Knowledge (XXG)

Thermopile

Source 📝

190: 31: 79: 123:
Thermocouples operate by measuring the temperature differential from their junction point to the point in which the thermocouple output voltage is measured. Once a closed circuit is made up of more than one metal and there is a difference in temperature between junctions and points of transition from
82:
Picture of a heat flux sensor that utilizes a thermopile construction to directly measure heat flux. Model shown is the FluxTeq PHFS-01 heat flux sensor. Voltage output is passively induced from the thermopile proportional to the heat flux through the sensor or similarly the temperature difference
127:
Thermocouples can be connected in series as thermocouple pairs with a junction located on either side of a thermal resistance layer. The output from the thermocouple pair will be a voltage directly proportional to the temperature difference across the thermal resistance layer and also to the heat
175:
Thermopile, composed of multiple thermocouples in series. If both the right and left junctions are the same temperature, voltages cancel out to zero. However, if there is a temperature difference between sides the resulting total output voltage is equal to the sum of junction voltage
142:
proportional to a local temperature difference or temperature gradient. The amount of voltage and power are very small and they are measured in milli-watts and milli-volts using controlled devices that are specifically designed for such purpose.
172: 338:
There are also the so-called thermopile sensors, which are power meters based on the principle that the optical or laser power is converted to heat and the resulting increase in temperature is measured by a thermopile.
167:
and gas burner safety controls. The output of a thermopile is usually in the range of tens or hundreds of millivolts. As well as increasing the signal level, the device may be used to provide spatial temperature
83:
across the thin-film substrate and number of thermocouple junction pairs. This voltage output from the sensor's thermopile is initially calibrated in order to relate it to heat flux.
314: 34:
Diagram of a differential temperature thermopile with two sets of thermocouple pairs connected in series. The two top thermocouple junctions are at temperature
70:, across the thermal resistance layer and number of thermocouple junction pairs. The thermopile voltage output is also directly proportional to the heat flux, 327:
Thermopiles are also used to generate electrical energy from, for instance, heat from electrical components, solar wind, radioactive materials,
281: 307: 286: 131:
Thermopiles can be constructed with a single thermocouple pair, composed of two thermocouple junctions, or multiple thermocouple pairs.
605: 436: 395: 128:
flux through the thermal resistance layer. Adding more thermocouple pairs in series increases the magnitude of the voltage output.
452:
Mukherjee, Rahul; Basu, Joydeep; Mandal, Pradip; Guha, Prasanta Kumar (2017). "A review of micromachined thermal accelerometers".
547: 595: 411: 639: 300: 151:
Thermopiles are used to provide an output in response to temperature as part of a temperature measuring device, such as the
124:
one metal to another, a current is produced as if generated by a difference of potential between the hot and cold junction.
24: 644: 115:, i.e., generating a voltage when its dissimilar metals (thermocouples) are exposed to a temperature difference. 354: 328: 276: 256: 335:(electric current transferring heat energy) as the process transfers heat from the hot to the cold junctions. 271: 357:, high-performance materials that can be used to construct a compact thermopile that delivers high power 204: 189: 159:
to measure the temperature profile inside the sealed cavity of the sensor. They are also used widely in
112: 30: 526: 471: 233: 152: 225: 108: 78: 487: 461: 601: 432: 391: 104: 96: 573: 479: 383: 160: 475: 624: 387: 348: 332: 92: 633: 551: 491: 238: 164: 156: 261: 100: 135: 20: 483: 351:, the physical effect responsible for the generation of voltage in a thermopile 505: 597:
Thermoelectric Energy Conversion: Basic Concepts and Device Applications
171: 155:
widely used by medical professionals to measure body temperature, or in
139: 466: 170: 41:
while the two bottom thermocouple junctions are at temperature
506:"Glossary of Meteorological Terms (T) - NovaLynx Corporation" 52:, is directly proportional to the temperature differential, 594:
Pineda, Diana Davila; Rezaniakolaei, Alireza (2017-08-22).
16:
Device that converts thermal energy into electrical energy
625:
TPA81 Thermopile detector Array Technical Specification
331:
or combustion. The process is also an example of the
454:Journal of Micromechanics and Microengineering 111:. Such a device works on the principle of the 413:Johnson's Universal Cyclopedia: A New Edition 308: 8: 427:Montgomery, Ross; McDowall, Robert (2008). 416:. D. Appleton, A. J. Johnson. p. 116. 315: 301: 188: 179: 48:. The output voltage from the thermopile, 465: 378:"Woodhead Publishing Series in Energy", 77: 29: 382:, Elsevier, 2016, pp. xiii–xviii, 367: 182: 134:Thermopiles do not respond to absolute 74:, through the thermal resistance layer. 600:. Hoboken, NJ: John Wiley & Sons. 91:is an electronic device that converts 380:Advances in Solar Heating and Cooling 282:Radioisotope thermoelectric generator 7: 429:Fundamentals of HVAC Control Systems 373: 371: 287:Automotive thermoelectric generator 431:. Atlanta: Elsevier. p. 161. 388:10.1016/b978-0-08-100301-5.09002-0 14: 410:Adams, Charles Kendall (1895). 1: 99:. It is composed of several 661: 18: 574:"Capgo - Sensor Glossary" 138:, but generate an output 484:10.1088/1361-6439/aa964d 355:Thermoelectric materials 277:Thermoelectric generator 257:Thermoelectric materials 19:Not to be confused with 272:Thermoelectric cooling 177: 157:thermal accelerometers 107:or, less commonly, in 84: 75: 640:Electrical components 205:Thermoelectric effect 183:Thermoelectric effect 174: 153:infrared thermometers 113:thermoelectric effect 103:connected usually in 81: 33: 234:Ettingshausen effect 476:2017JMiMi..27l3002M 226:Seebeck coefficient 178: 85: 76: 645:Thermoelectricity 325: 324: 161:heat flux sensors 97:electrical energy 652: 612: 611: 591: 585: 584: 582: 580: 570: 564: 563: 561: 559: 550:. Archived from 544: 538: 537: 535: 533: 523: 517: 516: 514: 512: 502: 496: 495: 469: 449: 443: 442: 424: 418: 417: 407: 401: 400: 375: 317: 310: 303: 228: 221: 216: 211: 192: 180: 660: 659: 655: 654: 653: 651: 650: 649: 630: 629: 621: 616: 615: 608: 593: 592: 588: 578: 576: 572: 571: 567: 557: 555: 554:on 3 March 2016 546: 545: 541: 531: 529: 525: 524: 520: 510: 508: 504: 503: 499: 451: 450: 446: 439: 426: 425: 421: 409: 408: 404: 398: 377: 376: 369: 364: 345: 329:laser radiation 321: 292: 291: 252: 244: 243: 224: 219: 214: 209: 200: 149: 121: 68: 61: 46: 39: 28: 17: 12: 11: 5: 658: 656: 648: 647: 642: 632: 631: 628: 627: 620: 619:External links 617: 614: 613: 606: 586: 565: 539: 518: 497: 460:(12): 123002. 444: 437: 419: 402: 396: 366: 365: 363: 360: 359: 358: 352: 349:Seebeck effect 344: 341: 333:Peltier effect 323: 322: 320: 319: 312: 305: 297: 294: 293: 290: 289: 284: 279: 274: 269: 264: 259: 253: 250: 249: 246: 245: 242: 241: 236: 231: 230: 229: 222: 220:Thomson effect 217: 215:Peltier effect 212: 210:Seebeck effect 201: 198: 197: 194: 193: 185: 184: 176:differentials. 165:pyrheliometers 148: 145: 120: 117: 93:thermal energy 66: 59: 44: 37: 15: 13: 10: 9: 6: 4: 3: 2: 657: 646: 643: 641: 638: 637: 635: 626: 623: 622: 618: 609: 607:9783527698134 603: 599: 598: 590: 587: 575: 569: 566: 553: 549: 543: 540: 528: 522: 519: 507: 501: 498: 493: 489: 485: 481: 477: 473: 468: 463: 459: 455: 448: 445: 440: 438:9780080552330 434: 430: 423: 420: 415: 414: 406: 403: 399: 397:9780081003015 393: 389: 385: 381: 374: 372: 368: 361: 356: 353: 350: 347: 346: 342: 340: 336: 334: 330: 318: 313: 311: 306: 304: 299: 298: 296: 295: 288: 285: 283: 280: 278: 275: 273: 270: 268: 265: 263: 260: 258: 255: 254: 248: 247: 240: 239:Nernst effect 237: 235: 232: 227: 223: 218: 213: 208: 207: 206: 203: 202: 196: 195: 191: 187: 186: 181: 173: 169: 166: 162: 158: 154: 146: 144: 141: 137: 132: 129: 125: 118: 116: 114: 110: 106: 102: 101:thermocouples 98: 94: 90: 80: 73: 69: 62: 55: 51: 47: 40: 32: 26: 22: 596: 589: 577:. Retrieved 568: 556:. Retrieved 552:the original 542: 530:. Retrieved 521: 509:. Retrieved 500: 457: 453: 447: 428: 422: 412: 405: 379: 337: 326: 266: 262:Thermocouple 251:Applications 150: 147:Applications 133: 130: 126: 122: 88: 86: 71: 64: 57: 53: 49: 42: 35: 579:17 November 558:17 November 532:17 November 511:17 November 136:temperature 25:Thermopylae 21:Thermophile 634:Categories 548:"Glossary" 527:"Glossary" 467:1801.07297 362:References 267:Thermopile 199:Principles 168:averaging. 89:thermopile 492:116232359 119:Operation 343:See also 109:parallel 472:Bibcode 140:voltage 604:  490:  435:  394:  105:series 488:S2CID 462:arXiv 95:into 602:ISBN 581:2016 560:2016 534:2016 513:2016 433:ISBN 392:ISBN 163:and 480:doi 384:doi 56:or 23:or 636:: 486:. 478:. 470:. 458:27 456:. 390:, 370:^ 87:A 72:q" 63:- 54:ΔT 50:ΔV 610:. 583:. 562:. 536:. 515:. 494:. 482:: 474:: 464:: 441:. 386:: 316:e 309:t 302:v 67:2 65:T 60:1 58:T 45:2 43:T 38:1 36:T 27:.

Index

Thermophile
Thermopylae


thermal energy
electrical energy
thermocouples
series
parallel
thermoelectric effect
temperature
voltage
infrared thermometers
thermal accelerometers
heat flux sensors
pyrheliometers


Thermoelectric effect
Seebeck coefficient
Ettingshausen effect
Nernst effect
Thermoelectric materials
Thermocouple
Thermopile
Thermoelectric cooling
Thermoelectric generator
Radioisotope thermoelectric generator
Automotive thermoelectric generator
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.