Knowledge (XXG)

Collision cascade

Source 📝

236: 335:. Unfortunately the rate of electron-phonon coupling from the hot and disordered ionic system is not well known, as it can not be treated equally to the fairly well known process of transfer of heat from hot electrons to an intact crystal structure. Finally, the relaxation phase of the cascade, when the defects formed possibly recombine and migrate, can last from a few ps to infinite times, depending on the material, its 180: 348: 161: 208:(MD) simulations. In MD simulations they can be included either as a frictional force or in a more advanced manner by also following the heating of the electronic systems and coupling the electronic and atomic degrees of freedom. However, uncertainties remain on what is the appropriate low-energy limit of electronic stopping power or electron-phonon coupling is. 2236: 432:, both in the linear spike and heat spike regimes. Heat spikes near surfaces also frequently lead to crater formation. This cratering is caused by liquid flow of atoms, but if the projectile size above roughly 100,000 atoms, the crater production mechanism switches to the same mechanism as that of macroscopic craters produced by bullets or asteroids. 268:(the two terms are usually considered to be equivalent). The heat spike cools down to the ambient temperature in 1–100 ps, so the "temperature" here does not correspond to thermodynamic equilibrium temperature. However, it has been shown that after about 3 lattice vibrations, the kinetic energy distribution of the atoms in a heat spike has the 331:, typically lasts 0.1–0.5 ps. If a heat spike is formed, it can live for some 1–100 ps until the spike temperature has cooled down essentially to the ambient temperature. The cooling down of the cascade occurs via lattice heat conductivity and by electronic heat conductivity after the hot ionic subsystem has heated up the electronic one via 272:, making the use of the concept of temperature somewhat justified. Moreover, experiments have shown that a heat spike can induce a phase transition which is known to require a very high temperature, showing that the concept of a (non-equilibrium) temperature is indeed useful in describing collision cascades. 419:
A curious feature of collision cascades is that the final amount of damage produced may be much less than the number of atoms initially affected by the heat spikes. Especially in pure metals, the final damage production after the heat spike phase can be orders of magnitude smaller than the number of
239:
As above, but in the middle the region of collisions has become so dense that multiple collisions occur simultaneously, which is called a heat spike. In this region the ions move in complex paths, and it is not possible to distinguish the numerical order of recoils - hence the atoms are colored with
227:
When the ion is heavy and energetic enough, and the material is dense, the collisions between the ions may occur so near to each other that they can not be considered independent of each other. In this case the process becomes a complicated process of many-body interactions between hundreds and tens
287:
For instance, for copper irradiation of copper, recoil energies of around 5–20 keV are almost guaranteed to produce heat spikes. At lower energies, the cascade energy is too low to produce a liquid-like zone. At much higher energies, the Cu ions would most likely lead initially to a linear cascade,
359:
simulation of a collision cascade. The image shows a cross section of two atomic layers in the middle of a threedimensional simulation cell. Each sphere illustrates the position of an atom, and the colors show the kinetic energy of each atom as indicated by the scale on the right. At the end, both
183:
Schematic illustration of a linear collision cascade. The thick line illustrates the position of the surface, and the thinner lines the ballistic movement paths of the atoms from beginning until they stop in the material. The purple circle is the incoming ion. Red, blue, green and yellow circles
215:(PKA), secondary knock-on atoms (SKA), tertiary knock-on atoms (TKA), etc. Since it is extremely unlikely that all energy would be transferred to a knock-on atom, each generation of recoil atoms has on average less energy than the previous, and eventually the knock-on atom energies go below the 420:
atoms displaced in the spike. On the other hand, in semiconductors and other covalently bonded materials the damage production is usually similar to the number of displaced atoms. Ionic materials can behave like either metals or semiconductors with respect to the fraction of damage recombined.
283:
is low. But once the Cu ion would slow down enough, the nuclear stopping power would increase and a heat spike would be produced. Moreover, many of the primary and secondary recoils of the incoming ions would likely have energies in the keV range and thus produce a heat spike.
53:
Au self-recoil. This is a typical case of a collision cascade in the heat spike regime. Each small sphere illustrates the position of an atom, in a 2-atom-layer-thick cross section of a three-dimensional simulation cell. The colors show (on a logarithmic scale) the
408:
The defects production can be harmful, such as in nuclear fission and fusion reactors where the neutrons slowly degrade the mechanical properties of the materials, or a useful and desired materials modification effect, e.g., when ions are introduced into
326:
To understand the nature of collision cascade, it is very important to know the associated time scale. The ballistic phase of the cascade, when the initial ion/recoil and its primary and lower-order recoils have energies well above the
310:, can also be considered to produce thermal spikes in the sense that they lead to strong lattice heating and a transient disordered atom zone. However, at least the initial stage of the damage might be better understood in terms of a 38: 172:), the collisions between the initial recoil and sample atoms occur rarely, and can be understood well as a sequence of independent binary collisions between atoms. This kind of a cascade can be theoretically well treated using the 244:
Typically, a heat spike is characterized by the formation of a transient underdense region in the center of the cascade, and an overdense region around it. After the cascade, the overdense region becomes
435:
The fact that many atoms are displaced by a cascade means that ions can be used to deliberately mix materials, even for materials that are normally thermodynamically immiscible. This effect is known as
2162: 1230: 211:
In linear cascades the set of recoils produced in the sample can be described as a sequence of recoil generations depending on how many collision steps have passed since the original collision:
260:
T), one finds that the kinetic energy in units of temperature is initially of the order of 10,000 K. Because of this, the region can be considered to be very hot, and is therefore called a
196:. Note, however, that SRIM does not treat effects such as damage due to electronic energy deposition or damage produced by excited electrons. The nuclear and electronic 30:
For the scenario of collisions between objects in low earth orbit producing a chain reactions of debris colliding with additional objects producing more debris, see
1620:
A. Struchbery; E. Bezakova (1999). "Thermal-Spike Lifetime from Picosecond-Duration Preequilibrium Effects in Hyperfine Magnetic Fields Following Ion Implantation".
2197:
Pugacheva, T; Gjurabekova, F; Khvaliev, S (1998). "Effects of cascade mixing, sputtering and diffusion by high dose light ion irradiation of boron nitride".
2160:
T. Pugacheva; F. Gjurabekova; S. Khvaliev (1998). "Effects of cascade mixing, sputtering and diffusion by high dose light ion irradiation of boron nitride".
377:
Since the kinetic energies in a cascade can be very high, it can drive the material locally far outside thermodynamic equilibrium. Typically this results in
176:(BCA) simulation approach. For instance, H and He ions with energies below 10 keV can be expected to lead to purely linear cascades in all materials. 168:
When the initial recoil/ion mass is low, and the material where the cascade occurs has a low density (i.e. the recoil-material combination has a low
443:
The non-equilibrium nature of irradiation can also be used to drive materials out of thermodynamic equilibrium, and thus form new kinds of alloys.
184:
illustrate primary, secondary, tertiary and quaternary recoils, respectively. In between the ballistic collisions the ions move in a straight path.
496:
R. S. Averback and T. Diaz de la Rubia (1998). "Displacement damage in irradiated metals and semiconductors". In H. Ehrenfest; F. Spaepen (eds.).
200:
used are averaging fits to experiments, and are thus not perfectly accurate either. The electronic stopping power can be readily included in
148:
The nature of collision cascades can vary strongly depending on the energy and mass of the recoil/incoming ion and density of the material (
1927: 256:
If the kinetic energy of the atoms in the region of dense collisions is recalculated into temperature (using the basic equation E = 3/2·N·k
189: 1739:
M. O. Ruault; J. Chaumont; J. M. Penisson; A. Bourret (1984). "High resolution and in situ investigation of defects in Bi-irradiated Si".
292:
signifies the energy above which a recoil in a material is likely to produce several isolated heat spikes rather than a single dense one.
351:
Image sequence of the time development of a collision cascade in the heat spike regime produced by a 30 keV Xe ion impacting on Au under
307: 280: 197: 169: 149: 1777: 269: 314:
mechanism. Regardless of what the heating mechanism is, it is well established that swift heavy ions in insulators typically produce
2256: 530: 949:
Duffy, D. M. (2007). "Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations".
723:
Hobler, G. (2001). "On the useful range of application of molecular dynamics simulations in the recoil interaction approximation".
1575:
D. Albrecht; et al. (1985). "Investigation of heavy ion produced defect structures in insulators by small angle scattering".
872:
Bjorkas, C. (2009). "Assessment of the relation between ion beam mixing, electron-phonon coupling, and damage production in Fe".
397:
zones. Prolonged irradiation of many materials can lead to their full amorphization, an effect which occurs regularly during the
619:
Beardmore, K. (1998). "An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation".
557:
Robinson, M. T. (1974). "Computer Simulation of atomic-displacement cascades in solids in the binary-collision approximation".
192:
can be used to simulate linear collision cascades in disordered materials for all ion in all materials up to ion energies of 1
1308: 201: 173: 1827:
V. D. S. Dhaka; et al. (2006). "Ultrafast dynamics of Ni+-irradiated and annealed GaInAs/InP multiple quantum wells".
328: 216: 110: 2240: 1264:
K. Nordlund; et al. (1998). "Defect production in collision cascades in elemental semiconductors and fcc metals".
275:
In many cases, the same irradiation condition is a combination of linear cascades and heat spikes. For example, 10 MeV
1118:
T. de la Rudia; R. Averback; R. Benedek; W. King (1987). "Role of thermal spikes in energetic displacement cascades".
2261: 1785: 1228:
R. Aderjan; H. Urbassek (2000). "Molecular-dynamics study of craters formed by energetic Cu cluster impact on Cu".
522: 458: 2107:
J. Samela; K. Nordlund (2008). "Atomistic Simulation of the Transition from Atomistic to Macroscopic Cratering".
1027:
Sand, A. E. (2014). "Radiation damage production in massive cascades initiated by fusion neutrons in tungsten".
288:
but the recoils could lead to heat spikes, as would the initial ion once it has slowed down enough. The concept
2027: 1741: 67: 332: 295:
Computer simulation-based animations of collision cascades in the heat spike regime are available on YouTube.
1099:
F. Seitz; J. S. Koehler (1956). "Displacement of Atoms during Irradiation". In F. Seitz; D. Turnbull (eds.).
2109: 2064: 1972: 1872:
A. Kis; et al. (2004). "Reinforcement of single-walled carbon nanotube bundles by intertube bridging".
1704: 1622: 1522: 1427: 1382: 1120: 386: 382: 378: 336: 250: 122: 1164: 463: 352: 2206: 2171: 2118: 2073: 2036: 1981: 1936: 1883: 1838: 1829: 1794: 1750: 1713: 1668: 1631: 1586: 1531: 1446: 1391: 1378:"Effect of Stress on Track Formation in Amorphous Iron Boron Alloy: Ion Tracks as Elastic Inclusions" 1342: 1275: 1235: 1181: 1129: 1073: 1036: 1001: 958: 923: 881: 835: 798: 732: 681: 638: 592:
Nordlund, K. (1995). "Molecular dynamics simulation of ion ranges in the 1 -- 100 keV energy range".
566: 279:
ions bombarding Cu would initially move in the lattice in a linear cascade regime, since the nuclear
126: 2025:
W. Jäger; K. L. Merkle (1988). "Defect-cluster formation in high-energy-density cascades in gold".
246: 1970:
R. Webb; D. Harrison (1983). "Computer Simulation of Pit Formation in Metals by Ion Bombardment".
672:
Caturla, M. (1996). "Ion-beam processing of silicon at keV energies: A molecular-dynamics study".
2142: 2007: 1952: 1907: 1854: 1602: 1470: 1436: 1291: 1207: 974: 851: 705: 654: 628: 356: 229: 205: 42: 1657:
I. Koponen (1993). "Energy transfer between electrons and ions in dense displacement cascades".
908: 758:
Smith, R. (1997). "Molecular Dynamics Simulation of 0.1 -- 2 keV ion bombardment of Ni {100}".
2134: 2089: 1899: 1684: 1659: 1577: 1557: 1462: 1407: 1377: 1358: 1333: 1266: 1145: 697: 526: 311: 212: 142: 2214: 2179: 2126: 2081: 2044: 1997: 1989: 1944: 1891: 1874: 1846: 1810: 1802: 1758: 1721: 1702:
K. Nordlund; F. Gao (1999). "Formation of stacking-fault tetrahedra in collision cascades".
1676: 1639: 1594: 1547: 1539: 1454: 1399: 1350: 1283: 1243: 1197: 1189: 1172: 1137: 1081: 1044: 1009: 966: 931: 889: 843: 826:
Hou, M. (2000). "Deposition of AuN clusters on Au(111) surfaces. I. Atomic-scale modeling".
806: 767: 740: 689: 646: 601: 574: 455:, a set of binary collisions between high-energy particles often involving nuclear reactions 398: 31: 235: 2062:
M. Ghaly; R. Averback (1994). "Effect of viscous flow on ion damage near solid surfaces".
1497: 1165:"A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite" 1064: 518:
Atomic & ion collisions in solids and at surfaces: theory, simulation and applications
452: 437: 303: 118: 2210: 2175: 2122: 2077: 2040: 1985: 1940: 1887: 1842: 1798: 1754: 1717: 1672: 1635: 1590: 1535: 1516:
P. Kluth; et al. (2008). "Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO
1450: 1395: 1346: 1279: 1239: 1185: 1133: 1077: 1040: 1005: 970: 962: 927: 885: 839: 802: 736: 685: 642: 570: 228:
of thousands of atoms, which can not be treated with the BCA, but can be modelled using
1104: 501: 468: 179: 83: 55: 2218: 2183: 1948: 1925:
K. Trachenko (2004). "Understanding resistance to amorphization by radiation damage".
1850: 1247: 1062:
J. Gibson; A. Goland; M. Milgram; G. Vineyard (1960). "Dynamics of Radiation Damage".
744: 2250: 2011: 1956: 1211: 978: 855: 605: 410: 2146: 1911: 1858: 1606: 1474: 1295: 992:
Tamm, A. (2016). "Electron-phonon interaction within classical molecular dynamics".
811: 786: 709: 658: 416:
structures to speed up the operation of a laser. or to strengthen carbon nanotubes.
2130: 1543: 413: 402: 361: 114: 1489: 1458: 1048: 516: 1993: 1643: 1403: 1312: 1141: 390: 365: 2085: 1013: 893: 347: 27:
Series of collisions between nearby atoms, initiated by a single energetic atom
2048: 1762: 1680: 1354: 909:"The effect of electronic energy loss on the dynamics of thermal spikes in Cu" 771: 693: 429: 315: 1287: 1085: 847: 650: 17: 578: 394: 160: 87: 2138: 2093: 1903: 1688: 1561: 1466: 1411: 1362: 1149: 2235: 935: 701: 1441: 1202: 787:"Electron promotion and electronic friction in atomic collision cascades" 134: 633: 2002: 1598: 1490:"Swift heavy ion-induced modification and track formation in materials" 130: 37: 1425:
E. Bringa; R. Johnson (2002). "Coulomb Explosion and Thermal Spikes".
219:
for damage production, at which point no more damage can be produced.
1895: 1806: 1725: 1552: 339:
migration and recombination properties, and the ambient temperature.
276: 164:
Schematic illustration of independent binary collisions between atoms
138: 99: 306:, i.e. MeV and GeV heavy ions which produce damage by a very strong 117:
or more), the collisions can permanently displace atoms from their
82:) is a set of nearby adjacent energetic (much higher than ordinary 58:
of the atoms, with white and red being high kinetic energy from 10
1193: 346: 234: 178: 159: 95: 36: 91: 46: 428:
Collision cascades in the vicinity of a surface often lead to
193: 106: 59: 50: 2199:
Nuclear Instruments and Methods in Physics Research Section B
2163:
Nuclear Instruments and Methods in Physics Research Section B
1231:
Nuclear Instruments and Methods in Physics Research Section B
1163:
A. Meldrum; S.J. Zinkle; L. A. Boatner; R. C. Ewing (1998).
318:
forming long cylindrical damage zones of reduced density.
249:, and the underdense region typically becomes a region of 125:. The initial energetic atom can be, e.g., an ion from a 1778:"Ion beams in silicon processing and characterization" 1327:
A. Meftah; et al. (1994). "Track formation in SiO
545: 129:, an atomic recoil produced by a passing high-energy 109:
energies in a collision cascade are higher than the
1376:C. Trautmann; S. Klaumünzer; H. Trinkaus (2000). 355:conditions. The image is produced by a classical 45:computer simulation of a collision cascade in 8: 141:, or be produced when a radioactive nucleus 2001: 1551: 1440: 1331:quartz and the thermal-spike mechanism". 1259: 1257: 1201: 810: 632: 1322: 1320: 1223: 1221: 867: 865: 491: 489: 487: 485: 483: 479: 381:production. The defects can be, e.g., 94:induced by an energetic particle in a 290:subcascade breakdown threshold energy 7: 1928:Journal of Physics: Condensed Matter 145:and gives the atom a recoil energy. 874:Nucl. Instrum. Methods Phys. Res. B 725:Nucl. Instrum. Methods Phys. Res. B 25: 2234: 188:The most commonly used BCA code 1776:E. Chason; et al. (1997). 2131:10.1103/PhysRevLett.101.027601 1544:10.1103/PhysRevLett.101.175503 299:Swift heavy ion thermal spikes 270:Maxwell–Boltzmann distribution 202:binary collision approximation 174:binary collision approximation 62:downwards, and blue being low. 1: 2219:10.1016/S0168-583X(98)00139-6 2184:10.1016/S0168-583X(98)00139-6 1459:10.1103/PhysRevLett.88.165501 1309:"displacement cascade" Search 1248:10.1016/S0168-583X(99)01111-8 1049:10.1016/j.jnucmat.2014.06.007 971:10.1088/0953-8984/19/1/016207 916:Journal of Materials Research 745:10.1016/s0168-583x(01)00418-9 329:threshold displacement energy 217:threshold displacement energy 111:threshold displacement energy 606:10.1016/0927-0256(94)00085-q 223:Heat spikes (thermal spikes) 1994:10.1103/PhysRevLett.50.1478 1949:10.1088/0953-8984/16/49/R03 1851:10.1088/0022-3727/39/13/004 1644:10.1103/PhysRevLett.82.3637 1404:10.1103/PhysRevLett.85.3648 1142:10.1103/PhysRevLett.59.1930 393:loops, stacking faults, or 2278: 2086:10.1103/PhysRevLett.72.364 1786:Journal of Applied Physics 1014:10.1103/PhysRevB.94.014305 894:10.1016/j.nimb.2009.03.080 523:Cambridge University Press 459:Radiation material science 240:a mixture of red and blue. 29: 2049:10.1080/01418618808204681 1763:10.1080/01418618408237526 1681:10.1103/PhysRevB.47.14011 1355:10.1103/PhysRevB.49.12457 951:J. Phys.: Condens. Matter 812:10.1088/1367-2630/9/2/038 772:10.1080/10420159708211586 694:10.1103/PhysRevB.54.16683 113:of the material (tens of 2257:Condensed matter physics 2028:Philosophical Magazine A 1742:Philosophical Magazine A 1288:10.1103/PhysRevB.57.7556 1086:10.1103/PhysRev.120.1229 848:10.1103/PhysRevB.62.2825 651:10.1103/PhysRevE.57.7278 389:, ordered or disordered 333:electron–phonon coupling 68:condensed-matter physics 2110:Physical Review Letters 2065:Physical Review Letters 1973:Physical Review Letters 1705:Applied Physics Letters 1623:Physical Review Letters 1523:Physical Review Letters 1428:Physical Review Letters 1383:Physical Review Letters 1121:Physical Review Letters 579:10.1103/physrevb.9.5008 105:If the maximum atom or 907:Pronnecke, S. (1991). 785:Duvenbeck, A. (2007). 515:R. Smith, ed. (1997). 369: 241: 213:primary knock-on atoms 185: 165: 63: 936:10.1557/jmr.1991.0483 760:Rad. Eff. Def. In Sol 350: 238: 182: 163: 40: 2243:at Wikimedia Commons 1830:Journal of Physics D 1488:D. Kanjijal (2001). 1234:. 164–165: 697–704. 247:interstitial defects 127:particle accelerator 76:displacement cascade 2211:1998NIMPB.141...99P 2176:1998NIMPB.141...99P 2123:2008PhRvL.101b7601S 2078:1994PhRvL..72..364G 2041:1988PMagA..57..479J 1986:1983PhRvL..50.1478W 1941:2004JPCM...16R1491T 1935:(49): R1491–R1515. 1888:2004NatMa...3..153K 1843:2006JPhD...39.2659D 1799:1997JAP....81.6513C 1755:1984PMagA..50..667R 1718:1999ApPhL..74.2720N 1673:1993PhRvB..4714011K 1667:(21): 14011–14019. 1636:1999PhRvL..82.3637S 1591:1985ApPhA..37...37A 1536:2008PhRvL.101q5503K 1451:2002PhRvL..88p5501B 1396:2000PhRvL..85.3648T 1347:1994PhRvB..4912457M 1341:(18): 12457–12463. 1280:1998PhRvB..57.7556N 1240:2000NIMPB.164..697A 1186:1998Natur.395...56M 1134:1987PhRvL..59.1930D 1101:Solid State Physics 1078:1960PhRv..120.1229G 1041:2014JNuM..455..207S 1006:2016PhRvB..94a4305L 963:2007JPCM...19a6207D 928:1991JMatR...6..483P 886:2009NIMPB.267.1830B 840:2000PhRvB..62.2825H 803:2007NJPh....9...38D 737:2001NIMPB.180..203H 686:1996PhRvB..5416683C 680:(23): 16683–16695. 643:1998PhRvE..57.7278B 571:1974PhRvB...9.5008R 504:. pp. 281–402. 498:Solid State Physics 308:electronic stopping 1599:10.1007/BF00617867 594:Comput. Mater. Sci 464:COSIRES conference 424:Other consequences 370: 357:molecular dynamics 242: 230:molecular dynamics 206:molecular dynamics 186: 166: 121:sites and produce 80:displacement spike 64: 43:molecular dynamics 2262:Radiation effects 2241:Collision cascade 2239:Media related to 1837:(13): 2659–2663. 1793:(10): 6513–6561. 1660:Physical Review B 1578:Applied Physics A 1334:Physical Review B 1274:(13): 7556–7570. 1267:Physical Review B 1128:(17): 1930–1933. 373:Damage production 312:Coulomb explosion 74:(also known as a 72:collision cascade 16:(Redirected from 2269: 2238: 2223: 2222: 2194: 2188: 2187: 2157: 2151: 2150: 2104: 2098: 2097: 2059: 2053: 2052: 2022: 2016: 2015: 2005: 1967: 1961: 1960: 1922: 1916: 1915: 1896:10.1038/nmat1076 1875:Nature Materials 1869: 1863: 1862: 1824: 1818: 1817: 1815: 1809:. Archived from 1807:10.1063/1.365193 1782: 1773: 1767: 1766: 1736: 1730: 1729: 1726:10.1063/1.123948 1699: 1693: 1692: 1654: 1648: 1647: 1617: 1611: 1610: 1572: 1566: 1565: 1555: 1513: 1507: 1506: 1494: 1485: 1479: 1478: 1444: 1442:cond-mat/0103475 1422: 1416: 1415: 1373: 1367: 1366: 1324: 1315: 1306: 1300: 1299: 1261: 1252: 1251: 1225: 1216: 1215: 1205: 1169: 1160: 1154: 1153: 1115: 1109: 1108: 1096: 1090: 1089: 1059: 1053: 1052: 1024: 1018: 1017: 989: 983: 982: 946: 940: 939: 913: 904: 898: 897: 869: 860: 859: 823: 817: 816: 814: 782: 776: 775: 755: 749: 748: 720: 714: 713: 669: 663: 662: 636: 616: 610: 609: 589: 583: 582: 554: 548: 543: 537: 536: 512: 506: 505: 500:. Vol. 51. 493: 399:ion implantation 304:Swift heavy ions 84:thermal energies 49:induced by a 10 32:Kessler syndrome 21: 2277: 2276: 2272: 2271: 2270: 2268: 2267: 2266: 2247: 2246: 2231: 2226: 2205:(1–4): 99–104. 2196: 2195: 2191: 2170:(1–4): 99–104. 2159: 2158: 2154: 2106: 2105: 2101: 2061: 2060: 2056: 2024: 2023: 2019: 1969: 1968: 1964: 1924: 1923: 1919: 1871: 1870: 1866: 1826: 1825: 1821: 1813: 1780: 1775: 1774: 1770: 1738: 1737: 1733: 1701: 1700: 1696: 1656: 1655: 1651: 1619: 1618: 1614: 1574: 1573: 1569: 1519: 1515: 1514: 1510: 1498:Current Science 1492: 1487: 1486: 1482: 1424: 1423: 1419: 1390:(17): 3648–51. 1375: 1374: 1370: 1330: 1326: 1325: 1318: 1307: 1303: 1263: 1262: 1255: 1227: 1226: 1219: 1167: 1162: 1161: 1157: 1117: 1116: 1112: 1103:. Vol. 2. 1098: 1097: 1093: 1065:Physical Review 1061: 1060: 1056: 1026: 1025: 1021: 991: 990: 986: 948: 947: 943: 911: 906: 905: 901: 871: 870: 863: 825: 824: 820: 784: 783: 779: 757: 756: 752: 722: 721: 717: 671: 670: 666: 634:physics/9901054 618: 617: 613: 591: 590: 586: 556: 555: 551: 544: 540: 533: 514: 513: 509: 495: 494: 481: 477: 453:Particle shower 449: 438:ion beam mixing 426: 375: 345: 324: 301: 259: 225: 198:stopping powers 158: 156:Linear cascades 35: 28: 23: 22: 15: 12: 11: 5: 2275: 2273: 2265: 2264: 2259: 2249: 2248: 2245: 2244: 2230: 2229:External links 2227: 2225: 2224: 2189: 2152: 2099: 2072:(3): 364–367. 2054: 2017: 1962: 1917: 1864: 1819: 1816:on 2010-06-23. 1768: 1731: 1694: 1649: 1612: 1567: 1530:(17): 175503. 1517: 1508: 1480: 1435:(16): 165501. 1417: 1368: 1328: 1316: 1301: 1253: 1217: 1155: 1110: 1107:. p. 307. 1105:Academic Press 1091: 1054: 1029:J. Nucl. Mater 1019: 984: 941: 899: 861: 818: 777: 750: 715: 664: 611: 584: 549: 538: 531: 507: 502:Academic Press 478: 476: 473: 472: 471: 469:REI conference 466: 461: 456: 448: 445: 425: 422: 374: 371: 344: 341: 323: 320: 300: 297: 281:stopping power 257: 224: 221: 170:stopping power 157: 154: 150:stopping power 56:kinetic energy 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2274: 2263: 2260: 2258: 2255: 2254: 2252: 2242: 2237: 2233: 2232: 2228: 2220: 2216: 2212: 2208: 2204: 2200: 2193: 2190: 2185: 2181: 2177: 2173: 2169: 2165: 2164: 2156: 2153: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2117:(2): 027601. 2116: 2112: 2111: 2103: 2100: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2066: 2058: 2055: 2050: 2046: 2042: 2038: 2034: 2030: 2029: 2021: 2018: 2013: 2009: 2004: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1974: 1966: 1963: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1929: 1921: 1918: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1876: 1868: 1865: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1831: 1823: 1820: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1787: 1779: 1772: 1769: 1764: 1760: 1756: 1752: 1748: 1744: 1743: 1735: 1732: 1727: 1723: 1719: 1715: 1711: 1707: 1706: 1698: 1695: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1661: 1653: 1650: 1645: 1641: 1637: 1633: 1629: 1625: 1624: 1616: 1613: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1580: 1579: 1571: 1568: 1563: 1559: 1554: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1524: 1512: 1509: 1504: 1500: 1499: 1491: 1484: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1443: 1438: 1434: 1430: 1429: 1421: 1418: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1384: 1379: 1372: 1369: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1335: 1323: 1321: 1317: 1314: 1310: 1305: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1268: 1260: 1258: 1254: 1249: 1245: 1241: 1237: 1233: 1232: 1224: 1222: 1218: 1213: 1209: 1204: 1203:2027.42/62853 1199: 1195: 1194:10.1038/25698 1191: 1187: 1183: 1179: 1175: 1174: 1166: 1159: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1122: 1114: 1111: 1106: 1102: 1095: 1092: 1087: 1083: 1079: 1075: 1071: 1067: 1066: 1058: 1055: 1050: 1046: 1042: 1038: 1034: 1030: 1023: 1020: 1015: 1011: 1007: 1003: 1000:(1): 024305. 999: 995: 988: 985: 980: 976: 972: 968: 964: 960: 957:(1): 016207. 956: 952: 945: 942: 937: 933: 929: 925: 921: 917: 910: 903: 900: 895: 891: 887: 883: 879: 875: 868: 866: 862: 857: 853: 849: 845: 841: 837: 833: 829: 822: 819: 813: 808: 804: 800: 796: 792: 788: 781: 778: 773: 769: 765: 761: 754: 751: 746: 742: 738: 734: 730: 726: 719: 716: 711: 707: 703: 699: 695: 691: 687: 683: 679: 675: 668: 665: 660: 656: 652: 648: 644: 640: 635: 630: 626: 622: 615: 612: 607: 603: 599: 595: 588: 585: 580: 576: 572: 568: 564: 560: 553: 550: 547: 546:SRIM web site 542: 539: 534: 532:0-521-44022-X 528: 524: 520: 519: 511: 508: 503: 499: 492: 490: 488: 486: 484: 480: 474: 470: 467: 465: 462: 460: 457: 454: 451: 450: 446: 444: 441: 439: 433: 431: 423: 421: 417: 415: 412: 411:semiconductor 406: 404: 403:silicon chips 400: 396: 392: 388: 387:Frenkel pairs 384: 383:point defects 380: 372: 368:loops remain. 367: 363: 362:point defects 358: 354: 349: 342: 340: 338: 334: 330: 321: 319: 317: 313: 309: 305: 298: 296: 293: 291: 285: 282: 278: 273: 271: 267: 266:thermal spike 263: 254: 252: 248: 237: 233: 231: 222: 220: 218: 214: 209: 207: 203: 199: 195: 191: 181: 177: 175: 171: 162: 155: 153: 151: 146: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 61: 57: 52: 48: 44: 39: 33: 19: 18:Thermal spike 2202: 2198: 2192: 2167: 2161: 2155: 2114: 2108: 2102: 2069: 2063: 2057: 2032: 2026: 2020: 1980:(19): 1478. 1977: 1971: 1965: 1932: 1926: 1920: 1882:(3): 153–7. 1879: 1873: 1867: 1834: 1828: 1822: 1811:the original 1790: 1784: 1771: 1746: 1740: 1734: 1712:(18): 2720. 1709: 1703: 1697: 1664: 1658: 1652: 1630:(18): 3637. 1627: 1621: 1615: 1585:(1): 37–46. 1582: 1576: 1570: 1527: 1521: 1511: 1502: 1496: 1483: 1432: 1426: 1420: 1387: 1381: 1371: 1338: 1332: 1304: 1271: 1265: 1229: 1180:(6697): 56. 1177: 1171: 1158: 1125: 1119: 1113: 1100: 1094: 1069: 1063: 1057: 1035:(1–3): 207. 1032: 1028: 1022: 997: 994:Phys. Rev. B 993: 987: 954: 950: 944: 919: 915: 902: 880:(10): 1830. 877: 873: 831: 828:Phys. Rev. B 827: 821: 794: 790: 780: 766:(1–4): 425. 763: 759: 753: 731:(1–4): 203. 728: 724: 718: 677: 674:Phys. Rev. B 673: 667: 624: 621:Phys. Rev. E 620: 614: 597: 593: 587: 562: 559:Phys. Rev. B 558: 552: 541: 517: 510: 497: 442: 434: 427: 418: 414:quantum well 407: 376: 325: 302: 294: 289: 286: 274: 265: 261: 255: 243: 226: 210: 187: 167: 147: 104: 79: 75: 71: 65: 41:A classical 2003:10945/44927 1313:YouTube.com 1072:(4): 1229. 834:(4): 2825. 791:New J. Phys 627:(6): 7278. 391:dislocation 366:dislocation 2251:Categories 2035:(3): 479. 1749:(5): 667. 922:(3): 483. 600:(4): 448. 565:(12): 12. 475:References 430:sputtering 401:doping of 353:channeling 322:Time scale 316:ion tracks 262:heat spike 88:collisions 2012:120756958 1957:123658664 1553:10440/862 1212:204996702 979:122777435 856:123595658 797:(2): 38. 395:amorphous 385:such as 251:vacancies 232:methods. 2147:15787700 2139:18764228 2094:10056412 1912:11422662 1904:14991016 1859:55536038 1689:10005739 1607:94620228 1562:18999762 1475:11034531 1467:11955237 1412:11030972 1363:10010146 1296:55789148 1150:10035371 710:38579564 659:13994369 447:See also 135:electron 2207:Bibcode 2172:Bibcode 2119:Bibcode 2074:Bibcode 2037:Bibcode 1982:Bibcode 1937:Bibcode 1884:Bibcode 1839:Bibcode 1795:Bibcode 1751:Bibcode 1714:Bibcode 1669:Bibcode 1632:Bibcode 1587:Bibcode 1532:Bibcode 1505:: 1560. 1447:Bibcode 1392:Bibcode 1343:Bibcode 1276:Bibcode 1236:Bibcode 1182:Bibcode 1130:Bibcode 1074:Bibcode 1037:Bibcode 1002:Bibcode 959:Bibcode 924:Bibcode 882:Bibcode 836:Bibcode 799:Bibcode 733:Bibcode 702:9985796 682:Bibcode 639:Bibcode 567:Bibcode 343:Effects 131:neutron 123:defects 119:lattice 2145:  2137:  2092:  2010:  1955:  1910:  1902:  1857:  1687:  1605:  1560:  1473:  1465:  1410:  1361:  1294:  1210:  1173:Nature 1148:  977:  854:  708:  700:  657:  529:  379:defect 337:defect 143:decays 139:photon 100:liquid 2143:S2CID 2008:S2CID 1953:S2CID 1908:S2CID 1855:S2CID 1814:(PDF) 1781:(PDF) 1603:S2CID 1493:(PDF) 1471:S2CID 1437:arXiv 1292:S2CID 1208:S2CID 1168:(PDF) 975:S2CID 912:(PDF) 852:S2CID 706:S2CID 655:S2CID 629:arXiv 96:solid 92:atoms 78:or a 2135:PMID 2090:PMID 1900:PMID 1685:PMID 1558:PMID 1463:PMID 1408:PMID 1359:PMID 1146:PMID 698:PMID 527:ISBN 364:and 190:SRIM 70:, a 2215:doi 2203:141 2180:doi 2168:141 2127:doi 2115:101 2082:doi 2045:doi 1998:hdl 1990:doi 1945:doi 1892:doi 1847:doi 1803:doi 1759:doi 1722:doi 1677:doi 1640:doi 1595:doi 1548:hdl 1540:doi 1528:101 1520:". 1455:doi 1400:doi 1351:doi 1284:doi 1244:doi 1198:hdl 1190:doi 1178:395 1138:doi 1082:doi 1070:120 1045:doi 1033:455 1010:doi 967:doi 932:doi 890:doi 878:267 844:doi 807:doi 768:doi 764:141 741:doi 729:180 690:doi 647:doi 602:doi 575:doi 264:or 204:or 194:GeV 152:). 137:or 115:eVs 107:ion 98:or 90:of 66:In 60:keV 51:keV 2253:: 2213:. 2201:. 2178:. 2166:. 2141:. 2133:. 2125:. 2113:. 2088:. 2080:. 2070:72 2068:. 2043:. 2033:57 2031:. 2006:. 1996:. 1988:. 1978:50 1976:. 1951:. 1943:. 1933:16 1931:. 1906:. 1898:. 1890:. 1878:. 1853:. 1845:. 1835:39 1833:. 1801:. 1791:81 1789:. 1783:. 1757:. 1747:50 1745:. 1720:. 1710:74 1708:. 1683:. 1675:. 1665:47 1663:. 1638:. 1628:82 1626:. 1601:. 1593:. 1583:37 1581:. 1556:. 1546:. 1538:. 1526:. 1503:80 1501:. 1495:. 1469:. 1461:. 1453:. 1445:. 1433:88 1431:. 1406:. 1398:. 1388:85 1386:. 1380:. 1357:. 1349:. 1339:49 1337:. 1319:^ 1311:, 1290:. 1282:. 1272:57 1270:. 1256:^ 1242:. 1220:^ 1206:. 1196:. 1188:. 1176:. 1170:. 1144:. 1136:. 1126:59 1124:. 1080:. 1068:. 1043:. 1031:. 1008:. 998:94 996:. 973:. 965:. 955:17 953:. 930:. 918:. 914:. 888:. 876:. 864:^ 850:. 842:. 832:62 830:. 805:. 793:. 789:. 762:. 739:. 727:. 704:. 696:. 688:. 678:54 676:. 653:. 645:. 637:. 625:57 623:. 596:. 573:. 561:. 525:. 521:. 482:^ 440:. 405:. 277:Cu 253:. 133:, 102:. 86:) 47:Au 2221:. 2217:: 2209:: 2186:. 2182:: 2174:: 2149:. 2129:: 2121:: 2096:. 2084:: 2076:: 2051:. 2047:: 2039:: 2014:. 2000:: 1992:: 1984:: 1959:. 1947:: 1939:: 1914:. 1894:: 1886:: 1880:3 1861:. 1849:: 1841:: 1805:: 1797:: 1765:. 1761:: 1753:: 1728:. 1724:: 1716:: 1691:. 1679:: 1671:: 1646:. 1642:: 1634:: 1609:. 1597:: 1589:: 1564:. 1550:: 1542:: 1534:: 1518:2 1477:. 1457:: 1449:: 1439:: 1414:. 1402:: 1394:: 1365:. 1353:: 1345:: 1329:2 1298:. 1286:: 1278:: 1250:. 1246:: 1238:: 1214:. 1200:: 1192:: 1184:: 1152:. 1140:: 1132:: 1088:. 1084:: 1076:: 1051:. 1047:: 1039:: 1016:. 1012:: 1004:: 981:. 969:: 961:: 938:. 934:: 926:: 920:6 896:. 892:: 884:: 858:. 846:: 838:: 815:. 809:: 801:: 795:9 774:. 770:: 747:. 743:: 735:: 712:. 692:: 684:: 661:. 649:: 641:: 631:: 608:. 604:: 598:3 581:. 577:: 569:: 563:9 535:. 258:B 34:. 20:)

Index

Thermal spike
Kessler syndrome

molecular dynamics
Au
keV
kinetic energy
keV
condensed-matter physics
thermal energies
collisions
atoms
solid
liquid
ion
threshold displacement energy
eVs
lattice
defects
particle accelerator
neutron
electron
photon
decays
stopping power

stopping power
binary collision approximation

SRIM

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.