Knowledge (XXG)

Lake stratification

Source đź“ť

2101: 2797: 511:, resulting in stronger thermal stratification and overall lower average water column temperatures, which can eventually affect the onset of ice cover. Water quality can also be influenced by the runoff of salt from roads and sidewalks, which often creates a benthic saline layer that interferes with vertical mixing of surface waters. Further, the saline layer can prevent dissolved oxygen from reaching the bottom sediments, decreasing phosphorus recycling and affecting microbial communities. 31: 2823: 2811: 357: 547:. When these asynchronies in predator and prey populations occur year after year due to changes in stratification, populations may take years to rebound to their “normal” consistency. Combined with typically warmer lake temperatures associated with stratification patterns brought on by climate change, variable prey populations from year-to-year can be detrimental to cold water fish species. 2429: 523:(e.g. Great Bear Lake). Globally, lake stratification appears to be more stable with deeper and steeper thermoclines, and average lake temperature as a main determinant in the stratification response to changing temperatures. Further, surface warming rates are much greater than bottom warming rates, again indicating stronger thermal stratification across lakes. 403:
mixing events, such as storms or large river discharge, can break down stratification. Weather conditions induce a more rapid response in larger, shallower lakes, so these lakes are more dynamic and less understood. However, mixing regimes that are known to exist in large, shallow lakes are mostly diurnal, and the stratification is easily disturbed.
341:, and changes to weather patterns have been shown to alter the timing and intensity of stratification in lakes around the globe. Rising air temperatures have the same effect on lake bodies as a physical shift in geographic location, with tropical zones being particularly sensitive. These changes can further alter the fish, 408:
stratification to become disrupted affects the rate of transport and consumption of nutrients, in turn affecting the presence of algal growth. Stratification and mixing regimes in Earth’s largest lakes are also poorly understood, yet changes in thermal distributions, such as the rising temperatures found over time in
464:
In temperate latitudes, many lakes that become stratified during the summer months de-stratify during cooler windier weather with surface mixing by wind being a significant driver in this process. This is often referred to as "autumn turn-over". The mixing of the hypolimnium into the mixed water body
360:
Typical mixing pattern for many lakes, caused by the fact that water is less dense at temperatures other than 4 Â°C or 39 Â°F (the temperature where water is most dense). Lake stratification is stable in summer and winter, becoming unstable in spring and fall when the surface waters cross the
539:. Fluctuations in stratification consistency can accelerate deoxygenation of lakes, nutrient mineralization, and phosphorus release, having significant consequences for phytoplankton species. Furthermore, these changes in phytoplankton species composition and abundance can lead to adverse effects on 415:
Recent research suggests that seasonally ice-covered dimictic lakes may be described as "cryostratified" or "cryomictic" according to their wintertime stratification regimes. Cryostratified lakes exhibit inverse stratification near the ice surface and have depth-averaged temperatures near 4°C, while
394:
Heat is transported very slowly between the mixed layers of a stratified lake, where the diffusion of heat just one vertical meter takes about a month. The interaction between the atmosphere and lakes depends on how solar radiation is distributed, which is why water turbulence, mainly caused by wind
502:
Every lake has a set mixing regime that is influenced by lake morphometry and environmental conditions. However, changes to human influences in the form of land use change, increases in temperatures, and changes to weather patterns have been shown to alter the timing and intensity of stratification
402:
The lake mixing regime (e.g. polymictic, dimictic, meromictic) describes the yearly patterns of lake stratification that occur in most years. However, short-term events can influence lake stratification as well. Heat waves can cause periods of stratification in otherwise mixed, shallow lakes, while
526:
Changes to stratification patterns can also alter the community composition of lake ecosystems. In shallow lakes, temperature increases can alter the diatom community; while in deep lakes, the change is reflected in the deep chlorophyll layer taxa. Changes in mixing patterns and increased nutrient
407:
in China is an example of a large, shallow, diurnal lake, where even though the depth does not reach more than 3 metres (9.8 ft), the lake’s water turbidity is still dynamic enough to stratify and de-stratify due to the absorption of solar radiation mostly in the upper layer. The tendency for
514:
On a global scale, rising temperatures and changing weather patterns can also affect stratification in lakes. Rising air temperatures have the same effect on lake bodies as a physical shift in geographic location, with tropical zones being particularly sensitive. The intensity and scope of impact
489:
managers, the spatial distribution of fish within a lake is often adversely affected by thermal stratification and in some cases may indirectly cause large die-offs of recreationally important fish. One commonly used tool to reduce the severity of these lake management problems is to eliminate or
419:
Circulation processes during mixing periods cause the movement of oxygen and other dissolved nutrients, distributing them throughout the body of water. In lakes where benthic organisms are prominent, the respiration and consumption of these bottom-feeders may outweigh the mixing properties of
506:
There are a number of ways in which changes in human land use influence lake stratification and consequently water conditions. Urban expansion has led to the construction of roads and houses close to previously isolated lakes, sometimes causing increased runoff and pollution. The addition of
370:
The thermal stratification of lakes refers to a change in the temperature at different depths in the lake, and is due to the density of water varying with temperature. Cold water is denser than warm water and the epilimnion generally consists of water that is not as dense as the water in the
476:
Many types of aeration equipment have been used to thermally de-stratify lakes, particularly lakes subject to low oxygen or undesirable algal blooms. In fact, natural resource and environmental managers are often challenged by problems caused by lake and pond thermal stratification.
1620:
Woolway, R. Iestyn; Sharma, Sapna; Weyhenmeyer, Gesa A.; Debolskiy, Andrey; Golub, Malgorzata; Mercado-BettĂ­n, Daniel; Perroud, Marjorie; Stepanenko, Victor; Tan, Zeli; Grant, Luke; Ladwig, Robert; Mesman, Jorrit; Moore, Tadhg N.; Shatwell, Tom; Vanderkelen, Inne (2021-04-19).
534:
In northern temperate lakes, as climate change continues to cause increased variability in weather patterns as well as the timing of ice-on and ice-off dates, subsequent changes in stratification patterns from year to year can also have impacts across multiple
420:
strongly stratified lakes, resulting in zones of extremely low near-bottom oxygen and nutrient concentrations. This can be harmful to benthic organisms such as shellfish, which in the worst cases can wipe out entire populations. The accumulation of dissolved
395:
stress, can greatly increase the efficiency of heat transfer. In shallow lakes, stratification into epilimnion, metalimnion, and hypolimnion often does not occur, as wind or cooling causes regular mixing throughout the year. These lakes are called
57:
The scales are used to associate each section of the stratification to their corresponding depths and temperatures. The arrow is used to show the movement of wind over the surface of the water which initiates the turnover in the epilimnion and the
465:
of the lake recirculates nutrients, particularly phosphorus compounds, trapped in the hypolimnion during the warm weather. It also poses a risk of oxygen sag as a long established hypolimnion can be anoxic or very low in
503:
in lakes around the globe. These changes can further alter the fish, zooplankton, and phytoplankton community composition, in addition to creating gradients that alter the availability of dissolved oxygen and nutrients.
472:
Lake mixing regimes can shift in response to increasing air temperatures. Some dimictic lakes can turn into monomictic lakes, while some monomictic lakes might become meromictic, as a consequence of rising temperatures.
612:
Kraemer, Benjamin M.; Anneville, Orlane; Chandra, Sudeep; Dix, Margaret; Kuusisto, Esko; Livingstone, David M.; Rimmer, Alon; Schladow, S. Geoffrey; Silow, Eugene; Sitoki, Lewis M.; Tamatamah, Rashid (2015-06-28).
950:
Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021-02-16).
1481:
Heiskanen, Jouni J.; Mammarella, Ivan; Ojala, Anne; Stepanenko, Victor; Erkkilä, Kukka-Maaria; Miettinen, Heli; Sandström, Heidi; Eugster, Werner; Leppäranta, Matti; Järvinen, Heikki; Vesala, Timo (2015).
1205:
Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021).
1149:
Yang, Bernard; Wells, Mathew G.; McMeans, Bailey C.; Dugan, Hilary A.; Rusak, James A.; Weyhenmeyer, Gesa A.; Brentrup, Jennifer A.; Hrycik, Allison R.; Laas, Alo; Pilla, Rachel M.; Austin, Jay A. (2021).
2260: 2752: 1092:
Anderson, Eric J.; Stow, Craig A.; Gronewold, Andrew D.; Mason, Lacey A.; McCormick, Michael J.; Qian, Song S.; Ruberg, Steven A.; Beadle, Kyle; Constant, Stephen A.; Hawley, Nathan (2021-03-16).
375:
regions where lake water warms up and cools through the seasons, a cyclical pattern of overturn occurs that is repeated from year to year as the cold dense water at the top of the lake sinks (see
485:
may limit the recreational use of lakes and the commercial use of lake water. With severe thermal stratification in a lake, the quality of drinking water also can be adversely affected. For
923:
Wilhelm, Susann; Adrian, RITA (4 October 2007). "Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton".
2255: 294: 399:. There is not a fixed depth that separates polymictic and stratifying lakes, as apart from depth, this is also influenced by turbidity, lake surface area, and climate. 2100: 2285: 1777: 2125: 287: 2275: 796: 1055:"Simulation and exploration of the mechanisms underlying the spatiotemporal distribution of surface mixed layer depth in a large shallow lake" 834: 671: 1580:"Earlier ice breakup induces changepoint responses in duration and variability of spring mixing and summer stratification in dimictic lakes" 2290: 2388: 2250: 280: 615:"Morphometry and average temperature affect lake stratification responses to climate change: LAKE STRATIFICATION RESPONSES TO CLIMATE" 376: 2280: 1416:
Lackey, Robert T. (June 1972). "Response of physical and chemical parameters to eliminating thermal stratification in a reservoir".
1359: 1915: 1770: 1683:"A perspective on the ecological and evolutionary consequences of phenological variability in lake ice on north-temperate lakes" 2742: 383:
the lake water turns over during the spring and the fall. This process occurs more slowly in deeper water and as a result, a
314:
to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the
693:
Edlund, Mark; Almendinger, James; Fang, Xing; Hobbs, Joy; VanderMeulen, David; Key, Rebecca; Engstrom, Daniel (2017-09-07).
2762: 2747: 1870: 2757: 1763: 515:
depends on location and lake morphometry, but in some cases can be so extreme as to require a reclassification from
2065: 531:
and abundance, while decreased nutrient availability can be detrimental for benthic communities and fish habitat.
2373: 2267: 1454:
Lackey, Robert T.; Holmes, Donald W. (July 1972). "Evaluation of Two Methods of Aeration to Prevent Winterkill".
1737: 2826: 2619: 2614: 1910: 1467: 2527: 2338: 2232: 1960: 1950: 743:
Novotny Eric V.; Stefan Heinz G. (2012-12-01). "Road Salt Impact on Lake Stratification and Water Quality".
566: 2353: 2343: 2045: 2030: 561: 416:
cryomictic lakes have no under-ice thermocline and have depth-averaged winter temperatures closer to 0°C.
412:’s deep waters, have the ability to significantly alter the largest freshwater ecosystems on the planet. 1681:
Feiner, Zachary S.; Dugan, Hilary A.; Lottig, Noah R.; Sass, Greg G.; Gerrish, Gretchen A. (2022-09-01).
2772: 2699: 2499: 2474: 2449: 2333: 2080: 1860: 773: 571: 540: 1207: 1151: 1094:"Seasonal overturn and stratification changes drive deep-water warming in one of Earth's largest lakes" 1262: 695:"Effects of Climate Change on Lake Thermal Structure and Biotic Response in Northern Wilderness Lakes" 2507: 2469: 1800: 1495: 1425: 1387: 1316: 1301: 1219: 1163: 964: 868: 481:
have been directly associated with thermal gradients, stagnation, and ice cover. Excessive growth of
814: 2729: 2383: 2192: 1920: 1880: 528: 1378:
Lackey, Robert T. (February 1972). "A technique for eliminating thermal stratification in lakes".
2852: 2649: 2644: 2512: 2454: 2348: 2197: 2115: 2000: 1980: 1890: 1833: 1579: 1521: 1332: 1261:
Wiles, Philip J.; van Duren, Luca A.; Häse, Clivia; Larsen, Jens; Simpson, John H. (2006-04-01).
1243: 1187: 988: 2659: 2634: 2537: 2484: 2403: 2070: 2035: 1975: 1935: 1905: 1875: 1786: 1741: 1702: 1660: 1642: 1599: 1560: 1513: 1355: 1282: 1235: 1179: 1131: 1113: 1074: 1035: 1027: 980: 830: 716: 667: 372: 322:(or metalimnion), the middle layer, whose depth may change throughout the day; and the colder 263: 2767: 2459: 2363: 2315: 2227: 2120: 2060: 1818: 1733: 1694: 1650: 1634: 1591: 1552: 1540: 1503: 1463: 1433: 1395: 1324: 1274: 1227: 1171: 1121: 1105: 1066: 1019: 972: 932: 905: 876: 822: 752: 706: 626: 350: 952: 896:
Lewis Jr., William M. (October 1983). "A Revised Classification of Lakes Based on Mixing".
756: 2737: 2704: 2565: 2517: 2393: 2368: 2177: 2130: 2055: 1900: 1885: 1721: 656: 556: 516: 449: 396: 334: 236: 223: 201: 190: 30: 1350:
Cooke, G. Dennis; Welch, Eugene B.; Peterson, Spencer; Nichols, Stanley A., eds. (2005).
792: 371:
hypolimnion. However, the temperature of maximum density for freshwater is 4 Â°C. In
1682: 1499: 1429: 1391: 1320: 1223: 1167: 968: 872: 349:
community composition, in addition to creating gradients that alter the availability of
2847: 2601: 2555: 2550: 2522: 2489: 2358: 2217: 2145: 2135: 1985: 1930: 1848: 1843: 1838: 1655: 1622: 1437: 1399: 1126: 1093: 614: 491: 421: 338: 268: 100: 657:"Impact of Climate Change on Sensitivity of Lake Stratification: A Global Perspective" 452:, a very large quantity of carbon dioxide can quickly leave the lake and displace the 17: 2841: 2815: 2709: 2674: 2575: 2570: 2545: 2075: 2040: 2015: 1865: 1828: 1525: 1336: 1247: 1191: 992: 936: 826: 581: 536: 520: 508: 494:. Aeration has met with some success, although it has rarely proved to be a panacea. 409: 380: 346: 330: 212: 89: 78: 881: 856: 2810: 2801: 2580: 2560: 2464: 2202: 2085: 2005: 1965: 1955: 1925: 1484:"Effects of water clarity on lake stratification and lake-atmosphere heat exchange" 576: 247: 111: 1278: 356: 333:
and environmental conditions. However, changes to human influences in the form of
387:
may form. If the stratification of water lasts for extended periods, the lake is
2714: 2689: 2684: 2654: 2437: 2413: 2378: 2187: 2090: 2010: 1970: 1823: 1008:"Temporal and spatial characteristics of potential energy anomaly in Lake Taihu" 433: 384: 342: 323: 319: 157: 146: 52: 45: 1638: 1109: 2694: 2629: 2418: 2398: 2182: 2155: 1940: 1853: 1328: 1070: 1023: 404: 388: 315: 135: 38: 1745: 1706: 1646: 1603: 1564: 1517: 1286: 1239: 1183: 1117: 1078: 1031: 984: 720: 2719: 2624: 2408: 2172: 2165: 2140: 2050: 1698: 1054: 1007: 486: 478: 441: 429: 2428: 1664: 1302:"Worldwide alteration of lake mixing regimes in response to climate change" 1263:"Stratification and mixing in the Limfjorden in relation to mussel culture" 1135: 1039: 664:
Water Resources Management in the Face of Climatic/Hydrologic Uncertainties
448:) is potentially dangerous because if one of these lakes is triggered into 1722:"Empirical Links between Thermal Habitat, Fish Growth, and Climate Change" 2669: 2479: 2025: 2020: 1945: 1508: 1483: 1231: 1175: 976: 631: 482: 437: 2679: 2639: 2609: 2587: 2207: 1995: 1895: 544: 1595: 2664: 1990: 1755: 711: 694: 466: 453: 445: 425: 1556: 909: 355: 29: 1623:"Phenological shifts in lake stratification under climate change" 857:"Generalized scaling of seasonal thermal stratification in lakes" 2160: 311: 2313: 1797: 1759: 456:
needed for life by people and animals in the surrounding area.
2222: 2212: 1300:
Woolway, R. Iestyn; Merchant, Christopher J. (18 March 2019).
329:
Every lake has a set mixing regime that is influenced by lake
1541:"Changes in climate and weather extremes in the 21st century" 768: 766: 787: 785: 783: 655:
Meyer, Gabriela K.; Masliev, Ilya; Somlyódy, László (1996),
1738:
10.1577/1548-8659(1999)128<0656:ELBTHF>2.0.CO;2
1006:
Zhao, Qiaohua; Ren, Yan; Wang, Julian X. L. (2018-08-01).
1468:
10.1577/1548-8640(1972)34[175:EOTMOA]2.0.CO;2
1411: 1409: 1373: 1371: 1053:
Zhao, Qiaohua; Sun, Jihua; Zhu, Guangwei (2012-11-01).
1354:(Third ed.). Boca Raton: CRC Press. p. 616. 1720:
King, J. R.; Shuter, B. J.; Zimmerman, A. P. (1999).
2728: 2600: 2536: 2498: 2436: 2326: 2243: 2108: 1811: 1449: 1447: 1418:
Journal of the American Water Resources Association
1380:
Journal of the American Water Resources Association
1208:"A New Thermal Categorization of Ice-Covered Lakes" 1152:"A New Thermal Categorization of Ice-Covered Lakes" 953:"A New Thermal Categorization of Ice-Covered Lakes" 34:Lakes are stratified into three separate sections: 1687:Canadian Journal of Fisheries and Aquatic Sciences 1352:Restoration and Management of Lakes and Reservoirs 898:Canadian Journal of Fisheries and Aquatic Sciences 27:Separation of water in a lake into distinct layers 1578:Pilla, Rachel M.; Williamson, Craig E. (2022). 1726:Transactions of the American Fisheries Society 2061:Stable isotope analysis in aquatic ecosystems 1771: 288: 8: 1488:Journal of Geophysical Research: Atmospheres 1012:Environmental Science and Pollution Research 507:particulate matter to lake bodies can lower 2126:Freshwater environmental quality parameters 855:Kirillin, G.; Shatwell, T. (October 2016). 2442: 2323: 2310: 1808: 1794: 1778: 1764: 1756: 666:, Springer Netherlands, pp. 225–270, 295: 281: 61: 1654: 1507: 1125: 880: 710: 630: 527:availability can also affect zooplankton 797:Georgia Department of Natural Resources 593: 255: 176: 119: 64: 1676: 1674: 1615: 1613: 815:"Density Stratification and Stability" 490:lessen thermal stratification through 326:, extending to the floor of the lake. 318:, comprising the top warm layer; the 7: 808: 806: 776:. Water on the Web. October 7, 2015. 738: 736: 734: 732: 730: 688: 686: 684: 682: 650: 648: 646: 644: 642: 607: 605: 603: 601: 599: 597: 2389:Oceanic physical-biological process 2251:List of freshwater ecoregions (WWF) 1438:10.1111/j.1752-1688.1972.tb05181.x 1400:10.1111/j.1752-1688.1972.tb05092.x 813:Boehrer, B.; Schultze, M. (2009), 757:10.1061/(ASCE)HY.1943-7900.0000590 377:stable and unstable stratification 25: 2822: 2821: 2809: 2795: 2427: 2099: 1916:Colored dissolved organic matter 1059:Advances in Atmospheric Sciences 937:10.1111/j.1365-2427.2007.01887.x 827:10.1016/b978-012370626-3.00077-6 745:Journal of Hydraulic Engineering 2261:Latin America and the Caribbean 882:10.1016/j.earscirev.2016.08.008 2743:Ecological values of mangroves 2286:North Pacific Subtropical Gyre 1456:The Progressive Fish-Culturist 821:, Elsevier, pp. 583–593, 1: 1279:10.1016/j.jmarsys.2005.09.009 819:Encyclopedia of Inland Waters 424:in three meromictic lakes in 2763:Marine conservation activism 2748:Fisheries and climate change 1539:Rummukainen, Markku (2012). 1212:Geophysical Research Letters 1156:Geophysical Research Letters 957:Geophysical Research Letters 793:"Lake Lanier Turnover Facts" 619:Geophysical Research Letters 2758:Human impact on marine life 2635:Davidson Seamount § Ecology 1871:Aquatic population dynamics 2869: 1639:10.1038/s41467-021-22657-4 1584:Limnology and Oceanography 1110:10.1038/s41467-021-21971-1 2789: 2445: 2425: 2374:Marine primary production 2322: 2309: 2268:List of marine ecoregions 2097: 1807: 1793: 1329:10.1038/s41561-019-0322-x 1267:Journal of Marine Systems 1071:10.1007/s00376-012-1262-1 1024:10.1007/s11356-018-2204-y 2620:Coastal biogeomorphology 2615:Marine coastal ecosystem 774:"Density Stratification" 498:Anthropogenic influences 339:increases in temperature 2528:Paradox of the plankton 2339:Diel vertical migration 2233:Freshwater swamp forest 1951:GIS and aquatic science 1799:General components and 1699:10.1139/cjfas-2021-0221 2354:Large marine ecosystem 2046:Shoaling and schooling 562:Stratification (water) 362: 59: 18:Thermal stratification 2773:Marine protected area 2700:Salt pannes and pools 2475:Marine larval ecology 2450:Census of Marine Life 2334:Deep scattering layer 2291:San Francisco Estuary 2256:Africa and Madagascar 2081:Underwater camouflage 1861:Aquatic biomonitoring 1801:freshwater ecosystems 1627:Nature Communications 1098:Nature Communications 861:Earth-Science Reviews 572:Freshwater ecosystems 359: 33: 2508:Marine bacteriophage 2470:Marine invertebrates 1545:WIREs Climate Change 1509:10.1002/2014JD022938 1232:10.1029/2020GL091374 1218:(3): e2020GL091374. 1176:10.1029/2020GL091374 1162:(3): e2020GL091374. 977:10.1029/2020GL091374 632:10.1002/2015GL064097 2384:Ocean fertilization 2193:Trophic state index 2151:Lake stratification 1881:Aquatic respiration 1500:2015JGRD..120.7412H 1430:1972JAWRA...8..589L 1392:1972JAWRA...8...46L 1321:2019NatGe..12..271W 1224:2021GeoRL..4891374Y 1168:2021GeoRL..4891374Y 1018:(24): 24316–24325. 969:2021GeoRL..4891374Y 873:2016ESRv..161..179K 529:species composition 379:). For example, in 310:is the tendency of 308:Lake stratification 121:Lake stratification 2650:Intertidal wetland 2645:Intertidal ecology 2513:Marine prokaryotes 2455:Deep-sea community 2349:Iron fertilization 2272:Specific examples 2198:Upland and lowland 2116:Freshwater biology 1981:Microbial food web 1891:Aquatic toxicology 1834:Aquatic adaptation 1787:Aquatic ecosystems 925:Freshwater Biology 363: 264:Aquatic ecosystems 60: 2835: 2834: 2816:Oceans portal 2785: 2784: 2781: 2780: 2660:Hydrothermal vent 2596: 2595: 2485:Seashore wildlife 2316:Marine ecosystems 2305: 2304: 2301: 2300: 2071:Thermal pollution 2036:Ramsar Convention 1976:Microbial ecology 1936:Fisheries science 1876:Aquatic predation 1596:10.1002/lno.11888 1494:(15): 7412–7428. 1309:Nature Geoscience 904:(10): 1779–1787. 836:978-0-12-370626-3 751:(12): 1069–1080. 673:978-94-010-6577-1 625:(12): 4981–4988. 460:De-stratification 305: 304: 16:(Redirected from 2860: 2825: 2824: 2818: 2814: 2813: 2804: 2802:Lakes portal 2800: 2799: 2798: 2768:Marine pollution 2460:Deep-water coral 2443: 2431: 2364:Marine chemistry 2324: 2311: 2228:Freshwater marsh 2121:Freshwater biome 2103: 1819:Acoustic ecology 1809: 1795: 1780: 1773: 1766: 1757: 1750: 1749: 1717: 1711: 1710: 1693:(9): 1590–1604. 1678: 1669: 1668: 1658: 1617: 1608: 1607: 1575: 1569: 1568: 1536: 1530: 1529: 1511: 1478: 1472: 1471: 1451: 1442: 1441: 1413: 1404: 1403: 1375: 1366: 1365: 1347: 1341: 1340: 1306: 1297: 1291: 1290: 1258: 1252: 1251: 1202: 1196: 1195: 1146: 1140: 1139: 1129: 1089: 1083: 1082: 1065:(6): 1360–1373. 1050: 1044: 1043: 1003: 997: 996: 947: 941: 940: 920: 914: 913: 893: 887: 886: 884: 852: 846: 845: 844: 843: 810: 801: 800: 789: 778: 777: 770: 761: 760: 740: 725: 724: 714: 712:10.3390/w9090678 690: 677: 676: 661: 652: 637: 636: 634: 609: 541:fish recruitment 351:dissolved oxygen 297: 290: 283: 246: 244: 235: 233: 222: 220: 211: 209: 200: 198: 189: 187: 169:Destratification 167: 165: 156: 154: 145: 143: 134: 132: 110: 108: 99: 97: 88: 86: 77: 75: 62: 21: 2868: 2867: 2863: 2862: 2861: 2859: 2858: 2857: 2838: 2837: 2836: 2831: 2808: 2807: 2796: 2794: 2793: 2777: 2738:Coral bleaching 2724: 2705:Seagrass meadow 2602:Marine habitats 2592: 2566:Coral reef fish 2532: 2518:Marine protists 2494: 2432: 2423: 2394:Ocean turbidity 2369:Marine food web 2318: 2297: 2239: 2178:River ecosystem 2131:Freshwater fish 2104: 2095: 1901:Bioluminescence 1886:Aquatic science 1803: 1789: 1784: 1754: 1753: 1719: 1718: 1714: 1680: 1679: 1672: 1619: 1618: 1611: 1577: 1576: 1572: 1557:10.1002/wcc.160 1538: 1537: 1533: 1480: 1479: 1475: 1453: 1452: 1445: 1415: 1414: 1407: 1377: 1376: 1369: 1362: 1349: 1348: 1344: 1304: 1299: 1298: 1294: 1260: 1259: 1255: 1204: 1203: 1199: 1148: 1147: 1143: 1091: 1090: 1086: 1052: 1051: 1047: 1005: 1004: 1000: 949: 948: 944: 922: 921: 917: 910:10.1139/f83-207 895: 894: 890: 854: 853: 849: 841: 839: 837: 812: 811: 804: 791: 790: 781: 772: 771: 764: 742: 741: 728: 692: 691: 680: 674: 659: 654: 653: 640: 611: 610: 595: 590: 557:Aquatic Science 553: 500: 462: 450:limnic eruption 368: 335:land use change 301: 242: 241: 237:Meromictic lake 231: 230: 224:Polymictic lake 218: 217: 207: 206: 202:Monomictic lake 196: 195: 191:Holomictic lake 185: 184: 163: 162: 152: 151: 141: 140: 130: 129: 106: 105: 95: 94: 84: 83: 73: 72: 56: 49: 42: 35: 28: 23: 22: 15: 12: 11: 5: 2866: 2864: 2856: 2855: 2850: 2840: 2839: 2833: 2832: 2830: 2829: 2819: 2805: 2790: 2787: 2786: 2783: 2782: 2779: 2778: 2776: 2775: 2770: 2765: 2760: 2755: 2750: 2745: 2740: 2734: 2732: 2726: 2725: 2723: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2632: 2627: 2622: 2617: 2612: 2606: 2604: 2598: 2597: 2594: 2593: 2591: 2590: 2585: 2584: 2583: 2578: 2573: 2568: 2563: 2556:Saltwater fish 2553: 2551:Marine reptile 2548: 2542: 2540: 2534: 2533: 2531: 2530: 2525: 2523:Marine viruses 2520: 2515: 2510: 2504: 2502: 2500:Microorganisms 2496: 2495: 2493: 2492: 2490:Wild fisheries 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2446: 2440: 2434: 2433: 2426: 2424: 2422: 2421: 2416: 2411: 2406: 2404:Thorson's rule 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2359:Marine biology 2356: 2351: 2346: 2341: 2336: 2330: 2328: 2320: 2319: 2314: 2307: 2306: 2303: 2302: 2299: 2298: 2296: 2295: 2294: 2293: 2288: 2283: 2278: 2270: 2265: 2264: 2263: 2258: 2247: 2245: 2241: 2240: 2238: 2237: 2236: 2235: 2230: 2225: 2220: 2218:Brackish marsh 2215: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2169: 2168: 2158: 2153: 2148: 2146:Lake ecosystem 2143: 2138: 2136:Hyporheic zone 2133: 2128: 2123: 2118: 2112: 2110: 2106: 2105: 2098: 2096: 2094: 2093: 2088: 2083: 2078: 2073: 2068: 2063: 2058: 2053: 2048: 2043: 2038: 2033: 2028: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1986:Microbial loop 1983: 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1943: 1938: 1933: 1931:Eutrophication 1928: 1923: 1918: 1913: 1911:Cascade effect 1908: 1903: 1898: 1893: 1888: 1883: 1878: 1873: 1868: 1863: 1858: 1857: 1856: 1851: 1846: 1839:Aquatic animal 1836: 1831: 1826: 1821: 1815: 1813: 1805: 1804: 1798: 1791: 1790: 1785: 1783: 1782: 1775: 1768: 1760: 1752: 1751: 1732:(4): 656–665. 1712: 1670: 1609: 1570: 1551:(2): 115–129. 1531: 1473: 1462:(3): 175–178. 1443: 1424:(3): 589–599. 1405: 1367: 1360: 1342: 1315:(4): 271–276. 1292: 1273:(1): 129–143. 1253: 1197: 1141: 1084: 1045: 998: 942: 915: 888: 847: 835: 802: 779: 762: 726: 678: 672: 638: 592: 591: 589: 586: 585: 584: 579: 574: 569: 564: 559: 552: 549: 537:trophic levels 499: 496: 492:water aeration 461: 458: 422:carbon dioxide 381:dimictic lakes 367: 364: 353:and nutrients. 303: 302: 300: 299: 292: 285: 277: 274: 273: 272: 271: 269:Wild fisheries 266: 258: 257: 253: 252: 251: 250: 239: 228: 227: 226: 215: 204: 179: 178: 174: 173: 172: 171: 160: 149: 138: 124: 123: 117: 116: 115: 114: 103: 101:Profundal zone 92: 81: 67: 66: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2865: 2854: 2851: 2849: 2846: 2845: 2843: 2828: 2820: 2817: 2812: 2806: 2803: 2792: 2791: 2788: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2735: 2733: 2731: 2727: 2721: 2718: 2716: 2713: 2711: 2710:Sponge ground 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2675:Marine biomes 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2607: 2605: 2603: 2599: 2589: 2586: 2582: 2579: 2577: 2576:Demersal fish 2574: 2572: 2571:Deep-sea fish 2569: 2567: 2564: 2562: 2559: 2558: 2557: 2554: 2552: 2549: 2547: 2546:Marine mammal 2544: 2543: 2541: 2539: 2535: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2505: 2503: 2501: 2497: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2447: 2444: 2441: 2439: 2435: 2430: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2331: 2329: 2325: 2321: 2317: 2312: 2308: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2273: 2271: 2269: 2266: 2262: 2259: 2257: 2254: 2253: 2252: 2249: 2248: 2246: 2242: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2210: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2167: 2164: 2163: 2162: 2159: 2157: 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2113: 2111: 2107: 2102: 2092: 2089: 2087: 2084: 2082: 2079: 2077: 2076:Trophic level 2074: 2072: 2069: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2041:Sediment trap 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2016:Phytoplankton 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1866:Aquatic plant 1864: 1862: 1859: 1855: 1852: 1850: 1847: 1845: 1842: 1841: 1840: 1837: 1835: 1832: 1830: 1829:Anoxic waters 1827: 1825: 1822: 1820: 1817: 1816: 1814: 1810: 1806: 1802: 1796: 1792: 1788: 1781: 1776: 1774: 1769: 1767: 1762: 1761: 1758: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1716: 1713: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1677: 1675: 1671: 1666: 1662: 1657: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1616: 1614: 1610: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1574: 1571: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1535: 1532: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1493: 1489: 1485: 1477: 1474: 1469: 1465: 1461: 1457: 1450: 1448: 1444: 1439: 1435: 1431: 1427: 1423: 1419: 1412: 1410: 1406: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1372: 1368: 1363: 1361:9781566706254 1357: 1353: 1346: 1343: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1303: 1296: 1293: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1201: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1145: 1142: 1137: 1133: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1088: 1085: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1049: 1046: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1002: 999: 994: 990: 986: 982: 978: 974: 970: 966: 963:(3): e91374. 962: 958: 954: 946: 943: 938: 934: 931:(2): 226–37. 930: 926: 919: 916: 911: 907: 903: 899: 892: 889: 883: 878: 874: 870: 866: 862: 858: 851: 848: 838: 832: 828: 824: 820: 816: 809: 807: 803: 798: 794: 788: 786: 784: 780: 775: 769: 767: 763: 758: 754: 750: 746: 739: 737: 735: 733: 731: 727: 722: 718: 713: 708: 704: 700: 696: 689: 687: 685: 683: 679: 675: 669: 665: 658: 651: 649: 647: 645: 643: 639: 633: 628: 624: 620: 616: 608: 606: 604: 602: 600: 598: 594: 587: 583: 582:Lake aeration 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 554: 550: 548: 546: 542: 538: 532: 530: 524: 522: 518: 512: 510: 509:water clarity 504: 497: 495: 493: 488: 484: 480: 479:Fish die-offs 474: 470: 468: 459: 457: 455: 451: 447: 443: 439: 435: 431: 427: 423: 417: 413: 411: 410:Lake Michigan 406: 400: 398: 392: 390: 386: 382: 378: 374: 365: 358: 354: 352: 348: 347:phytoplankton 344: 340: 336: 332: 327: 325: 321: 317: 313: 309: 298: 293: 291: 286: 284: 279: 278: 276: 275: 270: 267: 265: 262: 261: 260: 259: 254: 249: 240: 238: 229: 225: 216: 214: 213:Dimictic lake 205: 203: 194: 193: 192: 183: 182: 181: 180: 175: 170: 161: 159: 150: 148: 139: 137: 128: 127: 126: 125: 122: 118: 113: 104: 102: 93: 91: 90:Limnetic zone 82: 80: 79:Littoral zone 71: 70: 69: 68: 63: 55: 54: 48: 47: 41: 40: 32: 19: 2730:Conservation 2581:Pelagic fish 2561:Coastal fish 2465:Marine fungi 2203:Water garden 2150: 2086:Water column 2031:Productivity 2006:Pelagic zone 1966:Macrobenthos 1956:Hydrobiology 1926:Ecohydrology 1729: 1725: 1715: 1690: 1686: 1630: 1626: 1587: 1583: 1573: 1548: 1544: 1534: 1491: 1487: 1476: 1459: 1455: 1421: 1417: 1386:(1): 46–49. 1383: 1379: 1351: 1345: 1312: 1308: 1295: 1270: 1266: 1256: 1215: 1211: 1200: 1159: 1155: 1144: 1101: 1097: 1087: 1062: 1058: 1048: 1015: 1011: 1001: 960: 956: 945: 928: 924: 918: 901: 897: 891: 864: 860: 850: 840:, retrieved 818: 748: 744: 702: 698: 663: 622: 618: 577:Water column 533: 525: 513: 505: 501: 475: 471: 463: 418: 414: 401: 393: 369: 328: 307: 306: 248:Amictic lake 168: 120: 112:Benthic zone 58:hypolimnion. 51: 44: 37: 2715:Sponge reef 2690:Rocky shore 2685:Oyster reef 2655:Kelp forest 2538:Vertebrates 2438:Marine life 2414:Viral shunt 2379:Marine snow 2281:Maharashtra 2188:Stream pool 2091:Zooplankton 2011:Photic zone 1971:Meiobenthos 1824:Algal bloom 1633:(1): 2318. 1104:(1): 1688. 867:: 179–190. 434:Lake Monoun 385:thermal bar 343:zooplankton 331:morphometry 324:hypolimnion 320:thermocline 158:Hypolimnion 147:Metalimnion 53:Hypolimnion 46:Metalimnion 2842:Categories 2695:Salt marsh 2630:Coral reef 2419:Whale fall 2399:Photophore 2276:Everglades 2244:Ecoregions 2183:Stream bed 2156:Macrophyte 2109:Freshwater 1941:Food chain 1854:Water bird 842:2024-04-21 705:(9): 678. 588:References 543:, such as 517:monomictic 405:Lake Taihu 397:polymictic 389:meromictic 366:Definition 316:epilimnion 177:Lake types 136:Epilimnion 65:Lake zones 39:Epilimnion 2853:Limnology 2720:Tide pool 2625:Cold seep 2409:Upwelling 2173:Rheotaxis 2166:Fish pond 2141:Limnology 2066:Substrate 2051:Siltation 1921:Dead zone 1746:0002-8487 1707:0706-652X 1647:2041-1723 1604:0024-3590 1565:1757-7780 1526:128440164 1518:2169-8996 1337:134203871 1287:0924-7963 1248:233921281 1240:1944-8007 1192:233921281 1184:1944-8007 1118:2041-1723 1079:1861-9533 1032:1614-7499 993:233921281 985:0094-8276 721:2073-4441 487:fisheries 442:Lake Kivu 430:Lake Nyos 373:temperate 361:4°C mark. 50:III. The 2827:Category 2753:HERMIONE 2670:Mangrove 2480:Seagrass 2026:Pleuston 2021:Plankton 2001:Particle 1946:Food web 1665:33875656 1136:33727551 1040:29948715 551:See also 521:dimictic 483:plankton 438:Cameroon 256:See also 43:II. The 2680:Mudflat 2640:Estuary 2610:Bay mud 2588:Seabird 2344:f-ratio 2327:General 2208:Wetland 1996:Neuston 1961:Hypoxia 1906:Biomass 1896:Benthos 1812:General 1656:8055693 1496:Bibcode 1426:Bibcode 1388:Bibcode 1317:Bibcode 1220:Bibcode 1164:Bibcode 1127:7966760 965:Bibcode 869:Bibcode 567:Hypoxia 545:walleye 36:I. The 2665:Lagoon 1991:Nekton 1849:Mammal 1844:Insect 1744:  1705:  1663:  1653:  1645:  1602:  1590:(S1). 1563:  1524:  1516:  1358:  1335:  1285:  1246:  1238:  1190:  1182:  1134:  1124:  1116:  1077:  1038:  1030:  991:  983:  833:  719:  670:  467:oxygen 454:oxygen 446:Rwanda 426:Africa 345:, and 245:  243:  234:  232:  221:  219:  210:  208:  199:  197:  188:  186:  166:  164:  155:  153:  144:  142:  133:  131:  109:  107:  98:  96:  87:  85:  76:  74:  2848:Lakes 2056:Spawn 1522:S2CID 1333:S2CID 1305:(PDF) 1244:S2CID 1188:S2CID 989:S2CID 699:Water 660:(PDF) 312:lakes 2161:Pond 1742:ISSN 1703:ISSN 1661:PMID 1643:ISSN 1600:ISSN 1561:ISSN 1514:ISSN 1356:ISBN 1283:ISSN 1236:ISSN 1180:ISSN 1132:PMID 1114:ISSN 1075:ISSN 1036:PMID 1028:ISSN 981:ISSN 831:ISBN 717:ISSN 668:ISBN 440:and 432:and 2223:Fen 2213:Bog 1734:doi 1730:128 1695:doi 1651:PMC 1635:doi 1592:doi 1553:doi 1504:doi 1492:120 1464:doi 1434:doi 1396:doi 1325:doi 1275:doi 1228:doi 1172:doi 1122:PMC 1106:doi 1067:doi 1020:doi 973:doi 933:doi 906:doi 877:doi 865:161 823:doi 753:doi 749:138 707:doi 627:doi 519:to 444:in 436:in 2844:: 1740:. 1728:. 1724:. 1701:. 1691:79 1689:. 1685:. 1673:^ 1659:. 1649:. 1641:. 1631:12 1629:. 1625:. 1612:^ 1598:. 1588:67 1586:. 1582:. 1559:. 1547:. 1543:. 1520:. 1512:. 1502:. 1490:. 1486:. 1460:34 1458:. 1446:^ 1432:. 1420:. 1408:^ 1394:. 1382:. 1370:^ 1331:. 1323:. 1313:12 1311:. 1307:. 1281:. 1271:60 1269:. 1265:. 1242:. 1234:. 1226:. 1216:48 1214:. 1210:. 1186:. 1178:. 1170:. 1160:48 1158:. 1154:. 1130:. 1120:. 1112:. 1102:12 1100:. 1096:. 1073:. 1063:29 1061:. 1057:. 1034:. 1026:. 1016:25 1014:. 1010:. 987:. 979:. 971:. 961:48 959:. 955:. 929:53 927:. 902:40 900:. 875:. 863:. 859:. 829:, 817:, 805:^ 795:. 782:^ 765:^ 747:. 729:^ 715:. 701:. 697:. 681:^ 662:, 641:^ 623:42 621:. 617:. 596:^ 469:. 391:. 337:, 1779:e 1772:t 1765:v 1748:. 1736:: 1709:. 1697:: 1667:. 1637:: 1606:. 1594:: 1567:. 1555:: 1549:3 1528:. 1506:: 1498:: 1470:. 1466:: 1440:. 1436:: 1428:: 1422:8 1402:. 1398:: 1390:: 1384:8 1364:. 1339:. 1327:: 1319:: 1289:. 1277:: 1250:. 1230:: 1222:: 1194:. 1174:: 1166:: 1138:. 1108:: 1081:. 1069:: 1042:. 1022:: 995:. 975:: 967:: 939:. 935:: 912:. 908:: 885:. 879:: 871:: 825:: 799:. 759:. 755:: 723:. 709:: 703:9 635:. 629:: 428:( 296:e 289:t 282:v 20:)

Index

Thermal stratification

Epilimnion
Metalimnion
Hypolimnion
Littoral zone
Limnetic zone
Profundal zone
Benthic zone
Lake stratification
Epilimnion
Metalimnion
Hypolimnion
Destratification
Holomictic lake
Monomictic lake
Dimictic lake
Polymictic lake
Meromictic lake
Amictic lake
Aquatic ecosystems
Wild fisheries
v
t
e
lakes
epilimnion
thermocline
hypolimnion
morphometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑