Knowledge (XXG)

Three-gap theorem

Source 📝

667:. The irrational angle formed on the chromatic circle by a perfect fifth is close to 7/12 of a circle, and therefore the twelve tones of the Pythagorean tuning are close to, but not the same as, the twelve tones of equal temperament, which could be generated in the same way using an angle of exactly 7/12 of a circle. Instead of being spaced at angles of exactly 1/12 of a circle, as the tones of equal temperament would be, the tones of the Pythagorean tuning are separated by intervals of two different angles, close to but not exactly 1/12 of a circle, representing two different types of 688: 390: 331: 353: 349:, approximately 137.5°. It has been suggested that this angle maximizes the sun-collecting power of the plant's leaves. If one looks end-on at a plant stem that has grown in this way, there will be at most three distinct angles between two leaves that are consecutive in the cyclic order given by this end-on view. 707:
is infinite sequences of two symbols (for instance, "H" and "V") describing the sequence of horizontal and vertical reflections of a light ray within a mirrored square, starting along a line of irrational slope. Equivalently, the same sequence describes the sequence of horizontal and vertical lines
678:
In this context, the three-gap theorem can be used to describe any tuning system that is generated in this way by consecutive multiples of a single interval. Some of these tuning systems (like equal temperament) may have only one interval separating the closest pairs of tones, and some (like the
364:
For example, in the figure, the largest of these three angles occurs three times, between the leaves numbered 3 and 6, between leaves 4 and 7, and between leaves 5 and 8. The second-largest angle occurs five times, between leaves 6 and 1, 9 and 4, 7 and 2, 10 and 5, and 8 and 3. And the smallest
909:
is a gap. So there can be at most three rigid gaps, the two on either side of the last point and the one in which the predecessor of the first point (if it were part of the sequence) would land. Because there are at most three rigid gaps, there are at most three lengths of gaps.
365:
angle occurs only twice, between leaves 1 and 9 and between leaves 2 and 10. The phenomenon of having three types of distinct gaps depends only on fact that the growth pattern uses a constant rotation angle, and not on the relation of this angle to the
57:, ... from the starting point, then there will be at most three distinct distances between pairs of points in adjacent positions around the circle. When there are three distances, the largest of the three always equals the sum of the other two. Unless 1666:
as a definition of Sturmian words, rather than as a consequence of the definition. For the equivalence of this property with the definition stated here, see Theorem 2.1.13, p. 51. For the three frequencies of these words see Theorem 2.2.37, p.
369:; the same phenomenon would happen for any other rotation angle, and not just for the golden angle. However, other properties of this growth pattern do depend on the golden ratio. For instance, the fact that golden ratio is a 261:
into subintervals with at most three different lengths. The two problems are equivalent under a linear correspondence between the unit interval and the circumference of the circle, and a correspondence between the real number
730:
subsequences occur with at most three distinct frequencies. If there are three frequencies, then the largest frequency must equal the sum of the other two. One proof of this result involves partitioning the
93:; more proofs were added by others later. Applications of the three-gap theorem include the study of plant growth and musical tuning systems, and the theory of light reflection within a mirrored square. 2516: 2302: 2197: 1958: 671:. If the Pythagorean tuning system were extended by one more perfect fifth, to a set of 13 tones, then the sequence of intervals between its tones would include a third, much shorter interval, the 1716: 1954: 165:
from the starting point, then there will be at most three distinct distances between pairs of points in adjacent positions around the circle. An equivalent and more algebraic form involves the
679:
Pythagorean tuning) may have only two different intervals separating the tones, but the three-gap theorem implies that there are always at most three different intervals separating the tones.
255: 163: 2595: 445:
corresponds to the ratio 3:2. Two tones are commonly considered to be equivalent when they differ by a whole number of octaves; this equivalence can be represented geometrically by the
590:
between points on this circle, meaning that two musical tones differ by the given interval when their two points on the circle differ by this angle. For instance, this formula gives
529: 314: 2193: 588: 2512: 1404:
Baroin, Gilles; Calvet, André (2019), "Visualizing temperaments: squaring the circle?", in Montiel, Mariana; Gomez-Martin, Francisco; Agustín-Aquino, Octavio A. (eds.),
918:
Liang's proof additionally shows that, when there are exactly three gap lengths, the longest gap length is the sum of the other two. For, in this case, the rotated copy
1796: 280: 191: 1291: 638: 611: 549: 928:
that has the first point in it is partitioned by that point into two smaller gaps, which must be the other two gaps. Liang also proves a more general result, the "
475: 1644: 1224: 2378: 992: 949: 2483: 2102:
Bleher, Pavel M.; Homma, Youkow; Ji, Lyndon L.; Roeder, Roland K. W.; Shen, Jeffrey D. (2012), "Nearest neighbor distances on a circle: multidimensional case",
1664: 969: 345:, the arrangements of leaves on plant stems, it has been observed that each successive leaf on the stems of many plants is turned from the previous leaf by the 211: 119: 655:
is a tuning system, consisting of 12 tones equally spaced around the chromatic circle. Some other tuning systems do not space their tones equally, but instead
1606: 1123: 855:
is not a gap, because it has the same length and would be one step later. The only ways for this to happen are for one of the endpoints of
708:
of the integer grid that are crossed by the starting line. One property that all such sequences have is that, for any positive integer
1029:
has at most three lengths of gaps between sequence values. Again, if there are three gap lengths then one is the sum of the other two.
2627: 2622: 780:. Later researchers published additional proofs, generalizing this result to higher dimensions, and connecting it to topics including 2423: 1569: 1509: 1483: 1389: 1274: 1151: 1078: 1687: 994:
different gap lengths. In the three-gap theorem, there is a constant bound on the ratios between the three gaps, if and only if
2002: 841:
than any other gap of the same length. From this definition, it follows that every gap has the same length as a rigid gap. If
2382: 437:. Intervals are commonly considered consonant or harmonious when they are the ratio of two small integers; for instance, the 101:
The three-gap theorem can be stated geometrically in terms of points on a circle. In this form, it states that if one places
2632: 1836: 1406:
Mathematics and Computation in Music: 7th International Conference, MCM 2019, Madrid, Spain, June 18–21, 2019, Proceedings
777: 90: 771: 84: 1893: 1760:
The first proofs of this remarkable fact were published in 1957 by Sós, in 1958 by Surányi, and in 1959 by Świerczkowski
1260: 663:, which is constructed in this way from twelve tones, generated as the consecutive multiples of a perfect fifth in the 216: 124: 2561: 1098:
Types for Proofs and Programs: International Workshop, TYPES'99, Lökeberg, Sweden, June 12–16, 1999, Selected Papers
1598: 723:. Each subsequence occurs infinitely often with a certain frequency, and the three-gap theorem implies that these 1714:
Haynes, Alan; Marklof, Jens (2020), "Higher dimensional Steinhaus and Slater problems via homogeneous dynamics",
1005: 449:, the points of which represent classes of equivalent tones. Mathematically, this circle can be described as the 370: 2048: 1043: 1038: 1841: 640:, and similarly other common musical intervals other than the octave do not correspond to rational angles. 480: 1324: 287: 2165: 554: 457:, and the point on this circle that represents a given tone can be obtained by the mapping the frequency 2488: 2311: 2121: 1678: 1343: 1182: 656: 1588: 2241: 1469: 1190: 789: 766: 687: 79: 1592: 617:, the angle on the chromatic circle that represents a perfect fifth is not a rational multiple of 2541: 2448: 2335: 2276: 2250: 2222: 2145: 2111: 2085: 2057: 2029: 1983: 1880:, from which the following classification of these proofs and many of their references are taken. 1751: 1725: 1541: 1451: 1417: 1359: 1333: 1202: 1186: 1160: 1149:
Marklof, Jens; Strömbergsson, Andreas (2017), "The three gap theorem and the space of lattices",
1129: 1101: 781: 660: 394: 831:
of the circle that extends between two adjacent points of the given set, and define a gap to be
1524:
Carey, Norman (2007), "Coherence and sameness in well-formed and pairwise well-formed scales",
1377: 389: 1778: 1602: 1565: 1505: 1479: 1473: 1385: 1270: 1119: 1074: 699:, there are four distinct length-3 subsequences (in left-right order): 010, 100, 001, and 101. 672: 648: 414: 405:
used to construct the tuning; the two longer gap lengths between consecutive points represent
1559: 1499: 1264: 1068: 749:
elements of the sequence are the same, and applying the three-gap theorem to this partition.
265: 176: 2525: 2432: 2391: 2319: 2260: 2206: 2129: 2067: 2011: 1967: 1850: 1735: 1612: 1533: 1443: 1409: 1351: 1300: 1233: 1178: 1170: 1111: 1016: 817:
be the rotation angle generating a set of points as some number of consecutive multiples of
664: 446: 426: 398: 2537: 2444: 2405: 2331: 2272: 2218: 2141: 2081: 2025: 1979: 1864: 1747: 1700: 1247: 1198: 620: 593: 534: 2533: 2440: 2401: 2327: 2268: 2239:
Biringer, Ian; Schmidt, Benjamin (2008), "The three gap theorem and Riemannian geometry",
2214: 2137: 2077: 2021: 1975: 1860: 1743: 1696: 1616: 1243: 1194: 1064: 460: 330: 166: 1623: 2360: 2315: 2125: 1347: 1174: 974: 931: 613:(a whole circle) as the angle corresponding to an octave. Because 3/2 is not a rational 2468: 1772: 1649: 954: 805: 793: 762: 758: 692: 196: 104: 75: 71: 2616: 2545: 2452: 2396: 2226: 2089: 2033: 1987: 1704:; see in particular Section 2.1, "Complexity and frequencies of codings of rotations" 1545: 1421: 1363: 1206: 1011:
A closely related but earlier theorem, also called the three-gap theorem, is that if
704: 696: 644: 454: 442: 402: 374: 357: 258: 2339: 1755: 659:
them by some number of consecutive multiples of a given interval. An example is the
2280: 1133: 614: 434: 422: 366: 346: 335: 2436: 2149: 1817:
Surányi, J. (1958), "Über die Anordnung der Vielfachen einer reelen Zahl mod 1",
1561:
Microtonality and the Tuning Systems of Erv Wilson: Mapping the Harmonic Spectrum
1413: 1100:, Lecture Notes in Computer Science, vol. 1956, Springer, pp. 162–173, 1584: 1434:
Carey, Norman; Clampitt, David (October 1989), "Aspects of well-formed scales",
1384:, Southwestern College, Winfield, Kansas: Bridges Conference, pp. 101–110, 1322:
Akiyama, Shigeki (March 2020), "Spiral Delone sets and three distance theorem",
797: 732: 450: 342: 170: 1355: 352: 2529: 2323: 2264: 2210: 2133: 2072: 1971: 1537: 1305: 1238: 410: 378: 1839:(1959), "On successive settings of an arc on the circumference of a circle", 1682: 1222:
van Ravenstein, Tony (1988), "The three-gap theorem (Steinhaus conjecture)",
1115: 334:
End-on view of a plant stem in which consecutive leaves are separated by the
2000:
Chevallier, Nicolas (2007), "Cyclic groups and the three distance theorem",
1855: 430: 2016: 647:
is a collection of tones used to compose and play music. For instance, the
2294: 1378:"The mathematics of the just intonation used in the music of Terry Riley" 785: 668: 406: 1739: 1096:
Mayero, Micaela (2000), "The three gap theorem (Steinhaus conjecture)",
1475:
Music as Concept and Practice in the Late Middle Ages, Volume 3, Part 1
2293:
Haynes, Alan; Koivusalo, Henna; Walton, James; Sadun, Lorenzo (2016),
1455: 901:, because otherwise its predecessor in the sequence would land within 2062: 1478:, New Oxford history of music, Oxford University Press, p. 252, 438: 1730: 1447: 1338: 1165: 1106: 2295:"Gaps problems and frequencies of patches in cut and project sets" 2255: 2116: 686: 652: 388: 351: 329: 1289:
van Ravenstein, Tony (1987), "Number sequences and phyllotaxis",
2558:
Florek, K. (1951), "Une remarque sur la répartition des nombres
1564:, Routledge Studies in Music Theory, Routledge, pp. 90–91, 2517:
Mathematical Proceedings of the Cambridge Philosophical Society
2303:
Mathematical Proceedings of the Cambridge Philosophical Society
2198:
Mathematical Proceedings of the Cambridge Philosophical Society
2046:
Vijay, Sujith (2008), "Eleven Euclidean distances are enough",
1959:
Mathematical Proceedings of the Cambridge Philosophical Society
885:, preventing it from being a gap. A point can only land within 2176: 835:
if its endpoints occur later in the sequence of multiples of
2421:
Shiu, Peter (2018), "A footnote to the three gaps theorem",
1382:
Bridges: Mathematical Connections in Art, Music, and Science
1890:
Halton, John H. (1965), "The distribution of the sequence
1070:
Automatic Sequences: Theory, Applications, Generalizations
971:
different arithmetic progressions on a circle has at most
875:
is missing) or for one of the given points to land within
381:; intuitively, this means that they are uniformly spaced. 2162:
Slater, Noel B. (1967), "Gaps and steps for the sequence
895:
if it is the first point in the sequence of multiples of
360:(center) are more uniformly spaced than for other angles. 2465:
Slater, N. B. (1950), "The distribution of the integers
1408:, Springer International Publishing, pp. 333–337, 761:, and its first proofs were found in the late 1950s by 811:
The following simple proof is due to Frank Liang. Let
483: 67:, there will also be at least two distinct distances. 2564: 2491: 2471: 2363: 2168: 1896: 1781: 1652: 1626: 977: 957: 934: 859:
to be the last point in the sequence of multiples of
623: 596: 557: 537: 463: 290: 268: 219: 199: 179: 127: 107: 1877: 1876:
These proofs are briefly surveyed and classified by
1683:"Three distance theorems and combinatorics on words" 377:(as they are in some models of plant growth) form a 1775:(1958), "On the distribution mod 1 of the sequence 1717:
Annales Scientifiques de l'École Normale Supérieure
951:distance theorem", according to which the union of 373:implies that points spaced at this angle along the 2589: 2506: 2477: 2372: 2187: 1949:{\displaystyle \{n\xi \}\,(n=0,\,1,\,2,\,\ldots )} 1948: 1790: 1658: 1638: 986: 963: 943: 632: 605: 582: 543: 523: 469: 308: 274: 249: 205: 185: 157: 113: 250:{\displaystyle \alpha ,2\alpha ,\dots ,n\alpha } 158:{\displaystyle \theta ,2\theta ,\dots ,n\theta } 1292:Bulletin of the Australian Mathematical Society 173:. It states that, for any positive real number 2590:{\displaystyle n\xi \,(\operatorname {mod} 1)} 2357:Liang, Frank M. (1979), "A short proof of the 1269:, Princeton University Press, pp. 35–41, 1225:Journal of the Australian Mathematical Society 1073:, Cambridge University Press, pp. 53–55, 8: 1906: 1897: 1819:Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1800:Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 1501:A Smoother Pebble: Mathematical Explorations 719:distinct consecutive subsequences of length 1067:(2003), "2.6 The Three-Distance Theorem", 356:Points spaced at the golden angle along a 2571: 2563: 2490: 2470: 2395: 2362: 2254: 2179: 2175: 2167: 2115: 2071: 2061: 2015: 1939: 1932: 1925: 1909: 1895: 1854: 1780: 1729: 1651: 1625: 1337: 1317: 1315: 1304: 1237: 1183:1983/b5fd0feb-e42d-48e9-94d8-334b8dc24505 1164: 1105: 976: 956: 933: 757:The three-gap theorem was conjectured by 622: 595: 568: 556: 536: 506: 482: 462: 289: 267: 218: 198: 178: 126: 106: 2352: 2350: 2348: 1091: 1089: 441:corresponds to the ratio 2:1, while the 2416: 2414: 1620:. Lothaire uses the property of having 1504:, Oxford University Press, p. 51, 1055: 865:(so that the corresponding endpoint of 18:On distances between points on a circle 1217: 1215: 801: 745:subintervals within which the initial 738:of the starting lines (modulo 1) into 524:{\textstyle \exp(2\pi i\log _{2}\nu )} 213:, the fractional parts of the numbers 7: 1144: 1142: 905:, contradicting the assumption that 309:{\displaystyle \theta =2\pi \alpha } 2188:{\displaystyle n\theta {\bmod {1}}} 1191:10.4169/amer.math.monthly.124.8.741 1175:10.4169/amer.math.monthly.124.8.741 1015:is any arc of the circle, then the 583:{\displaystyle 2\pi \log _{2}\rho } 1878:Marklof & Strömbergsson (2017) 14: 2507:{\displaystyle \theta N<\phi } 2424:The American Mathematical Monthly 1152:The American Mathematical Monthly 121:points on a circle, at angles of 37:points on a circle, at angles of 1594:Algebraic Combinatorics on Words 1526:Journal of Mathematics and Music 2003:Canadian Journal of Mathematics 70:This result was conjectured by 2584: 2572: 2104:Journal of Statistical Physics 1943: 1910: 518: 490: 409:, and the short gap where the 1: 2437:10.1080/00029890.2018.1412210 804:formalizes a proof using the 74:, and proved in the 1950s by 2397:10.1016/0012-365X(79)90140-7 1414:10.1007/978-3-030-21392-3_27 808:interactive theorem prover. 1688:L'Enseignement mathématique 1380:, in Sarhangi, Reza (ed.), 712:, the sequence has exactly 2649: 1599:Cambridge University Press 1558:Narushima, Terumi (2017), 1498:Benson, Donald C. (2003), 1266:A Mathematical Nature Walk 63:is a rational multiple of 33:states that if one places 2628:Theorems in number theory 2623:Diophantine approximation 2530:10.1017/S0305004100026086 2324:10.1017/S0305004116000128 2265:10.1007/s10711-008-9283-8 2211:10.1017/S0305004100042195 2134:10.1007/s10955-011-0367-8 2073:10.1016/j.jnt.2007.08.016 1972:10.1017/S0305004100039013 1538:10.1080/17459730701376743 1306:10.1017/s0004972700026605 1239:10.1017/S1446788700031062 1006:badly approximable number 551:corresponds to the angle 531:. An interval with ratio 413:fails to close up is the 371:badly approximable number 2049:Journal of Number Theory 1791:{\displaystyle n\alpha } 1356:10.1088/1361-6544/ab74ad 1116:10.1007/3-540-44557-9_10 1044:Lonely runner conjecture 1039:Equidistribution theorem 798:space of planar lattices 2599:Colloquium Mathematicum 1856:10.4064/fm-46-2-187-189 1842:Fundamenta Mathematicae 1376:Haack, Joel K. (1999), 778:Stanisław Świerczkowski 429:describes the ratio in 275:{\displaystyle \alpha } 186:{\displaystyle \alpha } 91:Stanisław Świerczkowski 2591: 2508: 2479: 2374: 2189: 2017:10.4153/CJM-2007-022-3 1950: 1792: 1660: 1640: 988: 965: 945: 823:on a circle. Define a 700: 651:commonly used for the 634: 607: 584: 545: 525: 477:to the complex number 471: 418: 361: 338: 310: 276: 251: 207: 187: 159: 115: 27:three-distance theorem 2592: 2509: 2480: 2375: 2190: 1951: 1793: 1661: 1641: 1436:Music Theory Spectrum 1063:Allouche, Jean-Paul; 989: 966: 946: 845:is a rigid gap, then 690: 635: 633:{\displaystyle 2\pi } 608: 606:{\displaystyle 2\pi } 585: 546: 544:{\displaystyle \rho } 526: 472: 401:. Edges indicate the 392: 355: 333: 311: 277: 252: 208: 188: 160: 116: 2633:Mathematics of music 2562: 2489: 2469: 2383:Discrete Mathematics 2361: 2166: 1894: 1779: 1677:Alessandri, Pascal; 1650: 1624: 1470:Blackburn, Bonnie J. 975: 955: 932: 790:Riemannian manifolds 621: 594: 555: 535: 481: 470:{\displaystyle \nu } 461: 288: 266: 217: 197: 177: 125: 105: 31:Steinhaus conjecture 21:In mathematics, the 2380:distance theorem", 2316:2016MPCPS.161...65H 2242:Geometriae Dedicata 2126:2012JSP...146..446B 1740:10.24033/asens.2427 1639:{\displaystyle d+1} 1348:2020Nonli..33.2533A 782:continued fractions 683:Mirrored reflection 2587: 2504: 2475: 2373:{\displaystyle 3d} 2370: 2185: 1946: 1788: 1656: 1636: 1601:, pp. 40–97, 1468:Strohm, Reinhard; 987:{\displaystyle 3d} 984: 961: 944:{\displaystyle 3d} 941: 701: 695:, an example of a 661:Pythagorean tuning 630: 603: 580: 541: 521: 467: 419: 395:Pythagorean tuning 362: 339: 306: 272: 247: 203: 183: 169:of multiples of a 155: 111: 2478:{\displaystyle N} 1837:Świerczkowski, S. 1659:{\displaystyle d} 1608:978-0-521-81220-7 1125:978-3-540-41517-6 964:{\displaystyle d} 784:, symmetries and 753:History and proof 673:Pythagorean comma 649:equal temperament 415:Pythagorean comma 397:as points of the 206:{\displaystyle n} 114:{\displaystyle n} 23:three-gap theorem 2640: 2607: 2606: 2596: 2594: 2593: 2588: 2555: 2549: 2548: 2513: 2511: 2510: 2505: 2484: 2482: 2481: 2476: 2462: 2456: 2455: 2418: 2409: 2408: 2399: 2379: 2377: 2376: 2371: 2354: 2343: 2342: 2299: 2290: 2284: 2283: 2258: 2236: 2230: 2229: 2205:(4): 1115–1123, 2194: 2192: 2191: 2186: 2184: 2183: 2159: 2153: 2152: 2119: 2099: 2093: 2092: 2075: 2065: 2056:(6): 1655–1661, 2043: 2037: 2036: 2019: 1997: 1991: 1990: 1955: 1953: 1952: 1947: 1887: 1881: 1874: 1868: 1867: 1858: 1833: 1827: 1826: 1814: 1808: 1807: 1797: 1795: 1794: 1789: 1769: 1763: 1762: 1733: 1711: 1705: 1703: 1695:(1–2): 103–132, 1674: 1668: 1665: 1663: 1662: 1657: 1646:words of length 1645: 1643: 1642: 1637: 1619: 1589:"Sturmian Words" 1581: 1575: 1574: 1555: 1549: 1548: 1521: 1515: 1514: 1495: 1489: 1488: 1465: 1459: 1458: 1431: 1425: 1424: 1401: 1395: 1394: 1373: 1367: 1366: 1341: 1332:(5): 2533–2540, 1319: 1310: 1309: 1308: 1286: 1280: 1279: 1257: 1251: 1250: 1241: 1219: 1210: 1209: 1168: 1146: 1137: 1136: 1109: 1093: 1084: 1083: 1065:Shallit, Jeffrey 1060: 1028: 1024: 1019:of multiples of 1017:integer sequence 1014: 1003: 1002: 993: 991: 990: 985: 970: 968: 967: 962: 950: 948: 947: 942: 927: 908: 904: 900: 894: 884: 874: 864: 858: 854: 844: 840: 830: 822: 816: 775: 748: 744: 735: 729: 722: 718: 711: 665:circle of fifths 639: 637: 636: 631: 612: 610: 609: 604: 589: 587: 586: 581: 573: 572: 550: 548: 547: 542: 530: 528: 527: 522: 511: 510: 476: 474: 473: 468: 447:chromatic circle 427:musical interval 399:chromatic circle 341:In the study of 317: 315: 313: 312: 307: 281: 279: 278: 273: 256: 254: 253: 248: 212: 210: 209: 204: 192: 190: 189: 184: 167:fractional parts 164: 162: 161: 156: 120: 118: 117: 112: 88: 66: 62: 56: 49: 42: 36: 2648: 2647: 2643: 2642: 2641: 2639: 2638: 2637: 2613: 2612: 2611: 2610: 2560: 2559: 2557: 2556: 2552: 2487: 2486: 2467: 2466: 2464: 2463: 2459: 2420: 2419: 2412: 2359: 2358: 2356: 2355: 2346: 2297: 2292: 2291: 2287: 2238: 2237: 2233: 2164: 2163: 2161: 2160: 2156: 2101: 2100: 2096: 2045: 2044: 2040: 1999: 1998: 1994: 1892: 1891: 1889: 1888: 1884: 1875: 1871: 1835: 1834: 1830: 1816: 1815: 1811: 1777: 1776: 1771: 1770: 1766: 1713: 1712: 1708: 1679:Berthé, Valérie 1676: 1675: 1671: 1648: 1647: 1622: 1621: 1609: 1583: 1582: 1578: 1572: 1557: 1556: 1552: 1523: 1522: 1518: 1512: 1497: 1496: 1492: 1486: 1472:, eds. (2001), 1467: 1466: 1462: 1433: 1432: 1428: 1403: 1402: 1398: 1392: 1375: 1374: 1370: 1321: 1320: 1313: 1288: 1287: 1283: 1277: 1259: 1258: 1254: 1221: 1220: 1213: 1148: 1147: 1140: 1126: 1095: 1094: 1087: 1081: 1062: 1061: 1057: 1052: 1035: 1026: 1020: 1012: 1000: 995: 973: 972: 953: 952: 930: 929: 919: 916: 914:Related results 906: 902: 896: 886: 876: 866: 860: 856: 846: 842: 836: 828: 818: 812: 769: 755: 746: 739: 733: 724: 720: 713: 709: 685: 619: 618: 592: 591: 564: 553: 552: 533: 532: 502: 479: 478: 459: 458: 387: 328: 323: 286: 285: 283: 264: 263: 215: 214: 195: 194: 175: 174: 123: 122: 103: 102: 99: 82: 64: 58: 51: 44: 38: 34: 19: 12: 11: 5: 2646: 2644: 2636: 2635: 2630: 2625: 2615: 2614: 2609: 2608: 2586: 2583: 2580: 2577: 2574: 2570: 2567: 2550: 2524:(4): 525–534, 2503: 2500: 2497: 2494: 2474: 2457: 2431:(3): 264–266, 2410: 2390:(3): 325–326, 2369: 2366: 2344: 2285: 2231: 2182: 2178: 2174: 2171: 2154: 2110:(2): 446–465, 2094: 2038: 2010:(3): 503–552, 1992: 1966:(3): 665–670, 1945: 1942: 1938: 1935: 1931: 1928: 1924: 1921: 1918: 1915: 1912: 1908: 1905: 1902: 1899: 1882: 1869: 1849:(2): 187–189, 1828: 1809: 1787: 1784: 1764: 1724:(2): 537–557, 1706: 1669: 1655: 1635: 1632: 1629: 1607: 1576: 1570: 1550: 1516: 1510: 1490: 1484: 1460: 1448:10.2307/745935 1442:(2): 187–206, 1426: 1396: 1390: 1368: 1311: 1281: 1275: 1252: 1232:(3): 360–370, 1211: 1159:(8): 741–745, 1138: 1124: 1085: 1079: 1054: 1053: 1051: 1048: 1047: 1046: 1041: 1034: 1031: 983: 980: 960: 940: 937: 915: 912: 794:ergodic theory 759:Hugo Steinhaus 754: 751: 693:Fibonacci word 684: 681: 629: 626: 602: 599: 579: 576: 571: 567: 563: 560: 540: 520: 517: 514: 509: 505: 501: 498: 495: 492: 489: 486: 466: 403:perfect fifths 386: 383: 327: 324: 322: 319: 305: 302: 299: 296: 293: 271: 246: 243: 240: 237: 234: 231: 228: 225: 222: 202: 182: 154: 151: 148: 145: 142: 139: 136: 133: 130: 110: 98: 95: 72:Hugo Steinhaus 17: 13: 10: 9: 6: 4: 3: 2: 2645: 2634: 2631: 2629: 2626: 2624: 2621: 2620: 2618: 2604: 2600: 2581: 2578: 2575: 2568: 2565: 2554: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2519: 2518: 2501: 2498: 2495: 2492: 2472: 2461: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2425: 2417: 2415: 2411: 2407: 2403: 2398: 2393: 2389: 2385: 2384: 2367: 2364: 2353: 2351: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2304: 2296: 2289: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2257: 2252: 2248: 2244: 2243: 2235: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2199: 2180: 2172: 2169: 2158: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2118: 2113: 2109: 2105: 2098: 2095: 2091: 2087: 2083: 2079: 2074: 2069: 2064: 2059: 2055: 2051: 2050: 2042: 2039: 2035: 2031: 2027: 2023: 2018: 2013: 2009: 2005: 2004: 1996: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1960: 1940: 1936: 1933: 1929: 1926: 1922: 1919: 1916: 1913: 1903: 1900: 1886: 1883: 1879: 1873: 1870: 1866: 1862: 1857: 1852: 1848: 1844: 1843: 1838: 1832: 1829: 1824: 1820: 1813: 1810: 1805: 1801: 1785: 1782: 1774: 1768: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1732: 1727: 1723: 1719: 1718: 1710: 1707: 1702: 1698: 1694: 1690: 1689: 1684: 1680: 1673: 1670: 1653: 1633: 1630: 1627: 1618: 1614: 1610: 1604: 1600: 1597:, Cambridge: 1596: 1595: 1590: 1586: 1580: 1577: 1573: 1571:9781317513421 1567: 1563: 1562: 1554: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1520: 1517: 1513: 1511:9780198032977 1507: 1503: 1502: 1494: 1491: 1487: 1485:9780198162056 1481: 1477: 1476: 1471: 1464: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1430: 1427: 1423: 1419: 1415: 1411: 1407: 1400: 1397: 1393: 1391:0-9665201-1-4 1387: 1383: 1379: 1372: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1340: 1335: 1331: 1327: 1326: 1318: 1316: 1312: 1307: 1302: 1298: 1294: 1293: 1285: 1282: 1278: 1276:9781400832903 1272: 1268: 1267: 1262: 1261:Adam, John A. 1256: 1253: 1249: 1245: 1240: 1235: 1231: 1227: 1226: 1218: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1167: 1162: 1158: 1154: 1153: 1145: 1143: 1139: 1135: 1131: 1127: 1121: 1117: 1113: 1108: 1103: 1099: 1092: 1090: 1086: 1082: 1080:9780521823326 1076: 1072: 1071: 1066: 1059: 1056: 1049: 1045: 1042: 1040: 1037: 1036: 1032: 1030: 1025:that land in 1023: 1018: 1009: 1007: 998: 981: 978: 958: 938: 935: 926: 922: 913: 911: 899: 893: 889: 883: 879: 873: 869: 863: 853: 849: 839: 834: 827:to be an arc 826: 821: 815: 809: 807: 803: 802:Mayero (2000) 799: 795: 791: 787: 783: 779: 773: 768: 767:János Surányi 764: 760: 752: 750: 742: 737: 727: 716: 706: 705:Sturmian word 698: 697:Sturmian word 694: 689: 682: 680: 676: 674: 670: 666: 662: 658: 654: 650: 646: 645:tuning system 641: 627: 624: 616: 600: 597: 577: 574: 569: 565: 561: 558: 538: 515: 512: 507: 503: 499: 496: 493: 487: 484: 464: 456: 455:complex plane 452: 448: 444: 443:perfect fifth 440: 436: 435:musical tones 432: 428: 424: 416: 412: 408: 404: 400: 396: 393:Tones of the 391: 384: 382: 380: 376: 375:Fermat spiral 372: 368: 359: 358:Fermat spiral 354: 350: 348: 344: 337: 332: 325: 320: 318: 303: 300: 297: 294: 291: 269: 260: 259:unit interval 244: 241: 238: 235: 232: 229: 226: 223: 220: 200: 180: 172: 168: 152: 149: 146: 143: 140: 137: 134: 131: 128: 108: 96: 94: 92: 86: 81: 80:János Surányi 77: 73: 68: 61: 55: 48: 41: 32: 28: 24: 16: 2602: 2598: 2553: 2521: 2515: 2460: 2428: 2422: 2387: 2381: 2310:(1): 65–85, 2307: 2301: 2288: 2246: 2240: 2234: 2202: 2196: 2157: 2107: 2103: 2097: 2063:math/0609536 2053: 2047: 2041: 2007: 2001: 1995: 1963: 1957: 1885: 1872: 1846: 1840: 1831: 1822: 1818: 1812: 1803: 1799: 1767: 1759: 1721: 1715: 1709: 1692: 1686: 1672: 1593: 1585:Lothaire, M. 1579: 1560: 1553: 1532:(2): 79–98, 1529: 1525: 1519: 1500: 1493: 1474: 1463: 1439: 1435: 1429: 1405: 1399: 1381: 1371: 1329: 1325:Nonlinearity 1323: 1296: 1290: 1284: 1265: 1255: 1229: 1228:, Series A, 1223: 1156: 1150: 1097: 1069: 1058: 1021: 1010: 996: 924: 920: 917: 897: 891: 887: 881: 877: 871: 867: 861: 851: 847: 837: 832: 824: 819: 813: 810: 756: 740: 725: 714: 702: 677: 642: 615:power of two 433:between two 423:music theory 420: 385:Music theory 367:golden ratio 363: 347:golden angle 340: 336:golden angle 326:Plant growth 321:Applications 193:and integer 100: 69: 59: 53: 46: 39: 30: 26: 22: 20: 15: 2249:: 175–190, 770: [ 763:Vera T. Sós 736:-intercepts 451:unit circle 343:phyllotaxis 257:divide the 171:real number 83: [ 76:Vera T. Sós 2617:Categories 2485:for which 1773:Sós, V. T. 1731:1707.04094 1617:1001.68093 1339:1904.10815 1299:(2): 333, 1166:1612.04906 1107:cs/0609124 1050:References 796:, and the 411:dodecagram 379:Delone set 2605:: 323–324 2579:⁡ 2569:ξ 2546:120454265 2502:ϕ 2493:θ 2453:125810745 2256:0803.1250 2227:121496726 2173:θ 2117:1107.4134 2090:119655772 2034:123011205 1988:123400321 1941:… 1904:ξ 1825:: 107–111 1806:: 127–134 1786:α 1546:120586231 1422:184482714 1364:129945118 1207:119670663 786:geodesics 669:semitones 628:π 601:π 578:ρ 575:⁡ 562:π 539:ρ 516:ν 513:⁡ 497:π 488:⁡ 465:ν 431:frequency 407:semitones 304:α 301:π 292:θ 270:α 245:α 236:… 230:α 221:α 181:α 153:θ 144:… 138:θ 129:θ 97:Statement 2340:55686324 1756:67851217 1681:(1998), 1587:(2002), 1263:(2011), 1033:See also 657:generate 282:and the 2538:0041891 2445:3768035 2406:0548632 2332:3505670 2312:Bibcode 2281:6389675 2273:2443351 2219:0217019 2142:2873022 2122:Bibcode 2082:2419185 2026:2319157 1980:0202668 1865:0104651 1748:4094564 1701:1643286 1344:Bibcode 1248:0957201 1199:3706822 1134:3228597 691:In the 453:in the 2544:  2536:  2451:  2443:  2404:  2338:  2330:  2279:  2271:  2225:  2217:  2148:  2140:  2088:  2080:  2032:  2024:  1986:  1978:  1863:  1754:  1746:  1699:  1615:  1605:  1568:  1544:  1508:  1482:  1456:745935 1454:  1420:  1388:  1362:  1273:  1246:  1205:  1197:  1189:  1132:  1122:  1077:  1022:θ 997:θ 925:θ 898:θ 892:θ 882:θ 872:θ 862:θ 852:θ 838:θ 820:θ 814:θ 776:, and 439:octave 284:angle 89:, and 60:θ 54:θ 47:θ 40:θ 2542:S2CID 2449:S2CID 2336:S2CID 2298:(PDF) 2277:S2CID 2251:arXiv 2223:S2CID 2150:99723 2146:S2CID 2112:arXiv 2086:S2CID 2058:arXiv 2030:S2CID 1984:S2CID 1752:S2CID 1726:arXiv 1542:S2CID 1452:JSTOR 1418:S2CID 1360:S2CID 1334:arXiv 1203:S2CID 1187:JSTOR 1161:arXiv 1130:S2CID 1102:arXiv 1004:is a 833:rigid 774:] 653:piano 87:] 29:, or 2499:< 1603:ISBN 1566:ISBN 1506:ISBN 1480:ISBN 1386:ISBN 1271:ISBN 1120:ISBN 1075:ISBN 425:, a 2597:", 2576:mod 2526:doi 2514:", 2433:doi 2429:125 2392:doi 2320:doi 2308:161 2261:doi 2247:136 2207:doi 2195:", 2177:mod 2130:doi 2108:146 2068:doi 2054:128 2012:doi 1968:doi 1956:", 1851:doi 1798:", 1736:doi 1667:73. 1613:Zbl 1534:doi 1444:doi 1410:doi 1352:doi 1301:doi 1234:doi 1179:hdl 1171:doi 1157:124 1112:doi 825:gap 806:Coq 788:of 743:+ 1 728:+ 1 717:+ 1 566:log 504:log 485:exp 421:In 2619:: 2601:, 2540:, 2534:MR 2532:, 2522:46 2520:, 2447:, 2441:MR 2439:, 2427:, 2413:^ 2402:MR 2400:, 2388:28 2386:, 2347:^ 2334:, 2328:MR 2326:, 2318:, 2306:, 2300:, 2275:, 2269:MR 2267:, 2259:, 2245:, 2221:, 2215:MR 2213:, 2203:63 2201:, 2144:, 2138:MR 2136:, 2128:, 2120:, 2106:, 2084:, 2078:MR 2076:, 2066:, 2052:, 2028:, 2022:MR 2020:, 2008:59 2006:, 1982:, 1976:MR 1974:, 1964:61 1962:, 1861:MR 1859:, 1847:46 1845:, 1821:, 1802:, 1758:, 1750:, 1744:MR 1742:, 1734:, 1722:53 1720:, 1697:MR 1693:44 1691:, 1685:, 1611:, 1591:, 1540:, 1528:, 1450:, 1440:11 1438:, 1416:, 1358:, 1350:, 1342:, 1330:33 1328:, 1314:^ 1297:36 1295:, 1244:MR 1242:, 1230:45 1214:^ 1201:, 1195:MR 1193:, 1185:, 1177:, 1169:, 1155:, 1141:^ 1128:, 1118:, 1110:, 1088:^ 1008:. 999:/2 923:+ 890:+ 880:+ 870:+ 850:+ 800:. 792:, 772:hu 765:, 703:A 675:. 643:A 85:hu 78:, 50:, 43:, 25:, 2603:2 2585:) 2582:1 2573:( 2566:n 2528:: 2496:N 2473:N 2435:: 2394:: 2368:d 2365:3 2322:: 2314:: 2263:: 2253:: 2209:: 2181:1 2170:n 2132:: 2124:: 2114:: 2070:: 2060:: 2014:: 1970:: 1944:) 1937:, 1934:2 1930:, 1927:1 1923:, 1920:0 1917:= 1914:n 1911:( 1907:} 1901:n 1898:{ 1853:: 1823:1 1804:1 1783:n 1738:: 1728:: 1654:d 1634:1 1631:+ 1628:d 1536:: 1530:1 1446:: 1412:: 1354:: 1346:: 1336:: 1303:: 1236:: 1181:: 1173:: 1163:: 1114:: 1104:: 1027:A 1013:A 1001:π 982:d 979:3 959:d 939:d 936:3 921:A 907:A 903:A 888:A 878:A 868:A 857:A 848:A 843:A 829:A 747:n 741:n 734:y 726:n 721:n 715:n 710:n 625:2 598:2 570:2 559:2 519:) 508:2 500:i 494:2 491:( 417:. 316:. 298:2 295:= 242:n 239:, 233:, 227:2 224:, 201:n 150:n 147:, 141:, 135:2 132:, 109:n 65:π 52:3 45:2 35:n

Index

Hugo Steinhaus
Vera T. Sós
János Surányi
hu
Stanisław Świerczkowski
fractional parts
real number
unit interval

golden angle
phyllotaxis
golden angle

Fermat spiral
golden ratio
badly approximable number
Fermat spiral
Delone set

Pythagorean tuning
chromatic circle
perfect fifths
semitones
dodecagram
Pythagorean comma
music theory
musical interval
frequency
musical tones
octave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.