Knowledge

Thermochemical nanolithography

Source 📝

22: 658:
Wang, Debin; Kodali, Vamsi K.; Underwood Ii, William D.; Jarvholm, Jonas E.; Okada, Takashi; Jones, Simon C.; Rumi, Mariacristina; Dai, Zhenting; King, William P.; Marder, Seth R.; Curtis, Jennifer E.; Riedo, Elisa (2009). "Thermochemical Nanolithography of Multifunctional Nanotemplates for
157:. Chemical changes can be written very quickly through rapid probe scanning, since no mass is transferred from the tip to the surface, and writing speed is limited only by the heat transfer rate. TCNL was invented in 2007 by a group at the Georgia Institute of Technology. 846:
Wang, Debin; Kim, Suenne; Ii, William D. Underwood; Giordano, Anthony J.; Henderson, Clifford L.; Dai, Zhenting; King, William P.; Marder, Seth R.; Riedo, Elisa (2009-12-07). "Direct writing and characterization of poly(p-phenylene vinylene) nanostructures".
686:
Carroll, Keith M.; Giordano, Anthony J.; Wang, Debin; Kodali, Vamsi K.; Scrimgeour, Jan; King, William P.; Marder, Seth R.; Riedo, Elisa; Curtis, Jennifer E. (July 9, 2013). "Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography".
510:
Martínez, Ramsés V.; Martínez, Javier; Chiesa, Marco; Garcia, Ricardo; Coronado, Eugenio; Pinilla-Cienfuegos, Elena; Tatay, Sergio (2010). "Large-scale Nanopatterning of Single Proteins used as Carriers of Magnetic Nanoparticles".
214:
has a time constant of 0.35 ms. The tips can be cycled between ambient temperature and 1100 °C at up to 10 MHz while the distance of the tip from the surface and the tip temperature can be controlled independently.
730:
Wei, Zhongqing; Wang, Debin; Kim, Suenne; Kim, Soo-Young; Hu, Yike; Yakes, Michael K.; Laracuente, Arnaldo R.; Dai, Zhenting; Marder, Seth R. (2010). "Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics".
209:
occurs at the light doping zone around the probe tip, where the largest fraction of the heat is dissipated. The tip is able to change its temperature very quickly due to its small volume; an average tip in contact with
800:
D. Wang; T. Okada; R. Szoszkiewicz; S. C. Jones; M. Lucas; J. Lee; W. P. King; S. R. Marder; E. Riedo (2007). "Local wettability modification by thermochemical nanolithography with write-read-overwrite capability".
556:
Fenwick, Oliver; Bozec, Laurent; Credgington, Dan; Hammiche, Azzedine; Lazzerini, Giovanni Mattia; Silberberg, Yaron R.; Cacialli, Franco (October 2009). "Thermochemical nanopatterning of organic semiconductors".
475:
Carroll, A.K. G.; Wang, D.; Kodali, V.; Scrimgeour, J.; King, W.; Marder, S.; Riedo, E.; Curtis, J. (2013). "Fabricating Nanoscale Chemical Gradients with ThermoChemicalNanoLithography".
931:; Gruverman, Alexei; Riedo, Elisa; Bassiri-Gharb, Nazanin (2011). "Direct Fabrication of Arbitrary-Shaped Ferroelectric Nanostructures on Plastic, Glass, and Silicon Substrates". 406:
R. Szoszkiewicz; T. Okada; S. C. Jones; T.-D. Li; W. P. King; S. R. Marder & E. Riedo (2007). "High-Speed, Sub-15nm Feature Size Thermochemical Nanolithography".
39: 450: 161:
and collaborators demonstrated that TCNL can produce local chemical changes with feature sizes down to 12 nm at scan speeds up to 1 mm/s.
86: 58: 321:
scanning probe lithography relies on the application of heat and force order to create indentations for patterning purposes (see also:
65: 105: 72: 362: 332: 43: 900:
D. Wang; et al. (2009). "Thermochemical Nanolithography of Multifunctional Nanotemplates for Assembling Nano-Objects".
609: 331:(t-SPL) specializes on removing material from a substrate without the intent of chemically altering the created topography. 302:
The use of a material that can undergo multiple chemical reactions at significantly different temperatures could lead to a
54: 377: 268: 382: 326: 134: 1053: 357: 352: 306:, wherein different functionalities can be addressed at different temperatures. Synthetic polymers, such as 183: 79: 32: 748: 296: 276: 199: 191: 303: 252: 228: 154: 979: 856: 810: 740: 566: 415: 248: 753: 174:, the portrait measured 30 micrometres (0.0012 in), about 1/25,000th the size of the original. 272: 232: 187: 1038: 782: 310:, have been used as functional layers on substrate, which allow for high-resolution patterning. 1013: 1005: 966:
Albisetti, E; Carroll, K M; Lu, X; Curtis, J E; Petti, D; Bertacco, R; Riedo, E (2016-06-27).
948: 882: 774: 766: 712: 704: 640: 610:"On-Demand Patterning of Nanostructured Pentacene Transistors by Scanning Thermal Lithography" 590: 582: 538: 492: 431: 340: 142: 995: 987: 940: 928: 909: 872: 864: 826: 818: 758: 696: 668: 632: 624: 574: 528: 520: 484: 423: 322: 244: 240: 195: 146: 367: 288: 138: 991: 983: 860: 814: 744: 570: 419: 372: 256: 150: 1047: 211: 206: 967: 451:"'Mini Lisa': Georgia Tech researchers create world's tiniest da Vinci reproduction" 786: 307: 968:"Thermochemical scanning probe lithography of protein gradients at the nanoscale" 158: 21: 186:
thermal cantilevers are generally made from a silicon wafers using traditional
236: 1009: 886: 770: 708: 586: 762: 170: 165: 1017: 952: 944: 913: 778: 716: 672: 644: 636: 628: 594: 578: 542: 524: 496: 435: 927:
Kim, Suenne; Bastani, Yaser; Lu, Haidong; King, William P.; Marder, Seth;
1000: 292: 533: 280: 264: 260: 224: 202: 877: 868: 831: 822: 700: 488: 427: 608:
Shaw, Joseph E.; Stavrinou, Paul N.; Anthopoulos, Thomas D. (2013).
336: 267:
surface at the nanoscale has been modified, and nanostructures of
194:
micro-machining processes. Through the application of an electric
1039:
http://www.picoforcelab.org/thermochemical-nanolithography-tcnl
284: 275:
conjugated polymer) have been created. Nanoscale templates on
15: 168:"painted" with different probe tip temperatures. Called the 164:
TCNL was used in 2013 to create a nano-scale replica of the
1034:
picoForce Laboratory at the Georgia Institute of Technology
1033: 223:
Thermally activated reactions have been triggered in
46:. Unsourced material may be challenged and removed. 314:Comparison with other lithographic techniques 141:technique which triggers thermally activated 8: 401: 399: 397: 999: 876: 830: 752: 532: 279:for the assembly of nano-objects such as 127:thermochemical scanning probe lithography 106:Learn how and when to remove this message 659:Assembling Nano-Objects - Wang - 2009". 393: 7: 299:up to 213 Gb/in have been produced. 44:adding citations to reliable sources 328:Thermal scanning probe lithography 14: 449:Eoin O'Carroll (August 7, 2013). 55:"Thermochemical nanolithography" 20: 363:Local oxidation nanolithography 333:Local oxidation nanolithography 31:needs additional citations for 992:10.1088/0957-4484/27/31/315302 119:Thermochemical nanolithography 1: 661:Advanced Functional Materials 287:have also been created and 259:has been demonstrated. The 1070: 378:Scanning probe lithography 269:poly(p-phenylene vinylene) 455:Christian Science Monitor 383:Scanning probe microscopy 235:conjugated polymers, and 135:scanning probe microscopy 849:Applied Physics Letters 763:10.1126/science.1188119 358:Dip-pen nanolithography 353:Atomic force microscopy 247:(sometimes involving a 145:to change the chemical 945:10.1002/adma.201101991 914:10.1002/adfm.200901057 673:10.1002/adfm.200901057 629:10.1002/adma.201202877 579:10.1038/nnano.2009.254 525:10.1002/adma.200902568 343:around the probe tip. 229:organic semiconductors 559:Nature Nanotechnology 249:temperature gradients 929:Sandhage, Kenneth H. 40:improve this article 984:2016Nanot..27E5302A 861:2009ApPhL..95w3108W 815:2007ApPhL..91x3104W 745:2010Sci...328.1373W 739:(5984): 1373–1376. 571:2009NatNa...4..664F 420:2007NanoL...7.1064S 337:oxidation reactions 273:electroluminescence 198:through its highly 933:Advanced Materials 617:Advanced Materials 513:Advanced Materials 304:multi-state system 233:electroluminescent 143:chemical reactions 908:(23): 3696–3702. 902:Adv. Funct. Mater 869:10.1063/1.3271178 823:10.1063/1.2816401 701:10.1021/la400996w 695:(27): 8675–8682. 667:(23): 3696–3702. 489:10.1021/la400996w 483:(27): 8675–8682. 428:10.1021/nl070300f 319:Thermo-mechanical 297:storage densities 291:of ferroelectric 245:functional groups 207:resistive heating 116: 115: 108: 90: 1061: 1022: 1021: 1003: 963: 957: 956: 924: 918: 917: 897: 891: 890: 880: 843: 837: 836: 834: 803:Appl. Phys. Lett 797: 791: 790: 756: 727: 721: 720: 683: 677: 676: 655: 649: 648: 614: 605: 599: 598: 553: 547: 546: 536: 507: 501: 500: 472: 466: 465: 463: 461: 446: 440: 439: 414:(4): 1064–1069. 403: 323:Millipede memory 111: 104: 100: 97: 91: 89: 48: 24: 16: 1069: 1068: 1064: 1063: 1062: 1060: 1059: 1058: 1044: 1043: 1030: 1025: 965: 964: 960: 939:(33): 3786–90. 926: 925: 921: 899: 898: 894: 845: 844: 840: 799: 798: 794: 754:10.1.1.635.6671 729: 728: 724: 685: 684: 680: 657: 656: 652: 612: 607: 606: 602: 565:(10): 664–668. 555: 554: 550: 509: 508: 504: 474: 473: 469: 459: 457: 448: 447: 443: 405: 404: 395: 391: 368:Nanolithography 349: 316: 289:crystallization 221: 180: 139:nanolithography 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 1067: 1065: 1057: 1056: 1054:Nanotechnology 1046: 1045: 1042: 1041: 1036: 1029: 1028:External links 1026: 1024: 1023: 978:(31): 315302. 972:Nanotechnology 958: 919: 892: 855:(23): 233108. 838: 809:(24): 243104. 792: 722: 678: 650: 623:(4): 552–558. 600: 548: 519:(5): 588–591. 502: 467: 441: 392: 390: 387: 386: 385: 380: 375: 373:Nanotechnology 370: 365: 360: 355: 348: 345: 315: 312: 257:graphene oxide 220: 217: 179: 176: 114: 113: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1066: 1055: 1052: 1051: 1049: 1040: 1037: 1035: 1032: 1031: 1027: 1019: 1015: 1011: 1007: 1002: 1001:11311/1004178 997: 993: 989: 985: 981: 977: 973: 969: 962: 959: 954: 950: 946: 942: 938: 934: 930: 923: 920: 915: 911: 907: 903: 896: 893: 888: 884: 879: 874: 870: 866: 862: 858: 854: 850: 842: 839: 833: 828: 824: 820: 816: 812: 808: 804: 796: 793: 788: 784: 780: 776: 772: 768: 764: 760: 755: 750: 746: 742: 738: 734: 726: 723: 718: 714: 710: 706: 702: 698: 694: 690: 682: 679: 674: 670: 666: 662: 654: 651: 646: 642: 638: 637:10044/1/19476 634: 630: 626: 622: 618: 611: 604: 601: 596: 592: 588: 584: 580: 576: 572: 568: 564: 560: 552: 549: 544: 540: 535: 530: 526: 522: 518: 514: 506: 503: 498: 494: 490: 486: 482: 478: 471: 468: 456: 452: 445: 442: 437: 433: 429: 425: 421: 417: 413: 409: 402: 400: 398: 394: 388: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 350: 346: 344: 342: 338: 334: 330: 329: 324: 320: 313: 311: 309: 305: 300: 298: 294: 290: 286: 282: 278: 277:polymer films 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 218: 216: 213: 212:polycarbonate 208: 204: 201: 197: 193: 189: 185: 177: 175: 173: 172: 167: 162: 160: 156: 152: 148: 147:functionality 144: 140: 136: 132: 128: 124: 120: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: –  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 975: 971: 961: 936: 932: 922: 905: 901: 895: 852: 848: 841: 806: 802: 795: 736: 732: 725: 692: 688: 681: 664: 660: 653: 620: 616: 603: 562: 558: 551: 516: 512: 505: 480: 476: 470: 458:. Retrieved 454: 444: 411: 407: 327: 318: 317: 301: 241:Deprotection 222: 219:Applications 181: 169: 163: 130: 126: 122: 118: 117: 102: 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 534:10261/45215 339:in a water 261:wettability 251:), and the 239:resistors. 878:1853/46878 832:1853/46618 389:References 335:relies on 237:nanoribbon 66:newspapers 1010:0957-4484 887:0003-6951 771:0036-8075 749:CiteSeerX 709:0743-7463 587:1748-3387 460:August 8, 408:Nano Lett 253:reduction 178:Technique 171:Mini Lisa 166:Mona Lisa 1048:Category 1018:27344982 953:21766356 779:20538944 717:23751047 689:Langmuir 645:23138983 595:19809458 543:20217754 497:23751047 477:Langmuir 436:17385937 347:See also 341:meniscus 293:ceramics 281:proteins 225:proteins 155:surfaces 96:May 2015 980:Bibcode 857:Bibcode 811:Bibcode 787:9672782 741:Bibcode 733:Science 567:Bibcode 416:Bibcode 265:polymer 205:wings, 203:silicon 196:current 192:surface 149:or the 137:-based 133:) is a 80:scholar 1016:  1008:  951:  885:  785:  777:  769:  751:  715:  707:  643:  593:  585:  541:  495:  434:  131:tc-SPL 82:  75:  68:  61:  53:  783:S2CID 613:(PDF) 295:with 263:of a 200:doped 159:Riedo 151:phase 125:) or 87:JSTOR 73:books 1014:PMID 1006:ISSN 949:PMID 883:ISSN 775:PMID 767:ISSN 713:PMID 705:ISSN 641:PMID 591:PMID 583:ISSN 539:PMID 493:PMID 462:2013 432:PMID 308:PMCC 283:and 271:(an 190:and 188:bulk 182:The 123:TCNL 59:news 996:hdl 988:doi 941:doi 910:doi 873:hdl 865:doi 827:hdl 819:doi 759:doi 737:328 697:doi 669:doi 633:hdl 625:doi 575:doi 529:hdl 521:doi 485:doi 424:doi 325:). 285:DNA 255:of 243:of 184:AFM 153:of 42:by 1050:: 1012:. 1004:. 994:. 986:. 976:27 974:. 970:. 947:. 937:23 935:. 906:19 904:. 881:. 871:. 863:. 853:95 851:. 825:. 817:. 807:91 805:. 781:. 773:. 765:. 757:. 747:. 735:. 711:. 703:. 693:29 691:. 665:19 663:. 639:. 631:. 621:25 619:. 615:. 589:. 581:. 573:. 561:. 537:. 527:. 517:22 515:. 491:. 481:29 479:. 453:. 430:. 422:. 410:. 396:^ 231:, 227:, 1020:. 998:: 990:: 982:: 955:. 943:: 916:. 912:: 889:. 875:: 867:: 859:: 835:. 829:: 821:: 813:: 789:. 761:: 743:: 719:. 699:: 675:. 671:: 647:. 635:: 627:: 597:. 577:: 569:: 563:4 545:. 531:: 523:: 499:. 487:: 464:. 438:. 426:: 418:: 412:7 129:( 121:( 109:) 103:( 98:) 94:( 84:· 77:· 70:· 63:· 36:.

Index


verification
improve this article
adding citations to reliable sources
"Thermochemical nanolithography"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
scanning probe microscopy
nanolithography
chemical reactions
functionality
phase
surfaces
Riedo
Mona Lisa
Mini Lisa
AFM
bulk
surface
current
doped
silicon
resistive heating
polycarbonate
proteins
organic semiconductors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.