Knowledge (XXG)

Thiolate-protected gold cluster

Source πŸ“

17: 156:-containing biomolecules. In this process, gold atoms on the nanoparticles' surface react with the thiol, dissolving as gold-thiolate complexes until the dissolution reaction stops; this leaves behind a residual species of thiolate-protected gold clusters that is particularly stable. This type of synthesis is also possible using other non thiol-based ligands. 202:" configuration have indeed been identified as the most stable ones. This electronic shell closure and the resulting gain in stability is responsible for the discrete distribution of a few stable cluster sizes (magic numbers) observed in their synthesis, rather than a quasi-continuous distribution of sizes. 119:
can be used for directed synthesis of clusters. The high affinity of the gold ions to electronegative and (partially) charged atoms of functional groups yields potential seeds for cluster formation. The interface between the metal and the template can act as a stabilizer and steer the final size of
861:
Alfredo Tlahuice-Flores, Ulises Santiago, Daniel Bahena, Ekaterina Vinogradova, Cecil V Conroy, Tarushee Ahuja, Stephan B. H. Bach, Arturo Ponce, Gangli Wang, Miguel Jose-Yacaman, and Robert L. Whetten: On the Structure of the Thiolated Au130 Cluster, J. Phys. Chem. A. 2013, Volume 117, Number 40,
90:
The reduction process depends on the equilibrium between different oxidation states of the gold and the oxidized or reduced forms of the reducing agent, or thiols. Gold(I)-thiolate polymers have been identified as important in the initial steps of the reaction. Several synthesis recipes exist that
879:
Yuxiang Chen, Chenjie Zeng, Chong Liu, Kristin Kirschbaum, Chakicherla Gayathri, Roberto R. Gil, Nathaniel L. Rosi, and Rongchao Jin: Crystal Structure of Barrel-Shaped Chiral Au130(p-MBT)50 Nanocluster, Journal of the American Chemical Society 2015, Volume 137, Number 32, pages 10076–10079
914:
Cheng-An J. Lin, Chih-Hsien Lee, Jyun-Tai Hsieh, Hsueh-Hsiao Wang, Jimmy K. Li, Ji-Lin Shen, Wen-Hsiung Chan, Hung-I Yeh, Walter H. Chang: Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application: Recent Progress and Present Challenges, Journal of Medical and Biological
844:
Yael Levi-Kalisman, Pablo D. Jadzinsky, Nir Kalisman, Hironori Tsunoyama, Tatsuya Tsukuda, David A. Bushnell, and Roger D. Kornberg: Synthesis and Characterization of Au102(p-MBA)44 Nanoparticles, Journal of the American Chemical Society 2011, Volume 133, Number 9, pages 2976–2982
618:. The protected gold particles' stability and fluorescence makes them efficient emitters of electromagnetic radiation that can be tuned by varying the cluster size and the type of ligand used for protection. The protective shell can function (have 185:
in these species are areas where they behave like molecular, rather than metallic, substances. This molecular optical behavior sharply distinguishes thiolate-protected clusters from gold nanoparticles, whose optical characteristics are driven by
336:
cluster, based on Density Functional Theory (DFT) was confirmed in 2015. This result represents the maturity of this field where calculations are able to guide the experimental work. The following table features some sizes.
792:
Marcos M. Alvarez, Joseph T. Khoury, T. Gregory Schaaff, Marat N. Shafigullin, Igor Vezmar, and Robert L. Whetten: Optical Absorption Spectra of Nanocrystal Gold Molecules, J. Phys. Chem. B, 1997, 101 (19), 3706–3712
754:
Xiangming Meng, Zhao Liu, Manzhou Zhu and Rongchao Jin: Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun (n = 20, 24, 39, 40), Nanoscale Research Letters,
827:
Manzhou Zhu, Huifeng Qian and Rongchao Jin: Thiolate-Protected Au20 Clusters with a Large Energy Gap of 2.1 eV, Journal of the American Chemical Society 2009, Volume 131, Number 21, pages 7220-7221 (
669:
Yuichi Negishi, Katsuyuki Nobusada, Tatsuya Tsukuda: "Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)βˆ’Thiolate Complexes and Thiolate-Protected Gold Nanocrystals",
95:, however the mechanism is not yet fully understood. The synthesis produces a mixture of dissolved, thiolate-protected gold clusters of different sizes. These particles can then be separated by 217:
and are end products of the etching procedure after an addition of excess thiols does not lead to further metal dissolution. Some important clusters with magic numbers are (SG:
695:
Y, Negishi (June 1994). "Magic-numbered Au(n) clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization".
79:
The wet chemical synthesis of thiolate-protected gold clusters is achieved by the reduction of gold(III) salt solutions, using a mild reducing agent in the presence of
83:
compounds. This method starts with gold ions and synthesizes larger particles from them, therefore this type of synthesis can be regarded as a "bottom-up approach" in
213:
are connected with the number of metal atoms in those thiolate-protected clusters which display an outstanding stability. Such clusters can be synthesized
177:
gap. This existence of discrete electronic states was first indicated by the discrepancy between their optical absorption and the predictions of classical
173:
of the thiolate-protected gold clusters is characterized by strongly pronounced quantum effects. These result in discrete electronic states, and a nonzero
103:). If the synthesis is performed in a kinetically controlled manner, particularly stable representatives can be obtained with particles of uniform size ( 775:
Atomically monodispersed and fluorescent sub-nanometer gold clusters by biomolecule-assisted etching of nanometer-sized gold particles and rods (
919: 622:
added) in a way that selective binding (for example, as a complementary protein receptor of DNA-DNA-interaction) qualifies them for the use as
32:
Ph, white: H, grey: C, dull yellow :S, yellow: Au) single crystal X-ray diffractometry. Top left: full structure; middle : only
729:
Manzhou Zhu, Eric Lanni, Niti Garg, Mark E. Bier, and Rongchao Jin: Kinetically Controlled, High-Yield Synthesis of Au25 Clusters,
198:, that are labeled S, P, D, F according to their respective angular momentum on the atomic level. Those clusters that have a " 190:. Some of thiolate-protected clusters' properties can be described using a model in which the clusters are treated like " 614:) can be made available for bionanotechnological applications by linking them with biomolecules through the process of 941: 187: 589: 527: 482: 456: 421: 210: 63: 16: 59:
because of their unique stability and electronic properties. They are considered to be stable compounds.
170: 916: 96: 62:
These clusters can range in size up to hundreds of gold atoms, above which they are classified as
712: 619: 607: 182: 116: 56: 898: 881: 863: 846: 828: 811: 794: 776: 759: 738: 704: 678: 650: 451: 447: 538: 514: 923: 763: 133: 125: 148:
Top-down synthesis of the clusters can be achieved by the "etching" of larger metallic
615: 178: 92: 84: 935: 530: 519: 149: 48: 316:
with the para-mercaptobenzoice (para-mercapto-benzoic acid, p-MBA) produced ligand.
611: 559: 195: 563: 535: 524: 511: 492: 487: 477: 426: 417: 409: 383: 378: 218: 214: 104: 815: 623: 191: 174: 121: 780: 716: 885: 810:
A unified view of ligand-protected gold clusters as superatom complexes (
897:
Synthesis and Bioconjugation of 2 and 3 nm-diameter Gold Nanoparticles (
654: 137: 129: 902: 867: 850: 832: 798: 742: 708: 682: 153: 641:
Rongchao Jin: Quantum sized, thiolate-protected gold nanoclusters;
80: 324:
Worthy of note is that in 2013, a structural prediction of the Au
100: 52: 33: 308:
is also well-known. It was greater than representatives Au
55:
ions and thin layer compounds that play a special role in
115:
Rather than starting from "naked" gold ions in solution,
610:, intrinsic properties of the clusters (for example, 181:. The discrete optical transitions and occurrence of 194:". According to this model they exhibit atomic-like 36:
core and Au-S shell displayed, bottom right: only Au
8: 120:the cluster. Some potential templates are 344: 15: 634: 91:are similar to the Brust synthesis of 107:), avoiding further separation steps. 764:10.1186/1556-276X-7-277-3479.48780458 665: 663: 7: 915:Engineering, (2009) Vol 29, No 6, ( 87:to the synthesis of nanoparticles. 14: 165:Electronic and optical properties 45:Thiolate-protected gold clusters 47:are a type of ligand-protected 1: 111:Template-mediated synthesis 958: 452:Angew. Chem Int. Ed. 2015 448:Angew. Chem Int. Ed. 2015 200:closed superatomic shell 816:10.1073/pnas.0801001105 677:, 127 (14), 5261–5270 ( 781:10.1002/chem.200802743 737:, 130 (4), 1138–1139 ( 75:Wet chemical synthesis 41: 564:J. Phys. Chem. A 2013 19: 886:10.1021/jacs.5b05378 341:Composition database 320:Structure prediction 171:electronic structure 66:gold nanoparticles. 862:pages 10470–10476 ( 152:with redox-active, 97:gel electrophoresis 51:, synthesized from 922:2015-06-10 at the 655:10.1039/B9NR00160C 117:template reactions 42: 942:Cluster chemistry 903:10.1021/bc900135d 868:10.1021/jp406665m 851:10.1021/ja109131w 833:10.1021/ja902208h 799:10.1021/jp962922n 743:10.1021/ja0782448 731:J. Am. Chem. Soc. 709:10.1021/ja0483589 703:(21): 6518–6519. 683:10.1021/ja042218h 671:J. Am. Chem. Soc. 620:functional groups 608:bionanotechnology 599: 598: 354:Crystal Structure 196:electronic states 188:Plasmon resonance 183:photoluminescence 144:Etching synthesis 949: 927: 912: 906: 895: 889: 877: 871: 859: 853: 842: 836: 825: 819: 808: 802: 790: 784: 773: 767: 752: 746: 727: 721: 720: 692: 686: 667: 658: 639: 536:Anal. Chem. 2013 363:Exp. powder XRD 345: 134:polyelectrolytes 126:oligonucleotides 957: 956: 952: 951: 950: 948: 947: 946: 932: 931: 930: 924:Wayback Machine 913: 909: 896: 892: 878: 874: 860: 856: 843: 839: 826: 822: 809: 805: 791: 787: 774: 770: 753: 749: 728: 724: 694: 693: 689: 668: 661: 649:, 2, 343–362l ( 640: 636: 632: 604: 581: 577: 554: 550: 508: 504: 474: 470: 442: 438: 406: 402: 375: 371: 343: 335: 331: 327: 322: 315: 311: 307: 303: 299: 292: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 208: 167: 162: 146: 113: 77: 72: 57:cluster physics 40:-core displayed 39: 31: 27: 23: 20:Structure of Au 12: 11: 5: 955: 953: 945: 944: 934: 933: 929: 928: 907: 890: 872: 854: 837: 820: 803: 785: 768: 747: 722: 687: 659: 633: 631: 628: 616:bioconjugation 603: 600: 597: 596: 594: 592: 587: 584: 582: 579: 575: 571: 570: 568: 566: 561: 557: 555: 552: 548: 544: 543: 541: 539:Nano Lett 2015 533: 528:Nanoscale 2013 522: 517: 515:Nano Lett 2015 509: 506: 502: 498: 497: 495: 490: 485: 483:Nanoscale 2014 480: 475: 472: 468: 464: 463: 461: 459: 454: 445: 443: 440: 436: 432: 431: 429: 424: 415: 412: 407: 404: 400: 396: 395: 392: 389: 386: 381: 376: 373: 369: 365: 364: 361: 358: 355: 352: 349: 342: 339: 333: 329: 325: 321: 318: 313: 309: 305: 301: 297: 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 215:monodispersely 207: 204: 179:Mie scattering 166: 163: 161: 158: 145: 142: 112: 109: 105:monodispersely 93:colloidal gold 85:nanotechnology 76: 73: 71: 68: 37: 29: 25: 21: 13: 10: 9: 6: 4: 3: 2: 954: 943: 940: 939: 937: 925: 921: 918: 911: 908: 904: 900: 894: 891: 887: 883: 876: 873: 869: 865: 858: 855: 852: 848: 841: 838: 834: 830: 824: 821: 817: 813: 807: 804: 800: 796: 789: 786: 782: 778: 772: 769: 765: 761: 757: 751: 748: 744: 740: 736: 732: 726: 723: 718: 714: 710: 706: 702: 698: 697:J Am Chem Soc 691: 688: 684: 680: 676: 672: 666: 664: 660: 656: 652: 648: 644: 638: 635: 629: 627: 625: 621: 617: 613: 609: 601: 595: 593: 591: 588: 585: 583: 573: 572: 569: 567: 565: 562: 560: 558: 556: 546: 545: 542: 540: 537: 534: 532: 529: 526: 523: 521: 518: 516: 513: 510: 500: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 466: 465: 462: 460: 458: 455: 453: 449: 446: 444: 434: 433: 430: 428: 425: 423: 419: 416: 413: 411: 408: 398: 397: 393: 390: 387: 385: 382: 380: 377: 367: 366: 362: 359: 356: 353: 350: 347: 346: 340: 338: 319: 317: 294: 220: 216: 212: 211:Magic numbers 206:Magic numbers 205: 203: 201: 197: 193: 189: 184: 180: 176: 172: 164: 159: 157: 155: 151: 150:nanoparticles 143: 141: 139: 135: 131: 127: 123: 118: 110: 108: 106: 102: 98: 94: 88: 86: 82: 74: 69: 67: 65: 60: 58: 54: 50: 49:metal cluster 46: 35: 18: 910: 893: 875: 857: 840: 823: 806: 788: 771: 755: 750: 734: 730: 725: 700: 696: 690: 674: 670: 646: 642: 637: 612:fluorescence 605: 602:Applications 531:Sci Adv 2015 520:Sci Adv 2015 323: 295: 209: 199: 168: 147: 114: 89: 78: 61: 44: 43: 360:Exp. UV-Vis 348:Composition 219:Glutathione 758:, 7, 277 ( 630:References 624:biosensors 357:DFT models 351:Mass Spec. 192:superatoms 160:Properties 122:dendrimers 64:passivated 643:Nanoscale 590:PCCP 2015 586:not known 525:JACS 2012 512:JACS 2010 493:JPCL 2010 488:JACS 2012 478:JPCL 2010 457:PCCP 2012 427:JACS 2005 422:PCCP 2013 418:JACS 2013 414:Not known 410:JACS 2005 384:JACS 2000 379:JACS 2005 175:HOMO/LUMO 70:Synthesis 936:Category 920:Archived 917:Abstract 717:15161256 394:Example 285:, and Au 138:polymers 130:proteins 28:-,(R=SCH 391:Example 312:(p-MBA) 715:  221:): Au 154:thiol 81:thiol 756:2012 735:2008 713:PMID 675:2005 647:2010 578:(SR) 551:(SR) 505:(SR) 471:(SR) 439:(SR) 403:(SR) 372:(SR) 328:(SCH 300:(SCH 289:(SG) 281:(SG) 277:, Au 273:(SG) 269:, Au 265:(SG) 261:, Au 257:(SG) 253:, Au 249:(SG) 245:, Au 241:(SG) 237:, Au 233:(SG) 229:, Au 225:(SG) 169:The 136:and 101:PAGE 53:gold 34:gold 899:doi 882:doi 864:doi 847:doi 829:doi 812:doi 795:doi 777:doi 760:doi 739:doi 705:doi 701:126 679:doi 651:doi 606:In 576:187 549:130 326:130 310:102 304:Ph) 938:: 926:). 905:). 888:). 870:). 835:). 818:). 801:). 783:). 766:). 745:). 733:, 711:. 699:. 685:). 673:, 662:^ 657:). 645:, 626:. 580:68 574:Au 553:50 547:Au 507:24 503:40 501:Au 473:20 469:24 467:Au 450:, 441:14 437:18 435:Au 420:, 405:13 401:15 399:Au 374:10 370:10 368:Au 334:50 314:44 306:16 298:20 296:Au 293:. 291:24 287:39 283:22 279:33 275:20 271:29 267:18 263:25 259:17 255:22 251:16 247:22 243:14 239:18 235:13 231:15 227:10 223:10 140:. 132:, 128:, 124:, 38:13 26:18 22:25 901:: 884:: 880:( 866:: 849:: 831:: 814:: 797:: 793:( 779:: 762:: 741:: 719:. 707:: 681:: 653:: 388:- 332:) 330:3 302:2 99:( 30:2 24:R

Index


gold
metal cluster
gold
cluster physics
passivated
thiol
nanotechnology
colloidal gold
gel electrophoresis
PAGE
monodispersely
template reactions
dendrimers
oligonucleotides
proteins
polyelectrolytes
polymers
nanoparticles
thiol
electronic structure
HOMO/LUMO
Mie scattering
photoluminescence
Plasmon resonance
superatoms
electronic states
Magic numbers
monodispersely
Glutathione

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑