a better theory is needed. 1667:. It was realized that the high temperature superconductors are examples of strongly correlated materials where the electron–electron interactions play an important role. A satisfactory theoretical description of high-temperature superconductors is still not known and the field of 1288:
discovered that a voltage developed across conductors which was transverse to both an electric current in the conductor and a magnetic field applied perpendicular to the current. This phenomenon, arising due to the nature of charge carriers in the conductor, came to be termed the
1407:
The Sommerfeld model and spin models for ferromagnetism illustrated the successful application of quantum mechanics to condensed matter problems in the 1930s. However, there still were several unsolved problems, most notably the description of
5352:
Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council (25 November 2013).
999:
proposed that "The kinetic theory of liquids must accordingly be developed as a generalization and extension of the kinetic theory of solid bodies. As a matter of fact, it would be more correct to unify them under the title of 'condensed
1175:, when he observed the electrical resistivity of mercury to vanish at temperatures below a certain value. The phenomenon completely surprised the best theoretical physicists of the time, and it remained unexplained for several decades. 1179:, in 1922, said regarding contemporary theories of superconductivity that "with our far-reaching ignorance of the quantum mechanics of composite systems we are very far from being able to compose a theory out of these vague ideas." 2546:
quickly before useful computation is completed. This serious problem must be solved before quantum computing may be realized. To solve this problem, several promising approaches are proposed in condensed matter physics, including
2251:
are used to find resonance modes of individual nuclei, thus giving information about the atomic, molecular, and bond structure of their environment. NMR experiments can be made in magnetic fields with strengths up to 60
2304:), which couple the electron or nuclear spin to the local electric and magnetic fields. These methods are suitable to study defects, diffusion, phase transitions and magnetic order. Common experimental methods include 2029:. Understanding the behavior of quantum phase transition is important in the difficult tasks of explaining the properties of rare-earth magnetic insulators, high-temperature superconductors, and other substances. 1686:, i.e. a strongly correlated electron material, it is expected that the existence of a topological Dirac surface state in this material would lead to a topological insulator with strong electronic correlations. 1909:(DFT) which gave realistic descriptions for bulk and surface properties of metals. The density functional theory has been widely used since the 1970s for band structure calculations of variety of solids. 5337:
The magnetic field is not simply a spectroscopic tool but a thermodynamic variable which, along with temperature and pressure, controls the state, the phase transitions and the properties of materials.
1694:
Theoretical condensed matter physics involves the use of theoretical models to understand properties of states of matter. These include models to study the electronic properties of solids, such as the
2296:(NMR), which are very sensitive to the details of the surrounding of nuclei and electrons by means of the hyperfine coupling. Both localized electrons and specific stable or unstable isotopes of the 1148:
moving through a metallic solid. Drude's model described properties of metals in terms of a gas of free electrons, and was the first microscopic model to explain empirical observations such as the
1865:
Calculating electronic properties of metals by solving the many-body wavefunction is often computationally hard, and hence, approximation methods are needed to obtain meaningful predictions. The
831:
and non-quantum physical properties of matter respectively. Both types study a great range of materials, providing many research, funding and employment opportunities. The field overlaps with
1893:
of single particle electron wavefunctions. In general, it is very difficult to solve the Hartree–Fock equation. Only the free electron gas case can be solved exactly. Finally in 1964–65,
6051: 2618: 5748:
Committee on CMMP 2010; Solid State Sciences Committee; Board on Physics and Astronomy; Division on Engineering and Physical Sciences, National Research Council (21 December 2007).
4072: 756:. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the 1565:
proposed a theory explaining the unanticipated precision of the integral plateau. It also implied that the Hall conductance is proportional to a topological invariant, called
1628:. The study of topological properties of the fractional Hall effect remains an active field of research. Decades later, the aforementioned topological band theory advanced by 5840:
Kudernac, Tibor; Ruangsupapichat, Nopporn; Parschau, Manfred; MaciĂĄ, Beatriz; Katsonis, Nathalie; Harutyunyan, Syuzanna R.; Ernst, Karl-Heinz; Feringa, Ben L. (2011-11-01).
709: 5783: 5388: 4534: 4054: 3676: 1777: 4549: 1618: 1559: 2358: 5787: 1293:, but it was not properly explained at the time because the electron was not experimentally discovered until 18 years later. After the advent of quantum mechanics, 2334: 6869: 1798:
The metallic state has historically been an important building block for studying properties of solids. The first theoretical description of metals was given by
6639: 6044: 4113: 901: 3188: 2091:
Experimental condensed matter physics involves the use of experimental probes to try to discover new properties of materials. Such probes include effects of
1308:
Magnetism as a property of matter has been known in China since 4000 BC. However, the first modern studies of magnetism only started with the development of
2364:(PAC). PAC is especially ideal for the study of phase changes at extreme temperatures above 2000 Â°C due to the temperature independence of the method. 6958: 976:, and so on. Although Anderson and Heine helped popularize the name "condensed matter", it had been used in Europe for some years, most prominently in the 795:. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the 1432:
wherein low energy properties of interacting fermion systems were given in terms of what are now termed Landau-quasiparticles. Landau also developed a
2890: 6037: 2664:
Both hydrogen and nitrogen have since been liquified; however, ordinary liquid nitrogen and hydrogen do not possess metallic properties. Physicists
4870: 1126:
supplied the theoretical framework which allowed the prediction of critical behavior based on measurements at much higher temperatures. By 1908,
1079:
were not indivisible as Dalton claimed, but had inner structure. Davy further claimed that elements that were then believed to be gases, such as
6837: 3615: 2600: 2515:
scale, and have given rise to the study of nanofabrication. Such molecular machines were developed for example by Nobel laureates in chemistry
2398: 2104: 702: 3505: 664: 5930: 5915: 5767: 5415: 5372: 5261: 5236: 5204: 5179: 5154: 4804: 4329: 4228: 4082: 3889: 3816: 3757: 3646: 3455: 3427: 3393: 3366: 3061: 2288:, as well as the structure of the nearest neighbour atoms, can be investigated in condensed matter with magnetic resonance methods, such as 2078:
Near the critical point, the fluctuations happen over broad range of size scales while the feature of the whole system is scale invariant.
1013: 5684: 2725: 5354: 4021: 3384: 2064:
laws are no longer valid in the region, and novel ideas and methods must be invented to find the new laws that can describe the system.
4929: 2193:
and hence are able to probe atomic length scales, and are used to measure variations in electron charge density and crystal structure.
1968:
states that in a system with broken continuous symmetry, there may exist excitations with arbitrarily low energy, called the Goldstone
5279: 3531: 2978: 2013:, and the non-thermal control parameter, such as pressure or magnetic field, causes the phase transitions when order is destroyed by 1731: 1023: 928:
which introduced, for the first time, the effect of lattice vibrations on the thermodynamic properties of crystals, in particular the
6581: 6023: 900:
was one of the first institutes to conduct a research program in condensed matter physics. According to the founding director of the
6981: 6632: 6569: 6004: 5989: 5974: 5960: 5945: 5702: 695: 682: 5749: 5431:
Doiron-Leyraud, Nicolas; et al. (2007). "Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor".
5254:
Photoemission Spectroscopy on High Temperature Superconductor: A Study of Bi2Sr2CaCu2O8 by Laser-Based Angle-Resolved Photoemission
5658: 1460:
of superconductivity, based on the discovery that arbitrarily small attraction between two electrons of opposite spin mediated by
977: 3691: 2018: 1869:, developed in the 1920s, was used to estimate system energy and electronic density by treating the local electron density as a 2402: 2289: 2045: 1648: 1400: 1115: 1990:
Phase transition refers to the change of phase of a system, which is brought about by change in an external parameter such as
6785: 5315: 2564: 1582: 1561:.(see figure) The effect was observed to be independent of parameters such as system size and impurities. In 1981, theorist 921: 447: 2264:. High magnetic fields will be useful in experimental testing of the various theoretical predictions such as the quantized 2260:
is another experimental method where high magnetic fields are used to study material properties such as the geometry of the
784: 4580: 3001: 2173:, etc., on constituents of a material. The choice of scattering probe depends on the observation energy scale of interest. 1620:. Laughlin, in 1983, realized that this was a consequence of quasiparticle interaction in the Hall states and formulated a 6605: 6550: 6161: 2637: 2508: 2361: 1437: 6096: 2441: 2383: 102: 6625: 2309: 2124: 1668: 622: 6922: 4245: 4102: 1403:. Today some physicists are working to understand high-temperature superconductivity using the AdS/CFT correspondence. 2968: 2068: 1823: 1776:
as an emergent phenomenon. Emergent properties can also occur at the interface between materials: one example is the
1711: 1526:, Dorda and Pepper in 1980 when they observed the Hall conductance to be integer multiples of a fundamental constant 1208: 1200: 991:
References to "condensed" states can be traced to earlier sources. For example, in the introduction to his 1947 book
4955: 6986: 6753: 6726: 6341: 6250: 4973:
Greiter, Martin (16 March 2005). "Is electromagnetic gauge invariance spontaneously violated in superconductors?".
3227: 3143: 2575: 2480:
Research in condensed matter physics has given rise to several device applications, such as the development of the
2305: 2293: 2244: 1420:, several ideas from quantum field theory were applied to condensed matter problems. These included recognition of 1364:
can occur in one dimension and it is possible in higher-dimensional lattices. Further research such as by Bloch on
1344:
to explain the main properties of ferromagnets. The first attempt at a microscopic description of magnetism was by
1107: 917: 627: 252: 6290: 6265: 2337: 1906: 1793: 1703: 1699: 1361: 820: 517: 192: 6214: 2594: 896:
was added to this list, forming the basis for the more comprehensive specialty of condensed matter physics. The
6460: 6204: 2072: 2006: 1285: 1270: 512: 507: 1886: 1831: 1640: 1149: 597: 4133:
Fisher, Michael E. (1998). "Renormalization group theory: Its basis and formulation in statistical physics".
2083:
contribute greatly to the explanation of the critical phenomena associated with continuous phase transition.
6306: 5724: 2801: 2669: 2414: 2409:, in which ions or atoms can be placed at very low temperatures. Cold atoms in optical lattices are used as 2057: 1851: 1843: 925: 607: 202: 2921: 2464: 2048:. Near the critical point, systems undergo critical behavior, wherein several of their properties such as 1866: 6943: 6805: 5621: 5356:
High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions
5316:"Report of the IUPAP working group on Facilities for Condensed Matter Physics : High Magnetic Fields" 5093: 4268: 4150: 3984: 3624: 2313: 2265: 2240: 1961: 1936: 1131: 1123: 1031: 1027: 957: 949: 592: 532: 502: 452: 172: 62: 3028: 2476:
molecules. It is hoped that advances in nanoscience will lead to machines working on the molecular scale.
2413:, that is, they act as controllable systems that can model behavior of more complicated systems, such as 2060:
diverge exponentially. These critical phenomena present serious challenges to physicists because normal
2044:. For the latter, the two phases involved do not co-exist at the transition temperature, also called the 6948: 6917: 6780: 6701: 6357: 6336: 6270: 2632: 2623: 2120: 2079: 1761: 1727: 1723: 1679: 1633: 1625: 1512: 1421: 808: 632: 247: 232: 5136: 4879: 2397:
trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in
1999: 908:
who created the modern field of condensed matter physics starting with his seminal 1905 article on the
1160:
and magnetic properties of metals, and the temperature dependence of resistivity at low temperatures.
6907: 6731: 6691: 6326: 6101: 5853: 5613: 5552: 5501: 5450: 5288: 5085: 5045: 4992: 4833: 4758: 4675: 4620: 4564: 4474: 4409: 4358: 4260: 4191: 4142: 3976: 3918: 3580: 3487: 3323: 3286: 3203: 3119: 2905: 2845: 2776: 2612: 2257: 2220: 1965: 1719: 1164: 909: 879: 222: 112: 5807: 5626: 5098: 4508:
Bednorz, J.G., MĂŒller, K.A. (1986), "Possible high Tc superconductivity in the Ba−La−Cu−O system.",
4273: 4155: 3989: 3773:
Lindley, David (2015-05-15). "Focus: Landmarks—Accidental Discovery Leads to Calibration Standard".
3652: 3629: 3472: 2701: 1818:
and get results in close agreement with the experiments. This classical model was then improved by
1156:, it had one notable problem: it was unable to correctly explain the electronic contribution to the 17: 6882: 6741: 6736: 6721: 6696: 6673: 6649: 6280: 6260: 6245: 6194: 4822:"Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions" 3184: 2646: â€“ Subdiscipline of condensed matter physics that deals with materials of an intermediate size 2543: 2535: 2520: 2301: 2273: 2182: 2014: 1944: 1815: 1519: 1476: 1429: 1313: 1302: 1298: 1212: 1064: 888: 856: 812: 462: 272: 122: 6588: 4739:
Levin, Michael; Wen, Xiao-Gang (2005). "Colloquium: Photons and electrons as emergent phenomena".
6938: 6815: 6810: 6763: 6427: 6417: 6166: 5885: 5777: 5639: 5603: 5576: 5525: 5474: 5440: 5382: 5111: 5075: 5035: 5008: 4982: 4900: 4821: 4774: 4748: 4699: 4665: 4490: 4464: 4433: 4399: 4048: 4002: 3966: 3853: 3719: 3711: 3670: 3596: 3570: 3339: 3219: 3135: 2947: 2643: 2548: 2422: 2216: 2199:
can also probe atomic length scales and are used to study the scattering off nuclei and electron
2116: 2049: 2026: 1928: 1870: 1621: 1523: 1484: 1373: 1281: 642: 602: 577: 325: 316: 6255: 2219:
is an excellent tool for studying the microscopic properties of a medium, for example, to study
2181:(eV) and is used as a scattering probe to measure variations in material properties such as the 1859: 1682:
in accord with the earlier theoretical predictions. Since samarium hexaboride is an established
1471: 3105:"What's in a Name Change? Solid State Physics, Condensed Matter Physics, and Materials Science" 6953: 6902: 6847: 6827: 6713: 6535: 6500: 6407: 6331: 6000: 5985: 5970: 5956: 5941: 5926: 5911: 5877: 5869: 5763: 5698: 5568: 5517: 5466: 5411: 5403: 5368: 5257: 5232: 5200: 5175: 5150: 4851: 4800: 4691: 4638: 4528: 4425: 4325: 4224: 4078: 3936: 3885: 3833: 3812: 3753: 3642: 3451: 3423: 3389: 3362: 3057: 2974: 2861: 2733: 2673: 2606: 2269: 2224: 2132: 2100: 2061: 1918: 1890: 1855: 1839: 1819: 1781: 1735: 1715: 1629: 1570: 1508: 1500: 1453: 1433: 1409: 1265: 1216: 1192: 1172: 1168: 1103: 1046: 937: 913: 836: 828: 815:
to develop mathematical models and predict the properties of extremely large groups of atoms.
800: 757: 572: 417: 307: 227: 4904: 4717: 4030: 3417: 1588: 1529: 952:, the use of the term "condensed matter" to designate a field of study was coined by him and 6892: 6832: 6758: 6505: 6397: 6377: 6372: 6367: 6362: 6219: 6199: 6156: 6121: 6091: 5861: 5755: 5690: 5631: 5560: 5509: 5458: 5360: 5296: 5142: 5103: 5000: 4919: 4841: 4766: 4683: 4628: 4611: 4572: 4517: 4482: 4417: 4366: 4278: 4199: 4160: 3994: 3926: 3879: 3845: 3782: 3703: 3634: 3588: 3495: 3331: 3294: 3211: 3127: 2913: 2853: 2492: 2343: 2186: 1985: 1898: 1773: 1707: 1644: 1574: 1377: 1251: 1227: 1111: 1056: 933: 860: 804: 277: 242: 237: 197: 167: 137: 97: 57: 3539: 3259: 2417:. In particular, they are used to engineer one-, two- and three-dimensional lattices for a 886:, etc., were treated as distinct areas until the 1940s, when they were grouped together as 6912: 6822: 6768: 6668: 6530: 6151: 6068: 3180: 2524: 2496: 2449: 2378: 2373: 2319: 2285: 2248: 2204: 2161:
Several condensed matter experiments involve scattering of an experimental probe, such as
1874: 1756:
Theoretical understanding of condensed matter physics is closely related to the notion of
1683: 1562: 1441: 1396: 1388: 1360:
that collectively acquired magnetization. The Ising model was solved exactly to show that
1341: 1309: 1247: 1223: 1176: 1091: 905: 871: 864: 792: 780: 772: 745: 741: 587: 537: 407: 162: 74: 6485: 4387: 3299: 1118:
to describe the condition where a gas and a liquid were indistinguishable as phases, and
5857: 5617: 5556: 5505: 5454: 5300: 5292: 5089: 5049: 4996: 4837: 4762: 4679: 4624: 4568: 4478: 4413: 4362: 4264: 4195: 4146: 3980: 3922: 3584: 3491: 3327: 3290: 3207: 3123: 2909: 2849: 6842: 6797: 6775: 6663: 6593: 6540: 6422: 6311: 6136: 2833: 2556: 2504: 2500: 2394: 2297: 2236: 2208: 2200: 2096: 2092: 1951: 1940: 1882: 1739: 1496: 1492: 1357: 1231: 1188: 973: 848: 844: 788: 776: 669: 637: 617: 612: 567: 487: 422: 320: 207: 52: 41: 5842:"Electrically driven directional motion of a four-wheeled molecule on a metal surface" 5543:
Greiner, Markus; Fölling, Simon (2008). "Condensed-matter physics: Optical lattices".
5322: 5107: 4452: 3727: 1098:
and went on to liquefy all known gaseous elements, except for nitrogen, hydrogen, and
6975: 6465: 6447: 6432: 6412: 6316: 6285: 6116: 5225: 4778: 4703: 4576: 3857: 3723: 3600: 3274: 3223: 3139: 2677: 2665: 2528: 2481: 2453: 2418: 2261: 2190: 2178: 2174: 2128: 2053: 2010: 1889:
as an improvement over the Thomas–Fermi model. The Hartree–Fock method accounted for
1878: 1827: 1504: 1317: 1255: 1204: 1199:
and other physicists. Pauli realized that the free electrons in metal must obey the
1157: 1076: 996: 929: 542: 348: 329: 311: 212: 132: 5643: 5529: 5115: 5012: 4494: 4023:
Phases of Matter and Phase Transitions; From Mean Field Theory to Critical Phenomena
2626: â€“ Property of an object or substance to transmit light with minimal scattering 6877: 6402: 6224: 6126: 5889: 5580: 5478: 4687: 4656:
Dzero, V.; K. Sun; V. Galitski; P. Coleman (2010). "Topological Kondo Insulators".
4437: 4006: 3343: 2946:
Cardona, Manuel (31 August 2005). "Einstein as the Father of Solid State Physics".
2857: 2253: 2138: 2112: 2022: 1842:
pattern of crystals, and concluded that crystals get their structure from periodic
1835: 1488: 1445: 1417: 1413: 1345: 1337: 1329: 1321: 1243: 1052: 953: 936:
makes a similar priority case for Einstein in his work on the synthetic history of
796: 562: 552: 522: 482: 477: 457: 302: 282: 142: 4956:"Spontaneous Symmetry Breaking in Particle Physics: a Case of Cross Fertilization" 4421: 3253: 1055:, in the first decades of the nineteenth century. Davy observed that of the forty 5995:
Lillian Hoddeson, Ernest Braun, JĂŒrgen Teichmann and Spencer Weart, eds. (1992).
4319: 3638: 3077: 3051: 1479:: Components of the Hall resistivity as a function of the external magnetic field 6522: 6240: 6209: 6189: 2588: 2571: 2516: 2426: 2108: 1991: 1902: 1894: 1847: 1806:, which explained electrical and thermal properties by describing a metal as an 1803: 1695: 1578: 1566: 1483:
The study of phase transitions and the critical behavior of observables, termed
1465: 1449: 1353: 1349: 1333: 1325: 1290: 1242:
were first used in 1930 to predict the properties of new materials, and in 1947
1239: 1196: 1153: 1127: 1119: 1072: 840: 824: 768: 764: 647: 582: 557: 527: 472: 467: 399: 4486: 4371: 4346: 2243:
that control the state, phase transitions and properties of material systems.
2215:
annihilation can be used as an indirect measurement of local electron density.
1730:
of electronic structure and mathematical tools to understand phenomena such as
1087:
could be liquefied under the right conditions and would then behave as metals.
1071:
and high electrical and thermal conductivity. This indicated that the atoms in
6897: 6887: 6437: 6275: 6111: 5841: 5635: 5004: 4846: 4770: 4282: 4164: 3998: 3592: 3131: 2917: 2552: 2484: 2445: 2156: 1948: 1799: 1457: 1425: 1424:
modes of solids and the important notion of a quasiparticle. Soviet physicist
1316:
and others in the nineteenth century, which included classifying materials as
1294: 1259: 1215:
and made it better to explain the heat capacity. Two years later, Bloch used
1141: 875: 852: 492: 334: 127: 5873: 5694: 4345:
Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; den Nijs, M. (1982-08-09).
6748: 6617: 6495: 6321: 6106: 5513: 2754: 2512: 2473: 1807: 1757: 1751: 1365: 1274: 1068: 961: 897: 883: 832: 761: 753: 547: 497: 370: 217: 117: 6029: 5881: 5572: 5521: 5470: 4855: 4695: 4642: 4429: 3940: 2865: 2256:. Higher magnetic fields can improve the quality of NMR measurement data. 6018: 5751:
Condensed-Matter and Materials Physics: The Science of the World Around Us
5170:
Malcolm F. Collins Professor of Physics McMaster University (1989-03-02).
3215: 2067:
The simplest theory that can describe continuous phase transitions is the
1332:
studied the dependence of magnetization on temperature and discovered the
5997:
Out of the Crystal Maze: Chapters from the History of Solid State Physics
5608: 5080: 4987: 4753: 4404: 4286: 3971: 3786: 3419:
Out of the Crystal Maze: Chapters from The History of Solid State Physics
3104: 2597: â€“ Equation relating transport coefficients to correlation functions 2527:. Feringa and his team developed multiple molecular machines such as the 2433: 2387: 2212: 1995: 1811: 1769: 1675: 1356:
that described magnetic materials as consisting of a periodic lattice of
1145: 1134:
were successfully able to liquefy hydrogen and the then newly discovered
1095: 1084: 1080: 985: 107: 5865: 5462: 2952: 1163:
In 1911, three years after helium was first liquefied, Onnes working at
6545: 6512: 6490: 6470: 5040: 4521: 3849: 3715: 3623:. International Tables for Crystallography. Vol. A. pp. 2–5. 2196: 2170: 2143: 1932: 1369: 1049: 859:
of condensed matter shares important concepts and methods with that of
729:
that deals with the macroscopic and microscopic physical properties of
726: 427: 412: 375: 366: 361: 4924: 4204: 4179: 3500: 1706:. Theoretical models have also been developed to study the physics of 6852: 6480: 6475: 6081: 3335: 2437: 2203:
and magnetization (as neutrons have spin but no charge). Coulomb and
2166: 2021:. Here, the different quantum phases of the system refer to distinct 1973: 1765: 1664: 1569:, whose relevance for the band structure of solids was formulated by 1461: 1393: 1135: 1099: 1035: 893: 738: 730: 380: 356: 87: 5564: 5197:
Experimental methods in Condensed Matter Physics at Low Temperatures
4633: 4606: 4347:"Quantized Hall Conductance in a Two-Dimensional Periodic Potential" 3931: 3906: 3707: 2726:"Condensed Matter Physics Jobs: Careers in Condensed Matter Physics" 1436:
for continuous phase transitions, which described ordered phases as
972:
in 1967, as they felt it better included their interest in liquids,
5759: 5404:"Nuclear Magnetic Resonance in Solids at very high magnetic fields" 5364: 3957:
Coleman, Piers (2003). "Many-Body Physics: Unfinished Revolution".
2559:
orientation of magnetic materials, and the topological non-Abelian
1826:
of electrons and was able to explain the anomalous behavior of the
1632:
and collaborators was further expanded leading to the discovery of
6455: 6076: 5445: 4670: 4469: 3575: 3448:
Quantum Generations: A History of Physics in the Twentieth Century
3314:
Rowlinson, J. S. (1969). "Thomas Andrews and the Critical Point".
2560: 2539: 2488: 2463: 2421:
with pre-specified parameters, and to study phase transitions for
2377: 2162: 2137: 1969: 1780:, where two band-insulators are joined to create conductivity and 1585:
where the conductance was now a rational multiple of the constant
1470: 1387: 1264: 1060: 1022: 734: 385: 82: 5321:. International Union of Pure and Applied Physics. Archived from 5146: 3561:
Schmalian, Joerg (2010). "Failed theories of superconductivity".
1234:, and tables of crystal structures were the basis for the series 5594:
Jaksch, D.; Zoller, P. (2005). "The cold atom Hubbard toolbox".
1955: 749: 6621: 6033: 5808:"A Perspective of Frontiers in Modern Condensed Matter Physics" 3275:"Metallic Hydrogen: The Most Powerful Rocket Fuel Yet to Exist" 2891:"An essay on condensed matter physics in the twentieth century" 1834:. In 1912, The structure of crystalline solids was studied by 6086: 4246:"Theory of the edge states in fractional quantum Hall effects" 1674:
In 2012, several groups released preprints which suggest that
1376:
led to developing new magnetic materials with applications to
1045:
One of the first studies of condensed states of matter was by
92: 5314:
Committee on Facilities for Condensed Matter Physics (2004).
2615: â€“ Using nucleus properties to probe material properties 1301:
and laid the foundation for a theoretical explanation of the
1219:
to describe the motion of an electron in a periodic lattice.
1144:
in 1900 proposed the first theoretical model for a classical
5277:
Siegel, R. W. (1980). "Positron Annihilation Spectroscopy".
3614:
Aroyo, Mois, I.; MĂŒller, Ulrich; Wondratschek, Hans (2006).
1444:
to distinguish between ordered phases. Eventually in 1956,
5492:
Buluta, Iulia; Nori, Franco (2009). "Quantum Simulators".
2970:
Einstein and the Quantum: The Quest of the Valiant Swabian
1972:. For example, in crystalline solids, these correspond to 1927:, where the relevant laws of physics possess some form of 1663:, which is superconducting at temperatures as high as 39 1094:, then an assistant in Davy's lab, successfully liquefied 4178:
Avron, Joseph E.; Osadchy, Daniel; Seiler, Ruedi (2003).
3907:"Collaborative physics: string theory finds a bench mate" 2390:
atoms. The blue and white areas represent higher density.
5659:"3 Researchers Based in U.S. Win Nobel Prize in Physics" 3802: 3800: 3798: 3796: 892:. Around the 1960s, the study of physical properties of 2628:
Pages displaying short descriptions of redirect targets
2619:
Comparison of software for molecular mechanics modeling
1947:, and more exotic states such as the ground state of a 1464:
in the lattice can give rise to a bound state called a
5347: 5345: 4221:
Topological Quantum Numbers in Nonrelativistic Physics
3189:"Richard Feynman and the History of Superconductivity" 2401:. The method involves using optical lasers to form an 2312:(NQR), implanted radioactive probes as in the case of 1976:, which are quantized versions of lattice vibrations. 1336:
phase transition in ferromagnetic materials. In 1906,
760:
phase exhibited by certain materials at extremely low
5066:
Vojta, Matthias (2003). "Quantum phase transitions".
5026:
Leutwyler, H. (1997). "Phonons as Goldstone bosons".
4790: 4788: 2570:
Condensed matter physics also has important uses for
2346: 2322: 1591: 1532: 1207:
in 1926. Shortly after, Sommerfeld incorporated the
4905:"Fourteen Easy Lessons in Density Functional Theory" 3692:"On a New Action of the Magnet on Electric Currents" 6931: 6868: 6796: 6712: 6684: 6656: 6521: 6446: 6390: 6350: 6299: 6233: 6182: 6175: 6144: 6067: 5218: 5216: 5138:
Condensed-Matter Physics, Physics Through the 1990s
2235:In experimental condensed matter physics, external 1222:The mathematics of crystal structures developed by 956:, when they changed the name of their group at the 5801: 5799: 5797: 5224: 4128: 4126: 3532:"Introduction to the History of Superconductivity" 2444:, a novel state of matter originally predicted by 2352: 2328: 1612: 1553: 1230:and others was used to classify crystals by their 2827: 2825: 2823: 2821: 2781:University of Colorado Boulder Physics Department 2538:, information is represented by quantum bits, or 3450:(Reprint ed.). Princeton University Press. 3411: 3409: 3407: 3405: 3255:The collected works of Sir Humphry Davy: Vol. II 2834:"Essay: Fifty Years of Condensed Matter Physics" 2503:and several phenomena studied in the context of 1778:lanthanum aluminate-strontium titanate interface 1726:. Modern theoretical studies involve the use of 932:. Deputy Director of the Yale Quantum Institute 4548:Quintanilla, Jorge; Hooley, Chris (June 2009). 4180:"A Topological Look at the Quantum Hall Effect" 4096: 4094: 3952: 3950: 3538:. American Institute of Physics. Archived from 2676:exists at sufficiently high pressures (over 25 1203:. Using this idea, he developed the theory of 4894: 4892: 3471:van Delft, Dirk; Kes, Peter (September 2010). 2973:(First ed.). Princeton University Press. 1487:, was a major field of interest in the 1960s. 1440:. The theory also introduced the notion of an 6633: 6045: 2578:, which is widely used in medical diagnosis. 2452:, wherein a large number of atoms occupy one 2131:and measuring transport via thermal and heat 2111:. Commonly used experimental methods include 902:Max Planck Institute for Solid State Research 703: 8: 5782:: CS1 maint: multiple names: authors list ( 5410:. Science and Technology. World Scientific. 5387:: CS1 maint: multiple names: authors list ( 5061: 5059: 4533:: CS1 maint: multiple names: authors list ( 4053:: CS1 maint: multiple names: authors list ( 3675:: CS1 maint: multiple names: authors list ( 3441: 3439: 3175: 3173: 3171: 2640: â€“ Properties underlying modern physics 2591: â€“ Subfield of condensed matter physics 5955:, Cambridge University Press; 1st edition, 5921:Girvin, Steven M.; Yang, Kun (2019-02-28). 4878:. Sung Kyun Kwan University. Archived from 4318:Girvin, Steven M.; Yang, Kun (2019-02-28). 4029:. The University of Chicago. Archived from 3258:. Smith Elder & Co., Cornhill. p.  1573:and collaborators. Shortly after, in 1982, 1305:which was discovered half a century later. 1114:from a liquid to a gas and coined the term 904:, physics professor Manuel Cardona, it was 6640: 6626: 6618: 6179: 6135: 6052: 6038: 6030: 5786:) CS1 maint: numeric names: authors list ( 5131: 5129: 5127: 5125: 4912:International Journal of Quantum Chemistry 4795:Neil W. Ashcroft; N. David Mermin (1976). 4066: 4064: 2574:, for example, the experimental method of 2436:atoms cooled down to a temperature of 170 2189:. X-rays have energies of the order of 10 2142:Image of X-ray diffraction pattern from a 1838:and Paul Knipping, when they observed the 1671:continues to be an active research topic. 1328:based on their response to magnetization. 710: 696: 40: 29: 5965:Alexander Altland and Ben Simons (2006). 5951:P. M. Chaikin and T. C. Lubensky (2000). 5908:Basic Notions Of Condensed Matter Physics 5625: 5607: 5444: 5256:. Springer Science & Business Media. 5097: 5079: 5039: 4986: 4923: 4845: 4752: 4669: 4632: 4468: 4403: 4370: 4272: 4253:International Journal of Modern Physics C 4203: 4154: 3988: 3970: 3930: 3750:Quantum Mechanics: Nonrelativistic Theory 3628: 3574: 3499: 3298: 3273:Silvera, Isaac F.; Cole, John W. (2010). 3053:Basic Notions Of Condensed Matter Physics 2951: 2806:Iowa College of Liberal Arts and Sciences 2345: 2321: 1850:provided a wave function solution to the 1602: 1596: 1590: 1543: 1537: 1531: 1262:, heralding a revolution in electronics. 1187:Drude's classical model was augmented by 5982:Condensed Matter Physics, second edition 5223:Chaikin, P. M.; Lubensky, T. C. (1995). 4451:Hasan, M. Z.; Kane, C. L. (2010-11-08). 2802:"Condensed Matter and Materials Physics" 2511:can be used to control processes at the 2032:Two classes of phase transitions occur: 1515:in the context of quantum field theory. 4386:Kane, C. L.; Mele, E. J. (2005-11-23). 3748:Landau, L. D.; Lifshitz, E. M. (1977). 3357:Atkins, Peter; de Paula, Julio (2009). 2693: 2657: 2440:was used to experimentally realize the 1814:. He was able to derive the empirical 1718:and the use of mathematical methods of 1236:International Tables of Crystallography 870:A variety of topics in physics such as 32: 6838:Atomic, molecular, and optical physics 5953:Principles of Condensed Matter Physics 5775: 5380: 5227:Principles of condensed matter physics 4526: 4388:"Quantum Spin Hall Effect in Graphene" 4046: 3832:Chatterjee, Sabyasachi (August 2004). 3668: 2680:), but this has not yet been observed. 2603: â€“ Correlators of field operators 2399:atomic, molecular, and optical physics 5402:Moulton, W. G.; Reyes, A. P. (2006). 4313: 4311: 4309: 4307: 3027:Anderson, Philip W. (November 2011). 2884: 2882: 2755:"History of Condensed Matter Physics" 2127:; study of thermal response, such as 7: 6576: 4607:"Hopes surface for exotic insulator" 4453:"Colloquium: Topological insulators" 3473:"The discovery of superconductivity" 2967:Stone, A. Douglas (6 October 2013). 2531:, molecular windmill and many more. 2247:(NMR) is a method by which external 1939:. Other examples include magnetized 1931:that is broken. A common example is 1846:of atoms. In 1928, Swiss physicist 1511:in 1972, under the formalism of the 1014:Timeline of condensed matter physics 924:, and later his 1907 article on the 18:Theoretical condensed matter physics 6600: 5301:10.1146/annurev.ms.10.080180.002141 5141:. National Research Council. 1986. 4954:Nambu, Yoichiro (8 December 2008). 3809:The Theory of Magnetism Made Simple 3385:Introduction to Solid State Physics 2601:Green's function (many-body theory) 5906:Anderson, Philip W. (2018-03-09). 5280:Annual Review of Materials Science 4219:David J Thouless (12 March 1998). 4101:von Klitzing, Klaus (9 Dec 1985). 3050:Anderson, Philip W. (2018-03-09). 2706:Yale University Physics Department 2211:as scattering probes. Similarly, 2207:measurements can be made by using 1732:high-temperature superconductivity 1152:. However, despite the success of 1059:known at the time, twenty-six had 25: 5938:Introduction to Many-Body Physics 5686:Introduction to Many-Body Physics 5657:Glanz, James (October 10, 2001). 4074:Introduction to Many Body Physics 3881:Differential Models of Hysteresis 2702:"Condensed Matter Physics Theory" 1438:spontaneous breakdown of symmetry 6599: 6587: 6575: 6564: 6563: 6017: 5174:. Oxford University Press, USA. 4550:"The strong-correlations puzzle" 4119:from the original on 2022-10-09. 3149:from the original on 2022-10-09. 2019:Heisenberg uncertainty principle 1297:in 1930 developed the theory of 823:. These include solid state and 677: 676: 663: 6959:Timeline of physics discoveries 5923:Modern Condensed Matter Physics 5252:Wentao Zhang (22 August 2012). 4935:from the original on 2022-10-09 4321:Modern Condensed Matter Physics 3834:"Heisenberg and Ferromagnetism" 3696:American Journal of Mathematics 3511:from the original on 2022-10-09 2672:predicted in 1935 that a state 2386:observed in a gas of ultracold 2290:electron paramagnetic resonance 2280:Magnetic resonance spectroscopy 2071:, which works in the so-called 1649:high temperature superconductor 1401:high-temperature superconductor 5969:, Cambridge University Press, 5940:, Cambridge University Press, 5925:. Cambridge University Press. 5231:. Cambridge University Press. 5195:Richardson, Robert C. (1988). 5068:Reports on Progress in Physics 4688:10.1103/PhysRevLett.104.106408 4510:Z. Physik B - Condensed Matter 4324:. Cambridge University Press. 4077:. Cambridge University Press. 3359:Elements of Physical Chemistry 3300:10.1088/1742-6596/215/1/012194 3029:"In Focus: More and Different" 2858:10.1103/PhysRevLett.101.250001 2565:fractional quantum Hall effect 2225:nonlinear optical spectroscopy 1923:Some states of matter exhibit 1583:fractional quantum Hall effect 1507:. These ideas were unified by 922:photoluminescence spectroscopy 1: 6162:Spontaneous symmetry breaking 5967:Condensed Matter Field Theory 4720:. National Science Foundation 4605:Eugenie Samuel Reich (2012). 4422:10.1103/PhysRevLett.95.226801 2638:Symmetry in quantum mechanics 2609: â€“ Research of materials 2509:scanning-tunneling microscopy 2362:perturbed angular correlation 2177:has energy on the scale of 1 2009:, the temperature is set to 1669:strongly correlated materials 5754:. National Academies Press. 5359:. National Academies Press. 5172:Magnetic Critical Scattering 3639:10.1107/97809553602060000537 2310:nuclear quadrupole resonance 2125:inelastic neutron scattering 6923:Quantum information science 5999:, Oxford University Press, 5406:. In Herlach, Fritz (ed.). 5108:10.1088/0034-4885/66/12/R01 4103:"The Quantized Hall Effect" 3422:. Oxford University Press. 3361:. Oxford University Press. 3080:Physics of Condensed Matter 3033:World Scientific Newsletter 2757:. American Physical Society 1958:phase rotational symmetry. 1788:Electronic theory of solids 1240:Band structure calculations 1238:, first published in 1935. 1183:Advent of quantum mechanics 982:Physics of Condensed Matter 916:which opened the fields of 898:Bell Telephone Laboratories 7003: 6754:Classical electromagnetism 6342:Spin gapless semiconductor 6251:Nearly free electron model 5980:Michael P. Marder (2010). 4577:10.1088/2058-7058/22/06/38 4487:10.1103/RevModPhys.82.3045 4372:10.1103/PhysRevLett.49.405 4020:Kadanoff, Leo, P. (2009). 3878:Visintin, Augusto (1994). 3416:Hoddeson, Lillian (1992). 3164:. Oxford University Press. 3103:Martin, Joseph D. (2015). 2777:"Condensed Matter Physics" 2576:magnetic resonance imaging 2371: 2300:become the probe of these 2294:nuclear magnetic resonance 2245:Nuclear magnetic resonance 2154: 1983: 1916: 1791: 1749: 1340:introduced the concept of 1102:. Shortly after, in 1869, 1011: 970:Theory of Condensed Matter 918:photoelectron spectroscopy 253:Spin gapless semiconductor 6559: 6291:Density functional theory 6266:electronic band structure 6133: 5636:10.1016/j.aop.2004.09.010 5005:10.1016/j.aop.2005.03.008 4847:10.1107/S0108767311039985 4771:10.1103/RevModPhys.77.871 4741:Reviews of Modern Physics 4718:"Understanding Emergence" 4457:Reviews of Modern Physics 4283:10.1142/S0217979292000840 4165:10.1103/RevModPhys.70.653 4135:Reviews of Modern Physics 3999:10.1007/s00023-003-0943-9 3593:10.1142/S0217984910025280 3388:. John Wiley & Sons. 3162:Kinetic Theory of Liquids 3132:10.1007/s00016-014-0151-7 2918:10.1103/RevModPhys.71.S59 2898:Reviews of Modern Physics 2832:Cohen, Marvin L. (2008). 2007:quantum phase transitions 1935:, which break continuous 1907:density functional theory 1887:Hartree–Fock wavefunction 1810:of then-newly discovered 1794:Electronic band structure 1704:density functional theory 1362:spontaneous magnetization 993:Kinetic Theory of Liquids 847:, and relates closely to 821:American Physical Society 785:Bose–Einstein condensates 193:Electronic band structure 6982:Condensed matter physics 6860:Condensed matter physics 6461:Bogoliubov quasiparticle 6205:Quantum spin Hall effect 6097:Bose–Einstein condensate 6061:Condensed matter physics 6024:Condensed matter physics 5695:10.1017/CBO9781139020916 4826:Acta Crystallographica A 4820:Eckert, Michael (2011). 3563:Modern Physics Letters B 3382:Kittel, Charles (1996). 3252:Davy, John, ed. (1839). 2442:Bose–Einstein condensate 2384:Bose–Einstein condensate 2231:External magnetic fields 2073:mean-field approximation 1885:developed the so-called 1678:has the properties of a 1456:developed the so-called 1384:Modern many-body physics 1286:Johns Hopkins University 1271:point-contact transistor 723:Condensed matter physics 103:Bose–Einstein condensate 34:Condensed matter physics 5984:, John Wiley and Sons, 5936:Coleman, Piers (2015). 5806:Yeh, Nai-Chang (2008). 5683:Coleman, Piers (2015). 5514:10.1126/science.1177838 4869:Han, Jung Hoon (2010). 4658:Physical Review Letters 4392:Physical Review Letters 4351:Physical Review Letters 4244:Wen, Xiao-Gang (1992). 4071:Coleman, Piers (2016). 3807:Mattis, Daniel (2006). 3617:Historical introduction 2838:Physical Review Letters 2670:Hillard Bell Huntington 2468:Computer simulation of 2272:, and the half-integer 2241:thermodynamic variables 2058:magnetic susceptibility 2034:first-order transitions 1613:{\displaystyle e^{2}/h} 1554:{\displaystyle e^{2}/h} 1499:developed the ideas of 1269:A replica of the first 948:According to physicist 926:specific heat of solids 6944:Nobel Prize in Physics 6806:Relativistic mechanics 3959:Annales Henri PoincarĂ© 3905:Merali, Zeeya (2011). 3196:Physics in Perspective 3112:Physics in Perspective 3008:. Princeton University 2477: 2391: 2354: 2353:{\displaystyle \beta } 2338:Mössbauer spectroscopy 2330: 2314:muon spin spectroscopy 2302:hyperfine interactions 2266:magnetoelectric effect 2147: 2115:, with probes such as 2069:Ginzburg–Landau theory 2042:continuous transitions 1937:translational symmetry 1873:. Later in the 1930s, 1824:Fermi–Dirac statistics 1762:collective excitations 1712:Ginzburg–Landau theory 1634:topological insulators 1614: 1555: 1480: 1428:used the idea for the 1404: 1277: 1209:Fermi–Dirac statistics 1201:Fermi–Dirac statistics 1132:Heike Kamerlingh Onnes 1124:Johannes van der Waals 1042: 1032:Johannes van der Waals 1028:Heike Kamerlingh Onnes 988:politics of the time. 958:Cavendish Laboratories 950:Philip Warren Anderson 827:physicists, who study 6949:Philosophy of physics 6337:Topological insulator 6271:Anderson localization 3446:Kragh, Helge (2002). 3216:10.1007/s000160050035 3006:Department of Physics 2633:Orbital magnetization 2624:Transparent materials 2467: 2381: 2355: 2331: 2221:forbidden transitions 2155:Further information: 2141: 2080:Renormalization group 2017:originating from the 1871:variational parameter 1822:who incorporated the 1772:, thereby describing 1728:numerical computation 1724:renormalization group 1680:topological insulator 1647:discovered the first 1626:Laughlin wavefunction 1615: 1556: 1513:renormalization group 1474: 1422:collective excitation 1391: 1268: 1026: 1012:Further information: 809:statistical mechanics 248:Topological insulator 6908:Mathematical physics 6215:Aharonov–Bohm effect 6102:Fermionic condensate 6026:at Wikimedia Commons 5408:High Magnetic Fields 4799:. Saunders College. 4223:. World Scientific. 3811:. World Scientific. 3787:10.1103/Physics.8.46 3690:Hall, Edwin (1879). 3536:Moments of Discovery 3160:Frenkel, J. (1947). 2613:Nuclear spectroscopy 2595:Green–Kubo relations 2403:interference pattern 2344: 2329:{\displaystyle \mu } 2320: 2258:Quantum oscillations 2105:transport properties 2015:quantum fluctuations 1966:quantum field theory 1858:potential, known as 1852:Schrödinger equation 1720:quantum field theory 1624:solution, named the 1589: 1530: 1254:developed the first 1165:University of Leiden 910:photoelectric effect 266:Electronic phenomena 113:Fermionic condensate 6883:Atmospheric physics 6722:Classical mechanics 6650:branches of physics 6606:Physics WikiProject 6281:tight binding model 6261:Fermi liquid theory 6246:Free electron model 6195:Quantum Hall effect 6176:Electrons in solids 5866:10.1038/nature10587 5858:2011Natur.479..208K 5618:2005AnPhy.315...52J 5557:2008Natur.453..736G 5506:2009Sci...326..108B 5463:10.1038/nature05872 5455:2007Natur.447..565D 5293:1980AnRMS..10..393S 5090:2003RPPh...66.2069V 5050:1996hep.ph....9466L 4997:2005AnPhy.319..217G 4901:Ruzsinszky, Adrienn 4872:Solid State Physics 4838:2012AcCrA..68...30E 4797:Solid state physics 4763:2005RvMP...77..871L 4680:2010PhRvL.104j6408D 4625:2012Natur.492..165S 4586:on 6 September 2012 4569:2009PhyW...22f..32Q 4479:2010RvMP...82.3045H 4414:2005PhRvL..95v6801K 4363:1982PhRvL..49..405T 4265:1992IJMPB...6.1711W 4196:2003PhT....56h..38A 4147:1998RvMP...70..653F 3981:2003AnHP....4..559C 3923:2011Natur.478..302M 3585:2010MPLB...24.2679S 3530:Slichter, Charles. 3492:2010PhT....63i..38V 3328:1969Natur.224..541R 3291:2010JPhCS.215a2194S 3233:on 17 November 2015 3208:2000PhP.....2...30G 3124:2015PhP....17....3M 2910:1999RvMPS..71...59K 2850:2008PhRvL.101y0001C 2536:quantum computation 2521:Jean-Pierre Sauvage 2274:quantum Hall effect 2183:dielectric constant 1962:Goldstone's theorem 1945:rotational symmetry 1891:exchange statistics 1867:Thomas–Fermi theory 1832:Wiedemann–Franz law 1816:Wiedemann-Franz law 1676:samarium hexaboride 1520:quantum Hall effect 1477:quantum Hall effect 1430:Fermi liquid theory 1303:quantum Hall effect 1299:Landau quantization 1213:free electron model 1150:Wiedemann–Franz law 1063:properties such as 889:solid-state physics 857:theoretical physics 273:Quantum Hall effect 6939:History of physics 6167:Critical phenomena 5725:"Condensed Matter" 5689:. Cambridge Core. 5663:The New York Times 5199:. Addison-Wesley. 4522:10.1007/BF01303701 3850:10.1007/BF02837578 3752:. Pergamon Press. 3279:Journal of Physics 2730:Physics Today Jobs 2644:Mesoscopic physics 2549:Josephson junction 2507:. Methods such as 2478: 2432:In 1995, a gas of 2415:frustrated magnets 2411:quantum simulators 2405:, which acts as a 2392: 2350: 2326: 2217:Laser spectroscopy 2148: 2101:response functions 2050:correlation length 2027:Hamiltonian matrix 1933:crystalline solids 1736:topological phases 1716:critical exponents 1622:variational method 1610: 1551: 1524:Klaus von Klitzing 1522:was discovered by 1501:critical exponents 1485:critical phenomena 1481: 1405: 1374:antiferromagnetism 1282:Edwin Herbert Hall 1278: 1043: 966:Solid state theory 744:, that arise from 670:Physics portal 6987:Materials science 6967: 6966: 6954:Physics education 6903:Materials science 6870:Interdisciplinary 6828:Quantum mechanics 6615: 6614: 6501:Exciton-polariton 6386: 6385: 6358:Thermoelectricity 6022:Media related to 5931:978-1-108-57347-4 5916:978-0-429-97374-1 5852:(7372): 208–211. 5769:978-0-309-13409-5 5596:Annals of Physics 5551:(7196): 736–738. 5439:(7144): 565–568. 5417:978-981-277-488-0 5374:978-0-309-28634-3 5263:978-3-642-32472-7 5238:978-0-521-43224-5 5206:978-0-201-15002-5 5181:978-0-19-536440-8 5156:978-0-309-03577-4 5074:(12): 2069–2110. 5034:(1997): 275–286. 4981:(2005): 217–249. 4975:Annals of Physics 4925:10.1002/qua.22829 4918:(15): 2801–2807. 4899:Perdew, John P.; 4806:978-0-03-049346-1 4331:978-1-108-57347-4 4259:(10): 1711–1762. 4230:978-981-4498-03-6 4205:10.1063/1.1611351 4084:978-0-521-86488-6 3917:(7369): 302–304. 3891:978-3-540-54793-8 3818:978-981-238-671-7 3759:978-0-7506-3539-4 3648:978-1-4020-2355-2 3569:(27): 2679–2691. 3501:10.1063/1.3490499 3457:978-0-691-09552-3 3429:978-0-19-505329-6 3395:978-0-471-11181-8 3368:978-1-4292-1813-9 3185:Goodstein, Judith 3063:978-0-429-97374-1 3002:"Philip Anderson" 2927:on 25 August 2013 2889:Kohn, W. (1999). 2674:metallic hydrogen 2607:Materials science 2555:qubits using the 2542:. The qubits may 2423:antiferromagnetic 2368:Cold atomic gases 2270:magnetic monopole 2000:molar composition 1925:symmetry breaking 1919:Symmetry breaking 1913:Symmetry breaking 1840:X-ray diffraction 1830:of metals in the 1820:Arnold Sommerfeld 1802:in 1900 with the 1782:superconductivity 1708:phase transitions 1630:David J. Thouless 1571:David J. Thouless 1509:Kenneth G. Wilson 1454:Robert Schrieffer 1434:mean-field theory 1410:superconductivity 1217:quantum mechanics 1193:Arnold Sommerfeld 1169:superconductivity 1057:chemical elements 1041:at Leiden in 1908 1019:Classical physics 938:quantum mechanics 914:photoluminescence 837:materials science 801:quantum mechanics 773:antiferromagnetic 733:, especially the 720: 719: 418:Granular material 186:Electronic phases 27:Branch of physics 16:(Redirected from 6994: 6893:Chemical physics 6833:Particle physics 6759:Classical optics 6642: 6635: 6628: 6619: 6603: 6602: 6591: 6579: 6578: 6567: 6566: 6506:Phonon polariton 6398:Amorphous magnet 6378:Electrostriction 6373:Flexoelectricity 6368:Ferroelectricity 6363:Piezoelectricity 6220:Josephson effect 6200:Spin Hall effect 6180: 6157:Phase transition 6139: 6122:Luttinger liquid 6069:States of matter 6054: 6047: 6040: 6031: 6021: 5894: 5893: 5837: 5831: 5830: 5828: 5826: 5812: 5803: 5792: 5791: 5781: 5773: 5745: 5739: 5738: 5736: 5735: 5729:Physics Pantheon 5721: 5715: 5714: 5712: 5711: 5680: 5674: 5673: 5671: 5669: 5654: 5648: 5647: 5629: 5611: 5609:cond-mat/0410614 5591: 5585: 5584: 5540: 5534: 5533: 5500:(5949): 108–11. 5489: 5483: 5482: 5448: 5428: 5422: 5421: 5399: 5393: 5392: 5386: 5378: 5349: 5340: 5339: 5334: 5333: 5327: 5320: 5311: 5305: 5304: 5274: 5268: 5267: 5249: 5243: 5242: 5230: 5220: 5211: 5210: 5192: 5186: 5185: 5167: 5161: 5160: 5133: 5120: 5119: 5101: 5083: 5081:cond-mat/0309604 5063: 5054: 5053: 5043: 5028:Helv. Phys. Acta 5023: 5017: 5016: 4990: 4988:cond-mat/0503400 4970: 4964: 4963: 4951: 4945: 4944: 4942: 4940: 4934: 4927: 4909: 4896: 4887: 4886: 4884: 4877: 4866: 4860: 4859: 4849: 4817: 4811: 4810: 4792: 4783: 4782: 4756: 4754:cond-mat/0407140 4736: 4730: 4729: 4727: 4725: 4714: 4708: 4707: 4673: 4653: 4647: 4646: 4636: 4602: 4596: 4595: 4593: 4591: 4585: 4579:. Archived from 4554: 4545: 4539: 4538: 4532: 4524: 4505: 4499: 4498: 4472: 4463:(4): 3045–3067. 4448: 4442: 4441: 4407: 4405:cond-mat/0411737 4383: 4377: 4376: 4374: 4342: 4336: 4335: 4315: 4302: 4301: 4299: 4297: 4291: 4285:. Archived from 4276: 4250: 4241: 4235: 4234: 4216: 4210: 4209: 4207: 4175: 4169: 4168: 4158: 4130: 4121: 4120: 4118: 4107: 4098: 4089: 4088: 4068: 4059: 4058: 4052: 4044: 4042: 4041: 4035: 4028: 4017: 4011: 4010: 3992: 3974: 3972:cond-mat/0307004 3954: 3945: 3944: 3934: 3902: 3896: 3895: 3875: 3869: 3868: 3866: 3864: 3829: 3823: 3822: 3804: 3791: 3790: 3770: 3764: 3763: 3745: 3739: 3738: 3736: 3735: 3726:. Archived from 3687: 3681: 3680: 3674: 3666: 3664: 3663: 3657: 3651:. Archived from 3632: 3622: 3611: 3605: 3604: 3578: 3558: 3552: 3551: 3549: 3547: 3527: 3521: 3520: 3518: 3516: 3510: 3503: 3477: 3468: 3462: 3461: 3443: 3434: 3433: 3413: 3400: 3399: 3379: 3373: 3372: 3354: 3348: 3347: 3336:10.1038/224541a0 3311: 3305: 3304: 3302: 3270: 3264: 3263: 3249: 3243: 3242: 3240: 3238: 3232: 3226:. Archived from 3193: 3181:Goodstein, David 3177: 3166: 3165: 3157: 3151: 3150: 3148: 3109: 3100: 3094: 3093: 3091: 3089: 3074: 3068: 3067: 3047: 3041: 3040: 3024: 3018: 3017: 3015: 3013: 2998: 2992: 2991: 2989: 2987: 2964: 2958: 2957: 2955: 2943: 2937: 2936: 2934: 2932: 2926: 2920:. Archived from 2895: 2886: 2877: 2876: 2874: 2872: 2829: 2816: 2815: 2813: 2812: 2798: 2792: 2791: 2789: 2788: 2773: 2767: 2766: 2764: 2762: 2751: 2745: 2744: 2742: 2741: 2732:. Archived from 2722: 2716: 2715: 2713: 2712: 2698: 2681: 2662: 2629: 2493:magnetic storage 2359: 2357: 2356: 2351: 2335: 2333: 2332: 2327: 2187:refractive index 1986:Phase transition 1980:Phase transition 1899:Pierre Hohenberg 1774:electromagnetism 1740:gauge symmetries 1645:Johannes Bednorz 1619: 1617: 1616: 1611: 1606: 1601: 1600: 1560: 1558: 1557: 1552: 1547: 1542: 1541: 1378:magnetic storage 1342:magnetic domains 1252:William Shockley 1228:Yevgraf Fyodorov 1112:phase transition 1003: 934:A. Douglas Stone 861:particle physics 813:physics theories 805:electromagnetism 789:ultracold atomic 781:crystal lattices 725:is the field of 712: 705: 698: 685: 680: 679: 672: 668: 667: 278:Spin Hall effect 168:Phase transition 138:Luttinger liquid 75:States of matter 58:Phase transition 44: 30: 21: 7002: 7001: 6997: 6996: 6995: 6993: 6992: 6991: 6972: 6971: 6968: 6963: 6927: 6913:Medical physics 6864: 6823:Nuclear physics 6792: 6786:Non-equilibrium 6708: 6680: 6652: 6646: 6616: 6611: 6555: 6536:Granular matter 6531:Amorphous solid 6517: 6442: 6428:Antiferromagnet 6418:Superparamagnet 6391:Magnetic phases 6382: 6346: 6295: 6256:Bloch's theorem 6229: 6171: 6152:Order parameter 6145:Phase phenomena 6140: 6131: 6063: 6058: 6014: 5903: 5901:Further reading 5898: 5897: 5839: 5838: 5834: 5824: 5822: 5810: 5805: 5804: 5795: 5774: 5770: 5747: 5746: 5742: 5733: 5731: 5723: 5722: 5718: 5709: 5707: 5705: 5682: 5681: 5677: 5667: 5665: 5656: 5655: 5651: 5627:10.1.1.305.9031 5593: 5592: 5588: 5565:10.1038/453736a 5542: 5541: 5537: 5491: 5490: 5486: 5430: 5429: 5425: 5418: 5401: 5400: 5396: 5379: 5375: 5351: 5350: 5343: 5331: 5329: 5325: 5318: 5313: 5312: 5308: 5276: 5275: 5271: 5264: 5251: 5250: 5246: 5239: 5222: 5221: 5214: 5207: 5194: 5193: 5189: 5182: 5169: 5168: 5164: 5157: 5135: 5134: 5123: 5099:10.1.1.305.3880 5065: 5064: 5057: 5025: 5024: 5020: 4972: 4971: 4967: 4953: 4952: 4948: 4938: 4936: 4932: 4907: 4898: 4897: 4890: 4882: 4875: 4868: 4867: 4863: 4819: 4818: 4814: 4807: 4794: 4793: 4786: 4738: 4737: 4733: 4723: 4721: 4716: 4715: 4711: 4655: 4654: 4650: 4634:10.1038/492165a 4604: 4603: 4599: 4589: 4587: 4583: 4552: 4547: 4546: 4542: 4525: 4507: 4506: 4502: 4450: 4449: 4445: 4385: 4384: 4380: 4344: 4343: 4339: 4332: 4317: 4316: 4305: 4295: 4293: 4289: 4274:10.1.1.455.2763 4248: 4243: 4242: 4238: 4231: 4218: 4217: 4213: 4177: 4176: 4172: 4156:10.1.1.129.3194 4132: 4131: 4124: 4116: 4105: 4100: 4099: 4092: 4085: 4070: 4069: 4062: 4045: 4039: 4037: 4033: 4026: 4019: 4018: 4014: 3990:10.1.1.242.6214 3956: 3955: 3948: 3932:10.1038/478302a 3904: 3903: 3899: 3892: 3877: 3876: 3872: 3862: 3860: 3831: 3830: 3826: 3819: 3806: 3805: 3794: 3772: 3771: 3767: 3760: 3747: 3746: 3742: 3733: 3731: 3708:10.2307/2369245 3689: 3688: 3684: 3667: 3661: 3659: 3655: 3649: 3630:10.1.1.471.4170 3620: 3613: 3612: 3608: 3560: 3559: 3555: 3545: 3543: 3529: 3528: 3524: 3514: 3512: 3508: 3475: 3470: 3469: 3465: 3458: 3445: 3444: 3437: 3430: 3415: 3414: 3403: 3396: 3381: 3380: 3376: 3369: 3356: 3355: 3351: 3313: 3312: 3308: 3272: 3271: 3267: 3251: 3250: 3246: 3236: 3234: 3230: 3191: 3179: 3178: 3169: 3159: 3158: 3154: 3146: 3107: 3102: 3101: 3097: 3087: 3085: 3076: 3075: 3071: 3064: 3049: 3048: 3044: 3026: 3025: 3021: 3011: 3009: 3000: 2999: 2995: 2985: 2983: 2981: 2966: 2965: 2961: 2953:physics/0508237 2945: 2944: 2940: 2930: 2928: 2924: 2893: 2888: 2887: 2880: 2870: 2868: 2831: 2830: 2819: 2810: 2808: 2800: 2799: 2795: 2786: 2784: 2783:. 26 April 2016 2775: 2774: 2770: 2760: 2758: 2753: 2752: 2748: 2739: 2737: 2724: 2723: 2719: 2710: 2708: 2700: 2699: 2695: 2690: 2685: 2684: 2663: 2659: 2654: 2649: 2627: 2584: 2525:Fraser Stoddart 2497:liquid crystals 2462: 2450:Albert Einstein 2376: 2374:Optical lattice 2370: 2342: 2341: 2318: 2317: 2286:local structure 2282: 2249:magnetic fields 2237:magnetic fields 2233: 2205:Mott scattering 2159: 2153: 2097:magnetic fields 2089: 1988: 1982: 1921: 1915: 1875:Douglas Hartree 1860:Bloch's theorem 1796: 1790: 1754: 1748: 1692: 1684:Kondo insulator 1662: 1658: 1654: 1592: 1587: 1586: 1563:Robert Laughlin 1533: 1528: 1527: 1442:order parameter 1386: 1310:electrodynamics 1284:working at the 1248:Walter Brattain 1224:Auguste Bravais 1185: 1177:Albert Einstein 1092:Michael Faraday 1021: 1016: 1010: 1001: 978:Springer-Verlag 946: 906:Albert Einstein 872:crystallography 865:nuclear physics 793:liquid crystals 758:superconducting 748:forces between 746:electromagnetic 716: 675: 662: 661: 654: 653: 652: 442: 434: 433: 432: 408:Amorphous solid 402: 392: 391: 390: 369: 351: 341: 340: 339: 328: 326:Antiferromagnet 319: 317:Superparamagnet 310: 297: 296:Magnetic phases 289: 288: 287: 267: 259: 258: 257: 187: 179: 178: 177: 163:Order parameter 157: 156:Phase phenomena 149: 148: 147: 77: 67: 28: 23: 22: 15: 12: 11: 5: 7000: 6998: 6990: 6989: 6984: 6974: 6973: 6965: 6964: 6962: 6961: 6956: 6951: 6946: 6941: 6935: 6933: 6929: 6928: 6926: 6925: 6920: 6915: 6910: 6905: 6900: 6895: 6890: 6885: 6880: 6874: 6872: 6866: 6865: 6863: 6862: 6857: 6856: 6855: 6850: 6845: 6835: 6830: 6825: 6820: 6819: 6818: 6813: 6802: 6800: 6794: 6793: 6791: 6790: 6789: 6788: 6783: 6776:Thermodynamics 6773: 6772: 6771: 6766: 6756: 6751: 6746: 6745: 6744: 6739: 6734: 6729: 6718: 6716: 6710: 6709: 6707: 6706: 6705: 6704: 6694: 6688: 6686: 6682: 6681: 6679: 6678: 6677: 6676: 6666: 6660: 6658: 6654: 6653: 6647: 6645: 6644: 6637: 6630: 6622: 6613: 6612: 6610: 6609: 6597: 6594:Physics Portal 6585: 6573: 6560: 6557: 6556: 6554: 6553: 6548: 6543: 6541:Liquid crystal 6538: 6533: 6527: 6525: 6519: 6518: 6516: 6515: 6510: 6509: 6508: 6503: 6493: 6488: 6483: 6478: 6473: 6468: 6463: 6458: 6452: 6450: 6448:Quasiparticles 6444: 6443: 6441: 6440: 6435: 6430: 6425: 6420: 6415: 6410: 6408:Superdiamagnet 6405: 6400: 6394: 6392: 6388: 6387: 6384: 6383: 6381: 6380: 6375: 6370: 6365: 6360: 6354: 6352: 6348: 6347: 6345: 6344: 6339: 6334: 6332:Superconductor 6329: 6324: 6319: 6314: 6312:Mott insulator 6309: 6303: 6301: 6297: 6296: 6294: 6293: 6288: 6283: 6278: 6273: 6268: 6263: 6258: 6253: 6248: 6243: 6237: 6235: 6231: 6230: 6228: 6227: 6222: 6217: 6212: 6207: 6202: 6197: 6192: 6186: 6184: 6177: 6173: 6172: 6170: 6169: 6164: 6159: 6154: 6148: 6146: 6142: 6141: 6134: 6132: 6130: 6129: 6124: 6119: 6114: 6109: 6104: 6099: 6094: 6089: 6084: 6079: 6073: 6071: 6065: 6064: 6059: 6057: 6056: 6049: 6042: 6034: 6028: 6027: 6013: 6012:External links 6010: 6009: 6008: 5993: 5978: 5963: 5949: 5934: 5919: 5902: 5899: 5896: 5895: 5832: 5815:AAPPS Bulletin 5793: 5768: 5760:10.17226/11967 5740: 5716: 5703: 5675: 5649: 5586: 5535: 5484: 5423: 5416: 5394: 5373: 5365:10.17226/18355 5341: 5306: 5269: 5262: 5244: 5237: 5212: 5205: 5187: 5180: 5162: 5155: 5121: 5055: 5041:hep-ph/9609466 5018: 4965: 4960:Nobelprize.org 4946: 4888: 4885:on 2013-05-20. 4861: 4812: 4805: 4784: 4747:(3): 871–879. 4731: 4709: 4664:(10): 106408. 4648: 4597: 4540: 4516:(2): 189–193, 4500: 4443: 4398:(22): 226801. 4378: 4357:(6): 405–408. 4337: 4330: 4303: 4292:on 22 May 2005 4236: 4229: 4211: 4170: 4141:(2): 653–681. 4122: 4110:Nobelprize.org 4090: 4083: 4060: 4012: 3965:(2): 559–580. 3946: 3897: 3890: 3870: 3824: 3817: 3792: 3765: 3758: 3740: 3682: 3647: 3606: 3553: 3542:on 15 May 2012 3522: 3463: 3456: 3435: 3428: 3401: 3394: 3374: 3367: 3349: 3322:(8): 541–543. 3306: 3265: 3244: 3167: 3152: 3095: 3069: 3062: 3042: 3019: 2993: 2980:978-0691139685 2979: 2959: 2938: 2904:(2): S59–S77. 2878: 2844:(25): 250001. 2817: 2793: 2768: 2746: 2717: 2692: 2691: 2689: 2686: 2683: 2682: 2656: 2655: 2653: 2650: 2648: 2647: 2641: 2635: 2630: 2621: 2616: 2610: 2604: 2598: 2592: 2585: 2583: 2580: 2505:nanotechnology 2501:optical fibres 2461: 2458: 2395:Ultracold atom 2372:Main article: 2369: 2366: 2349: 2325: 2281: 2278: 2232: 2229: 2223:in media with 2209:electron beams 2152: 2149: 2121:infrared light 2088: 2085: 2046:critical point 1984:Main article: 1981: 1978: 1954:, that breaks 1952:superconductor 1943:, which break 1917:Main article: 1914: 1911: 1792:Main article: 1789: 1786: 1750:Main article: 1747: 1744: 1710:, such as the 1700:band structure 1691: 1688: 1660: 1656: 1652: 1609: 1605: 1599: 1595: 1550: 1546: 1540: 1536: 1497:Michael Fisher 1493:Benjamin Widom 1385: 1382: 1232:symmetry group 1189:Wolfgang Pauli 1184: 1181: 1138:respectively. 1116:critical point 1108:Thomas Andrews 1020: 1017: 1009: 1006: 974:nuclear matter 945: 942: 849:atomic physics 845:nanotechnology 783:of atoms, the 718: 717: 715: 714: 707: 700: 692: 689: 688: 687: 686: 673: 656: 655: 651: 650: 645: 640: 635: 630: 625: 620: 615: 610: 605: 600: 595: 590: 585: 580: 575: 570: 565: 560: 555: 550: 545: 540: 535: 530: 525: 520: 515: 510: 505: 500: 495: 490: 485: 480: 475: 470: 465: 460: 455: 450: 444: 443: 440: 439: 436: 435: 431: 430: 425: 423:Liquid crystal 420: 415: 410: 404: 403: 398: 397: 394: 393: 389: 388: 383: 378: 373: 364: 359: 353: 352: 349:Quasiparticles 347: 346: 343: 342: 338: 337: 332: 323: 314: 308:Superdiamagnet 305: 299: 298: 295: 294: 291: 290: 286: 285: 280: 275: 269: 268: 265: 264: 261: 260: 256: 255: 250: 245: 240: 235: 233:Thermoelectric 230: 228:Superconductor 225: 220: 215: 210: 208:Mott insulator 205: 200: 195: 189: 188: 185: 184: 181: 180: 176: 175: 170: 165: 159: 158: 155: 154: 151: 150: 146: 145: 140: 135: 130: 125: 120: 115: 110: 105: 100: 95: 90: 85: 79: 78: 73: 72: 69: 68: 66: 65: 60: 55: 49: 46: 45: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6999: 6988: 6985: 6983: 6980: 6979: 6977: 6970: 6960: 6957: 6955: 6952: 6950: 6947: 6945: 6942: 6940: 6937: 6936: 6934: 6930: 6924: 6921: 6919: 6918:Ocean physics 6916: 6914: 6911: 6909: 6906: 6904: 6901: 6899: 6896: 6894: 6891: 6889: 6886: 6884: 6881: 6879: 6876: 6875: 6873: 6871: 6867: 6861: 6858: 6854: 6853:Modern optics 6851: 6849: 6846: 6844: 6841: 6840: 6839: 6836: 6834: 6831: 6829: 6826: 6824: 6821: 6817: 6814: 6812: 6809: 6808: 6807: 6804: 6803: 6801: 6799: 6795: 6787: 6784: 6782: 6779: 6778: 6777: 6774: 6770: 6767: 6765: 6762: 6761: 6760: 6757: 6755: 6752: 6750: 6747: 6743: 6740: 6738: 6735: 6733: 6730: 6728: 6725: 6724: 6723: 6720: 6719: 6717: 6715: 6711: 6703: 6702:Computational 6700: 6699: 6698: 6695: 6693: 6690: 6689: 6687: 6683: 6675: 6672: 6671: 6670: 6667: 6665: 6662: 6661: 6659: 6655: 6651: 6643: 6638: 6636: 6631: 6629: 6624: 6623: 6620: 6608: 6607: 6598: 6596: 6595: 6590: 6586: 6584: 6583: 6574: 6572: 6571: 6562: 6561: 6558: 6552: 6549: 6547: 6544: 6542: 6539: 6537: 6534: 6532: 6529: 6528: 6526: 6524: 6520: 6514: 6511: 6507: 6504: 6502: 6499: 6498: 6497: 6494: 6492: 6489: 6487: 6484: 6482: 6479: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6457: 6454: 6453: 6451: 6449: 6445: 6439: 6436: 6434: 6431: 6429: 6426: 6424: 6421: 6419: 6416: 6414: 6411: 6409: 6406: 6404: 6401: 6399: 6396: 6395: 6393: 6389: 6379: 6376: 6374: 6371: 6369: 6366: 6364: 6361: 6359: 6356: 6355: 6353: 6349: 6343: 6340: 6338: 6335: 6333: 6330: 6328: 6325: 6323: 6320: 6318: 6317:Semiconductor 6315: 6313: 6310: 6308: 6305: 6304: 6302: 6298: 6292: 6289: 6287: 6286:Hubbard model 6284: 6282: 6279: 6277: 6274: 6272: 6269: 6267: 6264: 6262: 6259: 6257: 6254: 6252: 6249: 6247: 6244: 6242: 6239: 6238: 6236: 6232: 6226: 6223: 6221: 6218: 6216: 6213: 6211: 6208: 6206: 6203: 6201: 6198: 6196: 6193: 6191: 6188: 6187: 6185: 6181: 6178: 6174: 6168: 6165: 6163: 6160: 6158: 6155: 6153: 6150: 6149: 6147: 6143: 6138: 6128: 6125: 6123: 6120: 6118: 6115: 6113: 6110: 6108: 6105: 6103: 6100: 6098: 6095: 6093: 6090: 6088: 6085: 6083: 6080: 6078: 6075: 6074: 6072: 6070: 6066: 6062: 6055: 6050: 6048: 6043: 6041: 6036: 6035: 6032: 6025: 6020: 6016: 6015: 6011: 6006: 6005:0-19-505329-X 6002: 5998: 5994: 5991: 5990:0-470-61798-5 5987: 5983: 5979: 5976: 5975:0-521-84508-4 5972: 5968: 5964: 5962: 5961:0-521-79450-1 5958: 5954: 5950: 5947: 5946:0-521-86488-7 5943: 5939: 5935: 5932: 5928: 5924: 5920: 5917: 5913: 5910:. CRC Press. 5909: 5905: 5904: 5900: 5891: 5887: 5883: 5879: 5875: 5871: 5867: 5863: 5859: 5855: 5851: 5847: 5843: 5836: 5833: 5820: 5816: 5809: 5802: 5800: 5798: 5794: 5789: 5785: 5779: 5771: 5765: 5761: 5757: 5753: 5752: 5744: 5741: 5730: 5726: 5720: 5717: 5706: 5704:9780521864886 5700: 5696: 5692: 5688: 5687: 5679: 5676: 5664: 5660: 5653: 5650: 5645: 5641: 5637: 5633: 5628: 5623: 5619: 5615: 5610: 5605: 5601: 5597: 5590: 5587: 5582: 5578: 5574: 5570: 5566: 5562: 5558: 5554: 5550: 5546: 5539: 5536: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5499: 5495: 5488: 5485: 5480: 5476: 5472: 5468: 5464: 5460: 5456: 5452: 5447: 5442: 5438: 5434: 5427: 5424: 5419: 5413: 5409: 5405: 5398: 5395: 5390: 5384: 5376: 5370: 5366: 5362: 5358: 5357: 5348: 5346: 5342: 5338: 5328:on 2014-02-22 5324: 5317: 5310: 5307: 5302: 5298: 5294: 5290: 5286: 5282: 5281: 5273: 5270: 5265: 5259: 5255: 5248: 5245: 5240: 5234: 5229: 5228: 5219: 5217: 5213: 5208: 5202: 5198: 5191: 5188: 5183: 5177: 5173: 5166: 5163: 5158: 5152: 5148: 5144: 5140: 5139: 5132: 5130: 5128: 5126: 5122: 5117: 5113: 5109: 5105: 5100: 5095: 5091: 5087: 5082: 5077: 5073: 5069: 5062: 5060: 5056: 5051: 5047: 5042: 5037: 5033: 5029: 5022: 5019: 5014: 5010: 5006: 5002: 4998: 4994: 4989: 4984: 4980: 4976: 4969: 4966: 4961: 4957: 4950: 4947: 4931: 4926: 4921: 4917: 4913: 4906: 4902: 4895: 4893: 4889: 4881: 4874: 4873: 4865: 4862: 4857: 4853: 4848: 4843: 4839: 4835: 4831: 4827: 4823: 4816: 4813: 4808: 4802: 4798: 4791: 4789: 4785: 4780: 4776: 4772: 4768: 4764: 4760: 4755: 4750: 4746: 4742: 4735: 4732: 4719: 4713: 4710: 4705: 4701: 4697: 4693: 4689: 4685: 4681: 4677: 4672: 4667: 4663: 4659: 4652: 4649: 4644: 4640: 4635: 4630: 4626: 4622: 4619:(7428): 165. 4618: 4614: 4613: 4608: 4601: 4598: 4582: 4578: 4574: 4570: 4566: 4562: 4558: 4557:Physics World 4551: 4544: 4541: 4536: 4530: 4523: 4519: 4515: 4511: 4504: 4501: 4496: 4492: 4488: 4484: 4480: 4476: 4471: 4466: 4462: 4458: 4454: 4447: 4444: 4439: 4435: 4431: 4427: 4423: 4419: 4415: 4411: 4406: 4401: 4397: 4393: 4389: 4382: 4379: 4373: 4368: 4364: 4360: 4356: 4352: 4348: 4341: 4338: 4333: 4327: 4323: 4322: 4314: 4312: 4310: 4308: 4304: 4288: 4284: 4280: 4275: 4270: 4266: 4262: 4258: 4254: 4247: 4240: 4237: 4232: 4226: 4222: 4215: 4212: 4206: 4201: 4197: 4193: 4189: 4185: 4184:Physics Today 4181: 4174: 4171: 4166: 4162: 4157: 4152: 4148: 4144: 4140: 4136: 4129: 4127: 4123: 4115: 4111: 4104: 4097: 4095: 4091: 4086: 4080: 4076: 4075: 4067: 4065: 4061: 4056: 4050: 4036:on 2015-12-31 4032: 4025: 4024: 4016: 4013: 4008: 4004: 4000: 3996: 3991: 3986: 3982: 3978: 3973: 3968: 3964: 3960: 3953: 3951: 3947: 3942: 3938: 3933: 3928: 3924: 3920: 3916: 3912: 3908: 3901: 3898: 3893: 3887: 3883: 3882: 3874: 3871: 3859: 3855: 3851: 3847: 3843: 3839: 3835: 3828: 3825: 3820: 3814: 3810: 3803: 3801: 3799: 3797: 3793: 3788: 3784: 3780: 3776: 3769: 3766: 3761: 3755: 3751: 3744: 3741: 3730:on 2007-02-08 3729: 3725: 3721: 3717: 3713: 3709: 3705: 3702:(3): 287–92. 3701: 3697: 3693: 3686: 3683: 3678: 3672: 3658:on 2008-10-03 3654: 3650: 3644: 3640: 3636: 3631: 3626: 3619: 3618: 3610: 3607: 3602: 3598: 3594: 3590: 3586: 3582: 3577: 3572: 3568: 3564: 3557: 3554: 3541: 3537: 3533: 3526: 3523: 3507: 3502: 3497: 3493: 3489: 3485: 3481: 3480:Physics Today 3474: 3467: 3464: 3459: 3453: 3449: 3442: 3440: 3436: 3431: 3425: 3421: 3420: 3412: 3410: 3408: 3406: 3402: 3397: 3391: 3387: 3386: 3378: 3375: 3370: 3364: 3360: 3353: 3350: 3345: 3341: 3337: 3333: 3329: 3325: 3321: 3317: 3310: 3307: 3301: 3296: 3292: 3288: 3285:(1): 012194. 3284: 3280: 3276: 3269: 3266: 3261: 3257: 3256: 3248: 3245: 3229: 3225: 3221: 3217: 3213: 3209: 3205: 3201: 3197: 3190: 3186: 3182: 3176: 3174: 3172: 3168: 3163: 3156: 3153: 3145: 3141: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3106: 3099: 3096: 3083: 3081: 3073: 3070: 3065: 3059: 3056:. CRC Press. 3055: 3054: 3046: 3043: 3038: 3034: 3030: 3023: 3020: 3007: 3003: 2997: 2994: 2982: 2976: 2972: 2971: 2963: 2960: 2954: 2949: 2942: 2939: 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2892: 2885: 2883: 2879: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2828: 2826: 2824: 2822: 2818: 2807: 2803: 2797: 2794: 2782: 2778: 2772: 2769: 2756: 2750: 2747: 2736:on 2009-03-27 2735: 2731: 2727: 2721: 2718: 2707: 2703: 2697: 2694: 2687: 2679: 2675: 2671: 2667: 2666:Eugene Wigner 2661: 2658: 2651: 2645: 2642: 2639: 2636: 2634: 2631: 2625: 2622: 2620: 2617: 2614: 2611: 2608: 2605: 2602: 2599: 2596: 2593: 2590: 2587: 2586: 2581: 2579: 2577: 2573: 2568: 2566: 2562: 2558: 2554: 2550: 2545: 2541: 2537: 2532: 2530: 2529:molecular car 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2483: 2482:semiconductor 2475: 2471: 2466: 2459: 2457: 2455: 2454:quantum state 2451: 2447: 2443: 2439: 2435: 2430: 2428: 2424: 2420: 2419:Hubbard model 2416: 2412: 2408: 2404: 2400: 2396: 2389: 2385: 2380: 2375: 2367: 2365: 2363: 2347: 2339: 2323: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2279: 2277: 2275: 2271: 2267: 2263: 2262:Fermi surface 2259: 2255: 2250: 2246: 2242: 2238: 2230: 2228: 2226: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2192: 2188: 2184: 2180: 2179:electron volt 2176: 2175:Visible light 2172: 2168: 2164: 2158: 2150: 2145: 2140: 2136: 2134: 2130: 2129:specific heat 2126: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2086: 2084: 2081: 2076: 2074: 2070: 2065: 2063: 2059: 2055: 2054:specific heat 2051: 2047: 2043: 2039: 2035: 2030: 2028: 2024: 2023:ground states 2020: 2016: 2012: 2011:absolute zero 2008: 2003: 2001: 1997: 1993: 1987: 1979: 1977: 1975: 1971: 1967: 1963: 1959: 1957: 1953: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1920: 1912: 1910: 1908: 1905:proposed the 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1879:Vladimir Fock 1876: 1872: 1868: 1863: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1828:specific heat 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1795: 1787: 1785: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1753: 1745: 1743: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1689: 1687: 1685: 1681: 1677: 1672: 1670: 1666: 1650: 1646: 1642: 1637: 1635: 1631: 1627: 1623: 1607: 1603: 1597: 1593: 1584: 1581:observed the 1580: 1576: 1575:Horst Störmer 1572: 1568: 1564: 1548: 1544: 1538: 1534: 1525: 1521: 1516: 1514: 1510: 1506: 1505:widom scaling 1502: 1498: 1494: 1490: 1486: 1478: 1473: 1469: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1402: 1398: 1395: 1390: 1383: 1381: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1318:ferromagnetic 1315: 1311: 1306: 1304: 1300: 1296: 1292: 1287: 1283: 1276: 1272: 1267: 1263: 1261: 1257: 1256:semiconductor 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1220: 1218: 1214: 1210: 1206: 1205:paramagnetism 1202: 1198: 1194: 1190: 1182: 1180: 1178: 1174: 1170: 1166: 1161: 1159: 1158:specific heat 1155: 1154:Drude's model 1151: 1147: 1143: 1139: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1088: 1086: 1082: 1078: 1077:atomic theory 1074: 1070: 1066: 1062: 1058: 1054: 1051: 1048: 1040: 1037: 1033: 1029: 1025: 1018: 1015: 1007: 1005: 998: 997:Yakov Frenkel 994: 989: 987: 983: 979: 975: 971: 967: 963: 959: 955: 951: 943: 941: 939: 935: 931: 930:specific heat 927: 923: 919: 915: 911: 907: 903: 899: 895: 891: 890: 885: 881: 877: 873: 868: 866: 862: 858: 854: 850: 846: 842: 838: 834: 830: 826: 822: 816: 814: 810: 806: 802: 798: 797:physical laws 794: 791:systems, and 790: 786: 782: 778: 774: 770: 769:ferromagnetic 766: 763: 759: 755: 751: 747: 743: 740: 736: 732: 728: 724: 713: 708: 706: 701: 699: 694: 693: 691: 690: 684: 674: 671: 666: 660: 659: 658: 657: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 448:Van der Waals 446: 445: 438: 437: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 405: 401: 396: 395: 387: 384: 382: 379: 377: 374: 372: 368: 365: 363: 360: 358: 355: 354: 350: 345: 344: 336: 333: 331: 327: 324: 322: 318: 315: 313: 309: 306: 304: 301: 300: 293: 292: 284: 281: 279: 276: 274: 271: 270: 263: 262: 254: 251: 249: 246: 244: 243:Ferroelectric 241: 239: 238:Piezoelectric 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 213:Semiconductor 211: 209: 206: 204: 201: 199: 196: 194: 191: 190: 183: 182: 174: 171: 169: 166: 164: 161: 160: 153: 152: 144: 141: 139: 136: 134: 133:Superfluidity 131: 129: 126: 124: 121: 119: 116: 114: 111: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 84: 81: 80: 76: 71: 70: 64: 61: 59: 56: 54: 51: 50: 48: 47: 43: 39: 38: 35: 31: 19: 6969: 6878:Astrophysics 6859: 6692:Experimental 6604: 6592: 6580: 6568: 6486:Pines' demon 6225:Kondo effect 6127:Time crystal 6060: 5996: 5981: 5966: 5952: 5937: 5922: 5907: 5849: 5845: 5835: 5823:. Retrieved 5818: 5814: 5750: 5743: 5732:. Retrieved 5728: 5719: 5708:. Retrieved 5685: 5678: 5666:. Retrieved 5662: 5652: 5602:(1): 52–79. 5599: 5595: 5589: 5548: 5544: 5538: 5497: 5493: 5487: 5436: 5432: 5426: 5407: 5397: 5355: 5336: 5330:. Retrieved 5323:the original 5309: 5284: 5278: 5272: 5253: 5247: 5226: 5196: 5190: 5171: 5165: 5147:10.17226/626 5137: 5071: 5067: 5031: 5027: 5021: 4978: 4974: 4968: 4959: 4949: 4937:. Retrieved 4915: 4911: 4880:the original 4871: 4864: 4832:(1): 30–39. 4829: 4825: 4815: 4796: 4744: 4740: 4734: 4722:. Retrieved 4712: 4661: 4657: 4651: 4616: 4610: 4600: 4588:. Retrieved 4581:the original 4560: 4556: 4543: 4513: 4509: 4503: 4460: 4456: 4446: 4395: 4391: 4381: 4354: 4350: 4340: 4320: 4294:. Retrieved 4287:the original 4256: 4252: 4239: 4220: 4214: 4190:(8): 38–42. 4187: 4183: 4173: 4138: 4134: 4109: 4073: 4038:. Retrieved 4031:the original 4022: 4015: 3962: 3958: 3914: 3910: 3900: 3884:. Springer. 3880: 3873: 3861:. Retrieved 3844:(8): 57–66. 3841: 3837: 3827: 3808: 3778: 3774: 3768: 3749: 3743: 3732:. Retrieved 3728:the original 3699: 3695: 3685: 3660:. Retrieved 3653:the original 3616: 3609: 3566: 3562: 3556: 3544:. Retrieved 3540:the original 3535: 3525: 3513:. Retrieved 3486:(9): 38–43. 3483: 3479: 3466: 3447: 3418: 3383: 3377: 3358: 3352: 3319: 3315: 3309: 3282: 3278: 3268: 3254: 3247: 3235:. Retrieved 3228:the original 3199: 3195: 3161: 3155: 3115: 3111: 3098: 3086:. Retrieved 3079: 3072: 3052: 3045: 3036: 3032: 3022: 3010:. Retrieved 3005: 2996: 2984:. Retrieved 2969: 2962: 2941: 2929:. Retrieved 2922:the original 2901: 2897: 2869:. Retrieved 2841: 2837: 2809:. Retrieved 2805: 2796: 2785:. Retrieved 2780: 2771: 2759:. Retrieved 2749: 2738:. Retrieved 2734:the original 2729: 2720: 2709:. Retrieved 2705: 2696: 2660: 2569: 2533: 2491:technology, 2479: 2469: 2460:Applications 2431: 2410: 2406: 2393: 2283: 2234: 2195: 2160: 2113:spectroscopy 2099:, measuring 2090: 2087:Experimental 2077: 2066: 2041: 2038:second-order 2037: 2033: 2031: 2004: 1989: 1960: 1941:ferromagnets 1924: 1922: 1864: 1836:Max von Laue 1797: 1764:behave like 1755: 1693: 1673: 1638: 1567:Chern number 1517: 1489:Leo Kadanoff 1482: 1446:John Bardeen 1418:World War II 1414:Kondo effect 1406: 1352:through the 1346:Wilhelm Lenz 1338:Pierre Weiss 1330:Pierre Curie 1322:paramagnetic 1312:by Faraday, 1307: 1279: 1244:John Bardeen 1235: 1221: 1186: 1162: 1140: 1110:studied the 1089: 1053:Humphry Davy 1044: 1038: 992: 990: 981: 969: 965: 954:Volker Heine 947: 887: 869: 817: 811:, and other 765:temperatures 722: 721: 578:von Klitzing 283:Kondo effect 143:Time crystal 123:Fermi liquid 33: 6781:Statistical 6697:Theoretical 6674:Engineering 6523:Soft matter 6423:Ferromagnet 6241:Drude model 6210:Berry phase 6190:Hall effect 5287:: 393–425. 3118:(1): 3–32. 2589:Soft matter 2572:biomedicine 2517:Ben Feringa 2427:spin liquid 2109:thermometry 2062:macroscopic 1992:temperature 1903:Lu Jeu Sham 1895:Walter Kohn 1883:John Slater 1848:Felix Bloch 1804:Drude model 1696:Drude model 1690:Theoretical 1641:Karl MĂŒller 1579:Daniel Tsui 1466:Cooper pair 1450:Leon Cooper 1354:Ising model 1350:Ernst Ising 1334:Curie point 1326:diamagnetic 1291:Hall effect 1197:Felix Bloch 1167:discovered 1128:James Dewar 1073:John Dalton 1039:liquefactor 841:engineering 825:soft matter 400:Soft matter 321:Ferromagnet 6976:Categories 6898:Geophysics 6888:Biophysics 6732:Analytical 6685:Approaches 6438:Spin glass 6433:Metamagnet 6413:Paramagnet 6300:Conduction 6276:BCS theory 6117:Superfluid 6112:Supersolid 5734:2023-11-30 5710:2020-04-20 5332:2016-02-07 4040:2012-06-14 3734:2008-02-28 3662:2017-10-24 2811:2023-11-30 2787:2023-11-30 2740:2010-11-01 2711:2023-11-30 2688:References 2553:spintronic 2485:transistor 2446:S. N. Bose 2429:ordering. 2382:The first 2292:(EPR) and 2165:, optical 2157:Scattering 2151:Scattering 2133:conduction 1800:Paul Drude 1458:BCS theory 1426:Lev Landau 1397:levitating 1366:spin waves 1295:Lev Landau 1260:transistor 1142:Paul Drude 1122:physicist 880:elasticity 876:metallurgy 853:biophysics 775:phases of 543:Louis NĂ©el 533:Schrieffer 441:Scientists 335:Spin glass 330:Metamagnet 312:Paramagnet 128:Supersolid 6848:Molecular 6749:Acoustics 6742:Continuum 6737:Celestial 6727:Newtonian 6714:Classical 6657:Divisions 6496:Polariton 6403:Diamagnet 6351:Couplings 6327:Conductor 6322:Semimetal 6307:Insulator 6183:Phenomena 6107:Fermi gas 5874:1476-4687 5778:cite book 5622:CiteSeerX 5446:0801.1281 5383:cite book 5094:CiteSeerX 4779:117563047 4704:119270507 4671:0912.3750 4563:(6): 32. 4470:1002.3895 4269:CiteSeerX 4151:CiteSeerX 4049:cite book 3985:CiteSeerX 3858:123099296 3838:Resonance 3724:107500183 3671:cite book 3625:CiteSeerX 3601:119220454 3576:1008.0447 3224:118288008 3202:(1): 30. 3140:117809375 2513:nanometer 2474:fullerene 2470:nanogears 2348:β 2324:μ 1812:electrons 1808:ideal gas 1770:electrons 1758:emergence 1752:Emergence 1746:Emergence 1639:In 1986, 1380:devices. 1280:In 1879, 1275:Bell labs 1211:into the 1090:In 1823, 1069:ductility 1034:with the 962:Cambridge 944:Etymology 884:magnetism 833:chemistry 787:found in 762:cryogenic 754:electrons 643:Wetterich 623:Abrikosov 538:Josephson 508:Van Vleck 498:Luttinger 371:Polariton 303:Diamagnet 223:Conductor 218:Semimetal 203:Insulator 118:Fermi gas 6570:Category 6551:Colloids 5882:22071765 5644:12352119 5573:18528388 5530:17187000 5522:19797653 5471:17538614 5116:15806867 5013:55104377 4930:Archived 4903:(2010). 4856:22186281 4724:30 March 4696:20366446 4643:23235853 4529:citation 4495:16066223 4430:16384250 4114:Archived 3941:22012369 3506:Archived 3187:(2000). 3144:Archived 3088:20 April 3012:27 March 2931:27 March 2871:31 March 2866:19113681 2761:27 March 2582:See also 2567:states. 2551:qubits, 2544:decohere 2472:made of 2434:rubidium 2388:rubidium 2360:NMR and 2268:, image 2213:positron 2197:Neutrons 2171:neutrons 2093:electric 1996:pressure 1929:symmetry 1856:periodic 1844:lattices 1722:and the 1702:and the 1416:. After 1412:and the 1399:above a 1146:electron 1106:chemist 1096:chlorine 1085:hydrogen 1081:nitrogen 1061:metallic 986:Cold War 980:journal 683:Category 628:Ginzburg 603:Laughlin 563:Kadanoff 518:Shockley 503:Anderson 458:von Laue 108:Bose gas 6932:Related 6816:General 6811:Special 6669:Applied 6582:Commons 6546:Polymer 6513:Polaron 6491:Plasmon 6471:Exciton 5890:6175720 5854:Bibcode 5825:19 June 5614:Bibcode 5581:4572899 5553:Bibcode 5502:Bibcode 5494:Science 5479:4397560 5451:Bibcode 5289:Bibcode 5086:Bibcode 5046:Bibcode 4993:Bibcode 4834:Bibcode 4759:Bibcode 4676:Bibcode 4621:Bibcode 4590:14 June 4565:Bibcode 4475:Bibcode 4438:6080059 4410:Bibcode 4359:Bibcode 4296:14 June 4261:Bibcode 4192:Bibcode 4143:Bibcode 4007:8171617 3977:Bibcode 3919:Bibcode 3863:13 June 3775:Physics 3716:2369245 3581:Bibcode 3546:13 June 3515:7 April 3488:Bibcode 3344:4168392 3324:Bibcode 3287:Bibcode 3237:7 April 3204:Bibcode 3120:Bibcode 2906:Bibcode 2846:Bibcode 2407:lattice 2239:act as 2167:photons 2146:crystal 2144:protein 2025:of the 1974:phonons 1854:with a 1766:photons 1462:phonons 1314:Maxwell 1258:-based 1173:mercury 1050:chemist 1047:English 1008:History 964:, from 894:liquids 829:quantum 727:physics 633:Leggett 608:Störmer 593:Bednorz 553:Giaever 523:Bardeen 513:Hubbard 488:Peierls 478:Onsager 428:Polymer 413:Colloid 376:Polaron 367:Plasmon 362:Exciton 6843:Atomic 6798:Modern 6648:Major 6481:Phonon 6476:Magnon 6234:Theory 6092:Plasma 6082:Liquid 6003:  5988:  5973:  5959:  5944:  5929:  5914:  5888:  5880:  5872:  5846:Nature 5766:  5701:  5668:23 May 5642:  5624:  5579:  5571:  5545:Nature 5528:  5520:  5477:  5469:  5433:Nature 5414:  5371:  5260:  5235:  5203:  5178:  5153:  5114:  5096:  5011:  4939:13 May 4854:  4803:  4777:  4702:  4694:  4641:  4612:Nature 4493:  4436:  4428:  4328:  4271:  4227:  4153:  4081:  4005:  3987:  3939:  3911:Nature 3888:  3856:  3815:  3781:: 46. 3756:  3722:  3714:  3645:  3627:  3599:  3454:  3426:  3392:  3365:  3342:  3316:Nature 3222:  3138:  3084:. 1963 3060:  2986:1 June 2977:  2864:  2561:anyons 2540:qubits 2298:nuclei 2117:X-rays 2056:, and 1970:bosons 1738:, and 1698:, the 1665:kelvin 1394:magnet 1136:helium 1100:oxygen 1065:lustre 1036:helium 1000:bodies 855:. The 767:, the 742:phases 739:liquid 731:matter 681:  648:Perdew 638:Parisi 598:MĂŒller 588:Rohrer 583:Binnig 573:Wilson 568:Fisher 528:Cooper 493:Landau 381:Magnon 357:Phonon 198:Plasma 98:Plasma 88:Liquid 53:Phases 6456:Anyon 6077:Solid 5886:S2CID 5811:(PDF) 5640:S2CID 5604:arXiv 5577:S2CID 5526:S2CID 5475:S2CID 5441:arXiv 5326:(PDF) 5319:(PDF) 5112:S2CID 5076:arXiv 5036:arXiv 5009:S2CID 4983:arXiv 4933:(PDF) 4908:(PDF) 4883:(PDF) 4876:(PDF) 4775:S2CID 4749:arXiv 4700:S2CID 4666:arXiv 4584:(PDF) 4553:(PDF) 4491:S2CID 4465:arXiv 4434:S2CID 4400:arXiv 4290:(PDF) 4249:(PDF) 4117:(PDF) 4106:(PDF) 4034:(PDF) 4027:(PDF) 4003:S2CID 3967:arXiv 3854:S2CID 3720:S2CID 3712:JSTOR 3656:(PDF) 3621:(PDF) 3597:S2CID 3571:arXiv 3509:(PDF) 3476:(PDF) 3340:S2CID 3231:(PDF) 3220:S2CID 3192:(PDF) 3147:(PDF) 3136:S2CID 3108:(PDF) 2948:arXiv 2925:(PDF) 2894:(PDF) 2652:Notes 2563:from 2489:laser 2336:SR), 2254:tesla 2201:spins 2163:X-ray 1998:, or 1358:spins 1120:Dutch 1104:Irish 777:spins 750:atoms 735:solid 548:Esaki 473:Bloch 468:Debye 463:Bragg 453:Onnes 386:Roton 83:Solid 6769:Wave 6664:Pure 6466:Hole 6001:ISBN 5986:ISBN 5971:ISBN 5957:ISBN 5942:ISBN 5927:ISBN 5912:ISBN 5878:PMID 5870:ISSN 5827:2018 5788:link 5784:link 5764:ISBN 5699:ISBN 5670:2012 5569:PMID 5518:PMID 5467:PMID 5412:ISBN 5389:link 5369:ISBN 5258:ISBN 5233:ISBN 5201:ISBN 5176:ISBN 5151:ISBN 4941:2012 4852:PMID 4801:ISBN 4726:2012 4692:PMID 4639:PMID 4592:2012 4535:link 4426:PMID 4326:ISBN 4298:2012 4225:ISBN 4079:ISBN 4055:link 3937:PMID 3886:ISBN 3865:2012 3813:ISBN 3754:ISBN 3677:link 3643:ISBN 3548:2012 3517:2012 3452:ISBN 3424:ISBN 3390:ISBN 3363:ISBN 3239:2012 3090:2015 3058:ISBN 3039:: 2. 3014:2012 2988:2022 2975:ISBN 2933:2012 2873:2012 2862:PMID 2763:2012 2668:and 2557:spin 2523:and 2448:and 2425:and 2284:The 2185:and 2123:and 2107:and 2095:and 2036:and 1956:U(1) 1901:and 1881:and 1768:and 1651:, La 1643:and 1577:and 1518:The 1503:and 1495:and 1475:The 1452:and 1370:NĂ©el 1368:and 1348:and 1324:and 1250:and 1130:and 1083:and 1030:and 920:and 912:and 863:and 851:and 843:and 771:and 752:and 737:and 618:Tsui 613:Yang 558:Kohn 483:Mott 6764:Ray 6087:Gas 5862:doi 5850:479 5821:(2) 5756:doi 5691:doi 5632:doi 5600:315 5561:doi 5549:453 5510:doi 5498:326 5459:doi 5437:447 5361:doi 5297:doi 5143:doi 5104:doi 5001:doi 4979:319 4920:doi 4916:110 4842:doi 4767:doi 4684:doi 4662:104 4629:doi 4617:492 4573:doi 4518:doi 4483:doi 4418:doi 4367:doi 4279:doi 4200:doi 4161:doi 3995:doi 3927:doi 3915:478 3846:doi 3783:doi 3704:doi 3635:doi 3589:doi 3496:doi 3332:doi 3320:224 3295:doi 3283:215 3212:doi 3128:doi 2914:doi 2854:doi 2842:101 2678:GPa 2534:In 2306:NMR 2227:. 2191:keV 2040:or 2005:In 1964:in 1949:BCS 1659:CuO 1653:2-x 1636:. 1372:on 1273:in 1171:in 1075:'s 1004:". 968:to 799:of 779:on 173:QCP 93:Gas 63:QCP 6978:: 5884:. 5876:. 5868:. 5860:. 5848:. 5844:. 5819:18 5817:. 5813:. 5796:^ 5780:}} 5776:{{ 5762:. 5727:. 5697:. 5661:. 5638:. 5630:. 5620:. 5612:. 5598:. 5575:. 5567:. 5559:. 5547:. 5524:. 5516:. 5508:. 5496:. 5473:. 5465:. 5457:. 5449:. 5435:. 5385:}} 5381:{{ 5367:. 5344:^ 5335:. 5295:. 5285:10 5283:. 5215:^ 5149:. 5124:^ 5110:. 5102:. 5092:. 5084:. 5072:66 5070:. 5058:^ 5044:. 5032:70 5030:. 5007:. 4999:. 4991:. 4977:. 4958:. 4928:. 4914:. 4910:. 4891:^ 4850:. 4840:. 4830:68 4828:. 4824:. 4787:^ 4773:. 4765:. 4757:. 4745:77 4743:. 4698:. 4690:. 4682:. 4674:. 4660:. 4637:. 4627:. 4615:. 4609:. 4571:. 4561:22 4559:. 4555:. 4531:}} 4527:{{ 4514:64 4512:, 4489:. 4481:. 4473:. 4461:82 4459:. 4455:. 4432:. 4424:. 4416:. 4408:. 4396:95 4394:. 4390:. 4365:. 4355:49 4353:. 4349:. 4306:^ 4277:. 4267:. 4255:. 4251:. 4198:. 4188:56 4186:. 4182:. 4159:. 4149:. 4139:70 4137:. 4125:^ 4112:. 4108:. 4093:^ 4063:^ 4051:}} 4047:{{ 4001:. 3993:. 3983:. 3975:. 3961:. 3949:^ 3935:. 3925:. 3913:. 3909:. 3852:. 3840:. 3836:. 3795:^ 3777:. 3718:. 3710:. 3698:. 3694:. 3673:}} 3669:{{ 3641:. 3633:. 3595:. 3587:. 3579:. 3567:24 3565:. 3534:. 3504:. 3494:. 3484:63 3482:. 3478:. 3438:^ 3404:^ 3338:. 3330:. 3318:. 3293:. 3281:. 3277:. 3260:22 3218:. 3210:. 3198:. 3194:. 3183:; 3170:^ 3142:. 3134:. 3126:. 3116:17 3114:. 3110:. 3037:33 3035:. 3031:. 3004:. 2912:. 2902:71 2900:. 2896:. 2881:^ 2860:. 2852:. 2840:. 2836:. 2820:^ 2804:. 2779:. 2728:. 2704:. 2519:, 2499:, 2495:, 2487:, 2456:. 2438:nK 2340:, 2308:, 2276:. 2169:, 2135:. 2119:, 2103:, 2052:, 1994:, 1897:, 1877:, 1862:. 1784:. 1742:. 1734:, 1714:, 1655:Ba 1491:, 1468:. 1448:, 1392:A 1320:, 1246:, 1226:, 1195:, 1191:, 1067:, 995:, 960:, 940:. 882:, 878:, 874:, 867:. 839:, 835:, 807:, 803:, 6641:e 6634:t 6627:v 6053:e 6046:t 6039:v 6007:. 5992:. 5977:. 5948:. 5933:. 5918:. 5892:. 5864:: 5856:: 5829:. 5790:) 5772:. 5758:: 5737:. 5713:. 5693:: 5672:. 5646:. 5634:: 5616:: 5606:: 5583:. 5563:: 5555:: 5532:. 5512:: 5504:: 5481:. 5461:: 5453:: 5443:: 5420:. 5391:) 5377:. 5363:: 5303:. 5299:: 5291:: 5266:. 5241:. 5209:. 5184:. 5159:. 5145:: 5118:. 5106:: 5088:: 5078:: 5052:. 5048:: 5038:: 5015:. 5003:: 4995:: 4985:: 4962:. 4943:. 4922:: 4858:. 4844:: 4836:: 4809:. 4781:. 4769:: 4761:: 4751:: 4728:. 4706:. 4686:: 4678:: 4668:: 4645:. 4631:: 4623:: 4594:. 4575:: 4567:: 4537:) 4520:: 4497:. 4485:: 4477:: 4467:: 4440:. 4420:: 4412:: 4402:: 4375:. 4369:: 4361:: 4334:. 4300:. 4281:: 4263:: 4257:6 4233:. 4208:. 4202:: 4194:: 4167:. 4163:: 4145:: 4087:. 4057:) 4043:. 4009:. 3997:: 3979:: 3969:: 3963:4 3943:. 3929:: 3921:: 3894:. 3867:. 3848:: 3842:9 3821:. 3789:. 3785:: 3779:8 3762:. 3737:. 3706:: 3700:2 3679:) 3665:. 3637:: 3603:. 3591:: 3583:: 3573:: 3550:. 3519:. 3498:: 3490:: 3460:. 3432:. 3398:. 3371:. 3346:. 3334:: 3326:: 3303:. 3297:: 3289:: 3262:. 3241:. 3214:: 3206:: 3200:2 3130:: 3122:: 3092:. 3082:" 3078:" 3066:. 3016:. 2990:. 2956:. 2950:: 2935:. 2916:: 2908:: 2875:. 2856:: 2848:: 2814:. 2790:. 2765:. 2743:. 2714:. 2316:( 1661:4 1657:x 1608:h 1604:/ 1598:2 1594:e 1549:h 1545:/ 1539:2 1535:e 1002:' 711:e 704:t 697:v 20:)

Index

Theoretical condensed matter physics
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑