Knowledge (XXG)

Thermoacoustics

Source 📝

96:
rarefaction, the vibration is encouraged". This shows that he related thermoacoustics to the interplay of density variations and heat injection. The formal theoretical study of thermoacoustics started by Kramers in 1949 when he generalized the Kirchhoff theory of the attenuation of sound waves at constant temperature to the case of attenuation in the presence of a temperature gradient. Rott made a breakthrough in the study and modeling of thermodynamic phenomena by developing a successful linear theory. After that, the acoustical part of thermoacoustics was linked in a broad thermodynamic framework by Swift.
1807: 1684: 91:. Feldman mentioned in his related review that a convective air current through the pipe is the main inducer of this phenomenon. The oscillations are strongest when the screen is at one fourth of the tube length. Research performed by Sondhauss in 1850 is known to be the first to approximate the modern concept of thermoacoustic oscillation. Sondhauss experimentally investigated the oscillations related to glass blowers. Sondhauss observed that sound frequency and intensity depends on the length and volume of the bulb. 1616:≈0.66. For typical sound frequencies the thermal penetration depth is ca. 0.1 mm. That means that the thermal interaction between the gas and a solid surface is limited to a very thin layer near the surface. The effect of thermoacoustic devices is increased by putting a large number of plates (with a plate distance of a few times the thermal penetration depth) in the sound field forming a stack. Stacks play a central role in so-called standing-wave thermoacoustic devices. 910: 1625:
to play the intended role in the thermoacoustic effect. The interplay of heat and sound is applicable in both conversion ways. The effect can be used to produce acoustic oscillations by supplying heat to the hot side of a stack, and sound oscillations can be used to induce a refrigeration effect by supplying a pressure wave inside a
1706:. In other words: we have produced a cooler. This is the basis of thermoacoustic cooling as shown in Fig. 2b which represents a thermoacoustic refrigerator. It has a loudspeaker at the left. The system corresponds with the left half of Fig. 1b with the stack in the position of the blue line. Cooling is produced at temperature 1731:
plates but the device works also very well with loosely packed stainless steel wool or screens. It is heated at the left, e.g., by a propane flame and heat is released to ambient temperature by a heat exchanger. If the temperature at the left side is high enough, the system starts to produces a loud
49:
Thermoacoustic effects can be observed when partly molten glass tubes are connected to glass vessels. Sometimes spontaneously a loud and monotone sound is produced. A similar effect is observed if one side of a stainless steel tube is at room temperature (293 K) and the other side is in contact
1666:
in a gas. A standing-wave thermoacoustic engine typically has a thermoacoustic element called the "stack". A stack is a solid component with pores that allow the operating gas fluid to oscillate while in contact with the solid walls. The oscillation of the gas is accompanied with the change of its
1624:
Acoustic oscillations in a medium are a set of time depending properties, which may transfer energy along its path. Along the path of an acoustic wave, pressure and density are not the only time dependent property, but also entropy and temperature. Temperature changes along the wave can be invested
127:
The sound intensity of ordinary speech is 65 dB. The pressure variations are about 0.05 Pa, the displacements 0.2 μm, and the temperature variations about 40 μK. So, the thermal effects of sound cannot be observed in daily life. However, at sound levels of 180 dB, which are
71:
produced heat-generated sound when blowing a hot bulb at the end of a cold narrow tube. This phenomenon also has been observed in cryogenic storage vessels, where oscillations are induced by the insertion of a hollow tube open at the bottom end in liquid helium, called Taconis oscillations, but the
1754:
The heat exchanging process in TAE is critical to maintain the power conversion process. The hot heat exchanger has to transfer heat to the stack and the cold heat exchanger has to sustain the temperature gradient across the stack. Yet, the available space for it is constrained with the small size
1830:
between gas and material is very good. Ideally, the energy flow in the regenerator is zero, so the main energy flow in the loop is from the hot heat exchanger via the pulse tube and the bypass loop to the heat exchanger at the other side of the regenerator (main heat exchanger). The energy in the
1691:
If we put a thin horizontal plate in the sound field, the thermal interaction between the oscillating gas and the plate leads to thermoacoustic effects. If the thermal conductivity of the plate material would be zero, the temperature in the plate would exactly match the temperature profiles as in
1629:
where a stack is located. In a thermoacoustic prime mover, a high temperature gradient along a tube where a gas media is contained induces density variations. Such variations in a constant volume of matter force changes in pressure. The cycle of thermoacoustic oscillation is a combination of heat
1825:
tube and a loop which contains a regenerator, three heat exchangers, and a bypass loop. A regenerator is a porous medium with a high heat capacity. As the gas flows back and forth through the regenerator, it periodically stores and takes up heat from the regenerator material. In contrast to the
1675:
of the wave. Thermal penetration depth is defined as the distance that heat can diffuse though the gas during a time 1/ω. In air oscillating at 1000 Hz, the thermal penetration depth is about 0.1 mm. Standing-wave TAE must be supplied with the necessary heat to maintain the temperature
95:
gave a qualitative explanation of the Sondhauss thermoacoustic oscillations phenomena, where he stated that producing any type of thermoacoustic oscillations needs to meet a criterion: "If heat be given to the air at the moment of greatest condensation or taken from it at the moment of greatest
1692:
Fig. 1b. Consider the blue line in Fig. 1b as the temperature profile of a plate at that position. The temperature gradient in the plate would be equal to the so-called critical temperature gradient. If we would fix the temperature at the left side of the plate at ambient temperature
1667:
temperature. Due to the introduction of solid walls into the oscillating gas, the plate modifies the original, unperturbed temperature oscillations in both magnitude and phase for the gas about a thermal penetration depth δ=√(2k/ω) away from the plate, where k is the
729: 1265:
is the thickness of the layer of the gas where heat can diffuse through during half a cycle of oscillations. Viscous penetration depth δv is the thickness of the layer where viscosity effect is effective near the boundaries. In case of sound, the
249: 131:
A full theory of thermoacoustics should account for the propagation of heat in the fluid as it makes compression cycles during the propagation of the sound wave. Good insights can however be gained by making the usual assumption of
1352: 42:. They can use heat available at low temperatures which makes it ideal for heat recovery and low power applications. The components included in thermoacoustic engines are usually very simple compared to conventional 1094: 451: 1449: 1253:
oscillations in temperature that result in no heat transfer to or from the walls, which is undesirable. Therefore, an important characteristic for any thermoacoustic element is the value of the thermal and
1596: 1240:
diagram as shown in Fig. 1c, which applies to a pure traveling wave to the right. The gas moves to the right with a high temperature and back with a low temperature, so there is a net transport of energy.
58:
and Swift and his co-workers. Technologically thermoacoustic devices have the advantage that they have no moving parts, which makes them attractive for applications where reliability is of key importance.
1780:
The frequency of the resultant pressure wave, since this frequency should match the resonance frequency required by the load device, either a thermoacoustic refrigerator/heat pump or a linear alternator.
76:
to diminish and acoustic wave to weaken and then to stop completely. Byron Higgins made the first scientific observation of heat energy conversion into acoustical oscillations. He investigated the "
1527: 2120: 886: 1249:
The thermoacoustic effect inside the stack takes place mainly in the region that is close to the solid walls of the stack. The layers of gas too far away from the stack walls experience
2154: 913:
Fig. 1. a: Plot of the amplitudes of the velocity and displacements, and the pressure and temperature variations in a half-wavelength tube of a pure standing wave. b: corresponding
611: 588: 150: 1155: 969: 1904:
K. W. Taconis, J. J. M. Beenakker, A. O. C. Nier, and L. T. Aldrich (1949) "Measurements concerning the vapour-liquid equilibrium of solutions of He in He below 2.19 K,"
1845:, so the regenerator acts as a volume-flow amplifier. Just like in the case of the standing-wave system, the machine "spontaneously" produces sound if the temperature 1230: 1194: 54:
are observed which are named "Taconis oscillations". The mathematical foundation of thermoacoustics is by Nikolaus Rott. Later, the field was inspired by the work of
1745:
The commercially available linear alternators used to convert acoustic energy into electricity currently have low efficiencies compared to rotary electric generators
1831:
loop is transported via a travelling wave as in Fig. 1c, hence the name travelling-wave systems. The ratio of the volume flows at the ends of the regenerator is
991:
plot is a vertical line here. In the middle of the tube the pressure and temperature variations are zero, so we have a horizontal line. It can be shown that the
1751:
TAE uses gases at high pressures to provide reasonable power densities which imposes sealing challenges particularly if the mixture has light gases like helium.
1723:
and heat up the left side so that the temperature gradient in the plate would be larger than the critical temperature gradient. In that case, we have made an
128:
normal in thermoacoustic systems, the pressure variations are 30 kPa, the displacements more than 10 cm, and the temperature variations 24 K.
1777:
The onset temperature difference, defined as the minimum temperature difference across the sides of the stack at which the dynamic pressure is generated.
1762:
which dissipates energy due to viscous effects, harmonic generation of different frequencies that carries acoustic power in frequencies other than the
2117: 2090:
K.W.Taconis and J.J.M. Beenakker, Measurements concerning the vapor-liquid equilibrium of solutions of 3He in 4He below 2.19 K, Physica 15:733 (1949).
1926:
N. Rott, Damped and thermally driven acoustic oscillations in wide and narrow tubes, Zeitschrift für Angewandte Mathematik und Physik. 20:230 (1969).
1635: 1282: 92: 1001: 347: 1399: 1852:
is high enough. The resulting pressure oscillations can be used in a variety of ways, such as in producing electricity, cooling, and
1953: 1538: 1755:
and the blockage it adds to the path of the wave. The heat exchange process in oscillating media is still under extensive research.
1758:
The acoustic waves inside thermoacoustic engines operated at large pressure ratios suffer many kinds of non-linearities, such as
1727:(prime mover) which can e.g. produce sound as in Fig. 2a. This is a so-called thermoacoustic prime mover. Stacks can be made of 2155:
M. Emam, Experimental Investigations on a Standing-Wave Thermoacoustic Engine, M.Sc. Thesis, Cairo University, Egypt (2013)
2118:
M. Emam, Experimental Investigations on a Standing-Wave Thermoacoustic Engine, M.Sc. Thesis, Cairo University, Egypt (2013)
1472: 124:). Thermoacoustic machines rely more on the temperature-position variations than the usual pressure-velocity variations. 2160:
M.E.H. Tijani, Loudspeaker-driven thermo-acoustic refrigeration, Ph.D. Thesis, Technische Universiteit Eindhoven, (2001)
2136:
G.W. Swift, A unifying perspective for some engines and refrigerators, Acoustical Society of America, Melville, (2002).
1806: 975:. Figure 1a gives the dependence of the velocity and position amplitudes (red curve) and the pressure and temperature 1687:
Fig. 2. a: schematic diagram of a thermoacoustic prime mover; b: schematic diagram of a thermoacoustic refrigerator.
2189: 1818: 1647: 751: 87:
introduced this phenomenon into a greater scale by using a heated wire screen to induce strong oscillations in his
27: 55: 140:
change and will tell the correct direction of heat flow. Under the adiabatic approximation, the one-dimensional
1683: 1612:
is of order 1, so the two penetration depths are about equal. For helium at normal temperature and pressure, P
724:{\displaystyle \delta x={\frac {v_{Ar}}{\omega }}\sin(\omega t-kx)+{\frac {v_{Al}}{\omega }}\sin(\omega t+kx)} 2184: 1875: 1770:
The performance of thermoacoustic engines usually is characterized through several indicators as follows:
462: 1795: 1763: 1655: 1267: 244:{\displaystyle c^{2}{\frac {\partial ^{2}v}{\partial x^{2}}}-{\frac {\partial ^{2}v}{\partial t^{2}}}=0} 2063: 2024: 1982: 1971:"Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines" 1870: 1362: 73: 39: 2099:
K.T. Feldman, Review of the literature on Rijke thermoacousticphenomena, J. Sound Vib. 7:83 (1968).
1668: 1114: 928: 2179: 1826:
stack, the pores in the regenerator are much smaller than the thermal penetration depth, so the
1949: 1672: 1250: 1199: 1163: 331: 133: 2071: 2032: 1990: 1941: 2124: 1827: 1728: 992: 136:. Even if no heat is exchanged during adiabatic compression, the temperature of the fluid 2067: 2028: 1986: 1662:. A thermoacoustic engine operates using the effects that arise from the resonance of a 1677: 1463: 271: 1945: 1387:
at constant pressure. Viscous effects are determined by the viscous penetration depth
2173: 2108:
Lord Rayleigh, The theory of sound, 2ndedition, Dover, New York (2), Sec.322, (1945).
1663: 1602: 1384: 1104: 972: 141: 77: 23: 909: 2164: 1742:
Very high densities of operating fluids are required to obtain high power densities
1373: 898:
The last two equations form a parametric representation of a tilted ellipse in the
84: 68: 31: 326:
are the average pressure, temperature, and density respectively. In monochromatic
2159: 1885: 1788: 1699:(e.g. using a heat exchanger), then the temperature at the right would be below 327: 109: 51: 2076: 2051: 1865: 1784: 1759: 1111:
is the area of the cross section of the sound duct. Since in a standing wave,
302: 88: 35: 1716:
It is also possible to fix the temperature of the right side of the plate at
1880: 1853: 1822: 1748:
Only expensive specially-made alternators can give satisfactory performance.
1631: 1626: 1347:{\displaystyle \delta _{\kappa }^{2}={\frac {2\kappa V_{m}}{\omega C_{p}}}.} 1255: 976: 286: 80:" phenomena in a portion of a hydrogen flame in a tube with both ends open. 1735:
Thermoacoustic engines still suffer from some limitations, including that:
22:
is the interaction between temperature, density and pressure variations of
983:
plane is reduced to a straight line as shown in Fig. 1b. At the tube ends
2149: 67:
Thermoacoustic-induced oscillations have been observed for centuries.
2165:
Design Environment for Low-amplitude ThermoAcoustic Energy Conversion
2036: 1724: 117: 43: 1994: 1970: 1810:
Fig. 3. Schematic drawing of a travelling-wave thermoacoustic engine
1638:, by the appropriate phasing of heat transfer and pressure changes. 1089:{\displaystyle P={\frac {\gamma p_{0}}{2c}}A(v_{Ar}^{2}-v_{Al}^{2})} 1659: 1270:
for thermal interaction is given by the thermal penetration depth
446:{\displaystyle v=v_{Ar}\cos(\omega t-kx)+v_{Al}\cos(\omega t+kx).} 121: 105: 1940:. Advances in Applied Mechanics. Vol. 20. pp. 135–175. 1444:{\displaystyle \delta _{\nu }^{2}={\frac {2\eta }{\omega \rho }}} 1815: 1651: 1233: 108:
is understood in terms of pressure variations accompanied by an
1591:{\displaystyle \delta _{\nu }^{2}=P_{r}\delta _{\kappa }^{2}.} 113: 2052:"Basic Operation of Cryocoolers and Related Thermal Machines" 1634:. Self-induced oscillations can be encouraged, according to 50:
with liquid helium at 4.2 K. In this case, spontaneous
1794:
The variation of the resultant wave frequency with the TAE
1107:
at fixed pressure to the specific heat at fixed volume and
2150:
Thermoacoustic research at Los Alamos National Laboratory
1236:. In this case, Eqs.(1) and (2) represent circles in the 46:. The device can easily be controlled and maintained. 1541: 1522:{\displaystyle P_{r}={\frac {\eta C_{p}}{M\kappa }}.} 1475: 1402: 1285: 1202: 1166: 1117: 1004: 931: 754: 614: 465: 350: 153: 1787:, indicating the ratio of higher harmonics to the 1590: 1532:The two penetration depths are related as follows 1521: 1443: 1346: 1258:penetration depths. The thermal penetration depth 1224: 1188: 1149: 1088: 963: 880: 723: 582: 445: 243: 1739:The device usually has low power-to-volume ratio. 2017:The Journal of the Acoustical Society of America 1814:Figure 3 is a schematic drawing of a travelling- 2015:Swift, G. W. (1988). "Thermoacoustic engines". 979:(blue curve) for this case. The ellipse of the 881:{\displaystyle \delta T={\frac {cM}{C_{p}}}.} 8: 597:of a gas-particle with equilibrium position 2010: 2008: 2006: 2004: 1676:gradient on the stack. This is done by two 1936:Rott, Nikolaus (1980). "Thermoacoustics". 1922: 1920: 1918: 2075: 1579: 1574: 1564: 1551: 1546: 1540: 1499: 1489: 1480: 1474: 1421: 1412: 1407: 1401: 1332: 1317: 1304: 1295: 1290: 1284: 1207: 1201: 1171: 1165: 1138: 1122: 1116: 1077: 1069: 1056: 1048: 1021: 1011: 1003: 952: 936: 930: 836: 793: 778: 764: 753: 680: 674: 630: 624: 613: 538: 495: 482: 464: 404: 361: 349: 226: 208: 201: 189: 171: 164: 158: 152: 1805: 1682: 1157:, the average energy transport is zero. 908: 1938:Advances in Applied Mechanics Volume 20 1897: 1791:in the resulting dynamic pressure wave. 72:lack of heat removal system causes the 1774:The first and second law efficiencies. 456:The pressure variations are given by 7: 995:, transported by sound, is given by 583:{\displaystyle \delta p=c\rho _{0}.} 63:Historical review of thermoacoustics 1630:transfer and pressure changes in a 741:and the temperature variations are 2056:Journal of Low Temperature Physics 219: 205: 182: 168: 14: 38:and they can be controlled using 1650:(TAE) is a device that converts 16:Study of heat-sound interactions 921:plots of a pure traveling wave. 1083: 1041: 872: 869: 851: 826: 808: 786: 745: 718: 700: 668: 650: 605: 574: 571: 553: 528: 510: 488: 437: 419: 394: 376: 1: 1946:10.1016/S0065-2156(08)70233-3 1150:{\displaystyle v_{Ar}=v_{Al}} 971:, we are dealing with a pure 964:{\displaystyle v_{Ar}=v_{Al}} 917:plots of a standing wave. c: 1680:on both sides of the stack. 1671:of the gas and ω=2πf is the 30:can readily be driven using 2050:Waele, A. T. A. M. (2011). 1975:American Journal of Physics 1232:, we have a pure traveling 28:Thermoacoustic heat engines 2206: 2077:10.1007/s10909-011-0373-x 1466:of the gas is defined as 1225:{\displaystyle v_{Al}=0} 1189:{\displaystyle v_{Ar}=0} 1103:is the ratio of the gas 305:. In these expressions, 1969:Wheatley, John (1985). 1802:Travelling-wave systems 1605:, like air and helium, 1876:Thermoelectric cooling 1811: 1688: 1620:Thermoacoustic systems 1592: 1523: 1458:the gas viscosity and 1445: 1348: 1226: 1190: 1151: 1090: 965: 922: 882: 725: 584: 447: 245: 1819:thermoacoustic engine 1809: 1796:operating temperature 1764:fundamental frequency 1686: 1648:thermoacoustic engine 1642:Standing-wave systems 1593: 1524: 1446: 1349: 1268:characteristic length 1227: 1191: 1152: 1091: 966: 912: 883: 726: 585: 448: 246: 134:adiabatic compression 1871:Photoacoustic effect 1539: 1473: 1400: 1363:thermal conductivity 1283: 1200: 1164: 1115: 1002: 929: 752: 612: 463: 348: 151: 112:motion of a medium ( 74:temperature gradient 40:proportional control 2068:2011JLTP..164..179D 2029:1988ASAJ...84.1145S 1987:1985AmJPh..53..147W 1821:. It consists of a 1785:harmonic distortion 1669:thermal diffusivity 1584: 1556: 1417: 1385:molar heat capacity 1300: 1082: 1061: 2123:2013-09-28 at the 1812: 1689: 1632:sinusoidal pattern 1588: 1570: 1542: 1519: 1441: 1403: 1344: 1286: 1245:Penetration depths 1222: 1186: 1147: 1086: 1065: 1044: 961: 923: 906:as the parameter. 878: 721: 580: 443: 341:, the solution is 266:the position, and 262:the gas velocity, 241: 2190:Energy conversion 1912: : 733-739. 1673:angular frequency 1514: 1462:its density. The 1439: 1339: 1036: 894: 893: 784: 737: 736: 692: 642: 332:angular frequency 233: 196: 2197: 2137: 2134: 2128: 2115: 2109: 2106: 2100: 2097: 2091: 2088: 2082: 2081: 2079: 2062:(5–6): 179–236. 2047: 2041: 2040: 2037:10.1121/1.396617 2023:(4): 1145–1180. 2012: 1999: 1998: 1966: 1960: 1959: 1933: 1927: 1924: 1913: 1902: 1789:fundamental mode 1597: 1595: 1594: 1589: 1583: 1578: 1569: 1568: 1555: 1550: 1528: 1526: 1525: 1520: 1515: 1513: 1505: 1504: 1503: 1490: 1485: 1484: 1450: 1448: 1447: 1442: 1440: 1438: 1430: 1422: 1416: 1411: 1353: 1351: 1350: 1345: 1340: 1338: 1337: 1336: 1323: 1322: 1321: 1305: 1299: 1294: 1231: 1229: 1228: 1223: 1215: 1214: 1195: 1193: 1192: 1187: 1179: 1178: 1156: 1154: 1153: 1148: 1146: 1145: 1130: 1129: 1095: 1093: 1092: 1087: 1081: 1076: 1060: 1055: 1037: 1035: 1027: 1026: 1025: 1012: 970: 968: 967: 962: 960: 959: 944: 943: 887: 885: 884: 879: 844: 843: 801: 800: 785: 783: 782: 773: 765: 746: 730: 728: 727: 722: 693: 688: 687: 675: 643: 638: 637: 625: 606: 589: 587: 586: 581: 546: 545: 503: 502: 487: 486: 452: 450: 449: 444: 412: 411: 369: 368: 250: 248: 247: 242: 234: 232: 231: 230: 217: 213: 212: 202: 197: 195: 194: 193: 180: 176: 175: 165: 163: 162: 144:for sound reads 2205: 2204: 2200: 2199: 2198: 2196: 2195: 2194: 2170: 2169: 2146: 2141: 2140: 2135: 2131: 2125:Wayback Machine 2116: 2112: 2107: 2103: 2098: 2094: 2089: 2085: 2049: 2048: 2044: 2014: 2013: 2002: 1995:10.1119/1.14100 1968: 1967: 1963: 1956: 1935: 1934: 1930: 1925: 1916: 1903: 1899: 1894: 1862: 1851: 1844: 1837: 1828:thermal contact 1804: 1729:stainless steel 1722: 1712: 1705: 1698: 1678:heat exchangers 1660:acoustic energy 1658:in the form of 1644: 1622: 1615: 1611: 1560: 1537: 1536: 1506: 1495: 1491: 1476: 1471: 1470: 1431: 1423: 1398: 1397: 1393: 1382: 1371: 1328: 1324: 1313: 1306: 1281: 1280: 1276: 1264: 1247: 1203: 1198: 1197: 1167: 1162: 1161: 1134: 1118: 1113: 1112: 1028: 1017: 1013: 1000: 999: 948: 932: 927: 926: 832: 789: 774: 766: 750: 749: 676: 626: 610: 609: 534: 491: 478: 461: 460: 400: 357: 346: 345: 324: 317: 310: 294: 283: 279: 222: 218: 204: 203: 185: 181: 167: 166: 154: 149: 148: 102: 65: 20:Thermoacoustics 17: 12: 11: 5: 2203: 2201: 2193: 2192: 2187: 2182: 2172: 2171: 2168: 2167: 2162: 2157: 2152: 2145: 2144:External links 2142: 2139: 2138: 2129: 2110: 2101: 2092: 2083: 2042: 2000: 1981:(2): 147–162. 1961: 1954: 1928: 1914: 1896: 1895: 1893: 1890: 1889: 1888: 1883: 1878: 1873: 1868: 1861: 1858: 1849: 1842: 1835: 1803: 1800: 1799: 1798: 1792: 1783:The degree of 1781: 1778: 1775: 1768: 1767: 1756: 1752: 1749: 1746: 1743: 1740: 1720: 1710: 1703: 1696: 1643: 1640: 1621: 1618: 1613: 1609: 1603:working fluids 1599: 1598: 1587: 1582: 1577: 1573: 1567: 1563: 1559: 1554: 1549: 1545: 1530: 1529: 1518: 1512: 1509: 1502: 1498: 1494: 1488: 1483: 1479: 1464:Prandtl number 1452: 1451: 1437: 1434: 1429: 1426: 1420: 1415: 1410: 1406: 1391: 1380: 1369: 1355: 1354: 1343: 1335: 1331: 1327: 1320: 1316: 1312: 1309: 1303: 1298: 1293: 1289: 1274: 1262: 1246: 1243: 1221: 1218: 1213: 1210: 1206: 1185: 1182: 1177: 1174: 1170: 1144: 1141: 1137: 1133: 1128: 1125: 1121: 1097: 1096: 1085: 1080: 1075: 1072: 1068: 1064: 1059: 1054: 1051: 1047: 1043: 1040: 1034: 1031: 1024: 1020: 1016: 1010: 1007: 958: 955: 951: 947: 942: 939: 935: 896: 895: 892: 891: 888: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 842: 839: 835: 831: 828: 825: 822: 819: 816: 813: 810: 807: 804: 799: 796: 792: 788: 781: 777: 772: 769: 763: 760: 757: 739: 738: 735: 734: 731: 720: 717: 714: 711: 708: 705: 702: 699: 696: 691: 686: 683: 679: 673: 670: 667: 664: 661: 658: 655: 652: 649: 646: 641: 636: 633: 629: 623: 620: 617: 593:The deviation 591: 590: 579: 576: 573: 570: 567: 564: 561: 558: 555: 552: 549: 544: 541: 537: 533: 530: 527: 524: 521: 518: 515: 512: 509: 506: 501: 498: 494: 490: 485: 481: 477: 474: 471: 468: 454: 453: 442: 439: 436: 433: 430: 427: 424: 421: 418: 415: 410: 407: 403: 399: 396: 393: 390: 387: 384: 381: 378: 375: 372: 367: 364: 360: 356: 353: 322: 315: 308: 292: 281: 277: 272:sound velocity 252: 251: 240: 237: 229: 225: 221: 216: 211: 207: 200: 192: 188: 184: 179: 174: 170: 161: 157: 101: 98: 64: 61: 24:acoustic waves 15: 13: 10: 9: 6: 4: 3: 2: 2202: 2191: 2188: 2186: 2185:Heat transfer 2183: 2181: 2178: 2177: 2175: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2147: 2143: 2133: 2130: 2126: 2122: 2119: 2114: 2111: 2105: 2102: 2096: 2093: 2087: 2084: 2078: 2073: 2069: 2065: 2061: 2057: 2053: 2046: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2011: 2009: 2007: 2005: 2001: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1965: 1962: 1957: 1955:9780120020201 1951: 1947: 1943: 1939: 1932: 1929: 1923: 1921: 1919: 1915: 1911: 1907: 1901: 1898: 1891: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1867: 1864: 1863: 1859: 1857: 1855: 1848: 1841: 1834: 1829: 1824: 1820: 1817: 1808: 1801: 1797: 1793: 1790: 1786: 1782: 1779: 1776: 1773: 1772: 1771: 1765: 1761: 1757: 1753: 1750: 1747: 1744: 1741: 1738: 1737: 1736: 1733: 1730: 1726: 1719: 1714: 1709: 1702: 1695: 1685: 1681: 1679: 1674: 1670: 1665: 1664:standing-wave 1661: 1657: 1653: 1649: 1641: 1639: 1637: 1636:Lord Rayleigh 1633: 1628: 1619: 1617: 1608: 1604: 1585: 1580: 1575: 1571: 1565: 1561: 1557: 1552: 1547: 1543: 1535: 1534: 1533: 1516: 1510: 1507: 1500: 1496: 1492: 1486: 1481: 1477: 1469: 1468: 1467: 1465: 1461: 1457: 1435: 1432: 1427: 1424: 1418: 1413: 1408: 1404: 1396: 1395: 1394: 1390: 1386: 1379: 1375: 1368: 1364: 1360: 1341: 1333: 1329: 1325: 1318: 1314: 1310: 1307: 1301: 1296: 1291: 1287: 1279: 1278: 1277: 1273: 1269: 1261: 1257: 1252: 1244: 1242: 1239: 1235: 1219: 1216: 1211: 1208: 1204: 1183: 1180: 1175: 1172: 1168: 1158: 1142: 1139: 1135: 1131: 1126: 1123: 1119: 1110: 1106: 1105:specific heat 1102: 1078: 1073: 1070: 1066: 1062: 1057: 1052: 1049: 1045: 1038: 1032: 1029: 1022: 1018: 1014: 1008: 1005: 998: 997: 996: 994: 990: 986: 982: 978: 974: 973:standing wave 956: 953: 949: 945: 940: 937: 933: 920: 916: 911: 907: 905: 901: 889: 875: 866: 863: 860: 857: 854: 848: 845: 840: 837: 833: 829: 823: 820: 817: 814: 811: 805: 802: 797: 794: 790: 779: 775: 770: 767: 761: 758: 755: 748: 747: 744: 743: 742: 732: 715: 712: 709: 706: 703: 697: 694: 689: 684: 681: 677: 671: 665: 662: 659: 656: 653: 647: 644: 639: 634: 631: 627: 621: 618: 615: 608: 607: 604: 603: 602: 600: 596: 577: 568: 565: 562: 559: 556: 550: 547: 542: 539: 535: 531: 525: 522: 519: 516: 513: 507: 504: 499: 496: 492: 483: 479: 475: 472: 469: 466: 459: 458: 457: 440: 434: 431: 428: 425: 422: 416: 413: 408: 405: 401: 397: 391: 388: 385: 382: 379: 373: 370: 365: 362: 358: 354: 351: 344: 343: 342: 340: 336: 333: 329: 325: 318: 311: 304: 300: 296: 288: 284: 273: 269: 265: 261: 257: 238: 235: 227: 223: 214: 209: 198: 190: 186: 177: 172: 159: 155: 147: 146: 145: 143: 142:wave equation 139: 135: 129: 125: 123: 119: 115: 111: 107: 99: 97: 94: 93:Lord Rayleigh 90: 86: 81: 79: 78:singing flame 75: 70: 69:Glass blowers 62: 60: 57: 56:John Wheatley 53: 47: 45: 41: 37: 33: 29: 25: 21: 2132: 2113: 2104: 2095: 2086: 2059: 2055: 2045: 2020: 2016: 1978: 1974: 1964: 1937: 1931: 1909: 1905: 1900: 1854:heat pumping 1846: 1839: 1832: 1813: 1769: 1734: 1717: 1715: 1707: 1700: 1693: 1690: 1645: 1623: 1606: 1600: 1531: 1459: 1455: 1453: 1388: 1377: 1374:molar volume 1366: 1358: 1356: 1271: 1259: 1248: 1237: 1159: 1108: 1100: 1098: 988: 984: 980: 924: 918: 914: 903: 899: 897: 740: 601:is given by 598: 594: 592: 455: 338: 334: 320: 313: 306: 298: 290: 275: 267: 263: 259: 255: 253: 137: 130: 126: 103: 85:Pieter Rijke 82: 66: 52:oscillations 48: 32:solar energy 19: 18: 1886:Thermophone 1652:heat energy 987:=0, so the 902:plane with 328:plane waves 110:oscillating 2174:Categories 1892:References 1866:Cryocooler 1760:turbulence 977:amplitudes 303:molar mass 89:Rijke tube 83:Physicist 36:waste heat 2180:Acoustics 1881:Pyrophone 1823:resonator 1627:resonator 1601:For many 1576:κ 1572:δ 1548:ν 1544:δ 1511:κ 1493:η 1436:ρ 1433:ω 1428:η 1409:ν 1405:δ 1326:ω 1311:κ 1292:κ 1288:δ 1251:adiabatic 1063:− 1015:γ 855:ω 849:⁡ 830:− 818:− 812:ω 806:⁡ 756:δ 704:ω 698:⁡ 690:ω 660:− 654:ω 648:⁡ 640:ω 616:δ 557:ω 551:⁡ 532:− 520:− 514:ω 508:⁡ 480:ρ 467:δ 423:ω 417:⁡ 386:− 380:ω 374:⁡ 337:and with 287:ideal gas 285:. For an 274:given by 220:∂ 206:∂ 199:− 183:∂ 169:∂ 2121:Archived 1860:See also 104:Usually 2064:Bibcode 2025:Bibcode 1983:Bibcode 1906:Physica 1732:sound. 1361:is the 1256:viscous 1238:δT – δx 989:δT – δx 981:δT – δx 919:δT – δx 915:δT – δx 900:δT – δx 330:, with 44:engines 1952:  1725:engine 1376:, and 1099:where 319:, and 258:time, 118:liquid 1654:into 1454:with 1357:Here 993:power 297:with 291:c=γRT 254:with 122:solid 106:sound 100:Sound 1950:ISBN 1816:wave 1656:work 1646:The 1383:the 1372:the 1234:wave 890:(2) 733:(1) 339:ω=kc 301:the 276:c=γp 270:the 138:does 2072:doi 2060:164 2033:doi 1991:doi 1942:doi 1196:or 1160:If 925:If 846:cos 803:cos 695:sin 645:sin 548:cos 505:cos 414:cos 371:cos 120:or 114:gas 34:or 2176:: 2070:. 2058:. 2054:. 2031:. 2021:84 2019:. 2003:^ 1989:. 1979:53 1977:. 1973:. 1948:. 1917:^ 1910:15 1908:, 1856:. 1713:. 1365:, 985:δx 595:δx 312:, 295:/M 289:, 280:/ρ 116:, 26:. 2127:. 2080:. 2074:: 2066:: 2039:. 2035:: 2027:: 1997:. 1993:: 1985:: 1958:. 1944:: 1850:H 1847:T 1843:a 1840:T 1838:/ 1836:H 1833:T 1766:. 1721:a 1718:T 1711:L 1708:T 1704:a 1701:T 1697:a 1694:T 1614:r 1610:r 1607:P 1586:. 1581:2 1566:r 1562:P 1558:= 1553:2 1517:. 1508:M 1501:p 1497:C 1487:= 1482:r 1478:P 1460:ρ 1456:η 1425:2 1419:= 1414:2 1392:ν 1389:δ 1381:p 1378:C 1370:m 1367:V 1359:κ 1342:. 1334:p 1330:C 1319:m 1315:V 1308:2 1302:= 1297:2 1275:κ 1272:δ 1263:κ 1260:δ 1220:0 1217:= 1212:l 1209:A 1205:v 1184:0 1181:= 1176:r 1173:A 1169:v 1143:l 1140:A 1136:v 1132:= 1127:r 1124:A 1120:v 1109:A 1101:γ 1084:) 1079:2 1074:l 1071:A 1067:v 1058:2 1053:r 1050:A 1046:v 1042:( 1039:A 1033:c 1030:2 1023:0 1019:p 1009:= 1006:P 957:l 954:A 950:v 946:= 941:r 938:A 934:v 904:t 876:. 873:] 870:) 867:x 864:k 861:+ 858:t 852:( 841:l 838:A 834:v 827:) 824:x 821:k 815:t 809:( 798:r 795:A 791:v 787:[ 780:p 776:C 771:M 768:c 762:= 759:T 719:) 716:x 713:k 710:+ 707:t 701:( 685:l 682:A 678:v 672:+ 669:) 666:x 663:k 657:t 651:( 635:r 632:A 628:v 622:= 619:x 599:x 578:. 575:] 572:) 569:x 566:k 563:+ 560:t 554:( 543:l 540:A 536:v 529:) 526:x 523:k 517:t 511:( 500:r 497:A 493:v 489:[ 484:0 476:c 473:= 470:p 441:. 438:) 435:x 432:k 429:+ 426:t 420:( 409:l 406:A 402:v 398:+ 395:) 392:x 389:k 383:t 377:( 366:r 363:A 359:v 355:= 352:v 335:ω 323:0 321:ρ 316:0 314:T 309:0 307:p 299:M 293:0 282:0 278:0 268:c 264:x 260:v 256:t 239:0 236:= 228:2 224:t 215:v 210:2 191:2 187:x 178:v 173:2 160:2 156:c

Index

acoustic waves
Thermoacoustic heat engines
solar energy
waste heat
proportional control
engines
oscillations
John Wheatley
Glass blowers
temperature gradient
singing flame
Pieter Rijke
Rijke tube
Lord Rayleigh
sound
oscillating
gas
liquid
solid
adiabatic compression
wave equation
sound velocity
ideal gas
molar mass
plane waves
angular frequency

standing wave
amplitudes
power

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.