Knowledge (XXG)

Thylakoid

Source 📝

830:(2), or spontaneously via their transmembrane domains (not shown in the figure). Lumenal proteins are exported across the thylakoid membrane into the lumen by either the Tat-dependent pathway (2) or the Sec-dependent pathway (3) and released by cleavage from the thylakoid targeting signal. The different pathways utilize different signals and energy sources. The Sec (secretory) pathway requires ATP as an energy source and consists of SecA, which binds to the imported protein and a Sec membrane complex to shuttle the protein across. Proteins with a twin 1117:
that encloses a single lumen (as in higher‐plant chloroplasts) and allows water‐soluble and lipid‐soluble molecules to diffuse through the entire membrane network. Moreover, perforations are often observed within the parallel thylakoid sheets. These gaps in the membrane allow for the traffic of particles of different sizes throughout the cell, including ribosomes, glycogen granules, and lipid bodies. The relatively large distance between the thylakoids provides space for the external light-harvesting antennae, the
422:
complex network of alternating helical membrane surfaces of different radii and pitch was shown to minimize the surface and bending energies of the membranes. This new model, the most extensive one generated to date, revealed that features from two, seemingly contradictory, older models coexist in the structure. Notably, similar arrangements of helical elements of alternating handedness, often referred to as "parking garage" structures, were proposed to be present in the
826:) complexes. After entering the chloroplast, the first targeting peptide is cleaved off by a protease processing imported proteins. This unmasks the second targeting signal and the protein is exported from the stroma into the thylakoid in a second targeting step. This second step requires the action of protein translocation components of the thylakoids and is energy-dependent. Proteins are inserted into the membrane via the SRP-dependent pathway (1), the 848: 839:) pathway. The chloroplast SRP can interact with its target proteins either post-translationally or co-translationally, thus transporting imported proteins as well as those that are translated inside the chloroplast. The SRP pathway requires GTP and the pH gradient as energy sources. Some transmembrane proteins may also spontaneously insert into the membrane from the stromal side without energy requirement. 318: 806: 458:(VIPP1). Plants cannot survive without this protein, and reduced VIPP1 levels lead to slower growth and paler plants with reduced ability to photosynthesize. VIPP1 appears to be required for basic thylakoid membrane formation, but not for the assembly of protein complexes of the thylakoid membrane. It is conserved in all organisms containing thylakoids, including cyanobacteria, green algae, such as 62: 303: 1079: 357:. The thylakoid lipid bilayer shares characteristic features with prokaryotic membranes and the inner chloroplast membrane. For example, acidic lipids can be found in thylakoid membranes, cyanobacteria and other photosynthetic bacteria and are involved in the functional integrity of the photosystems. The thylakoid membranes of higher plants are composed primarily of 797:. Chloroplasts also need to balance the ratios of photosystem I and II for the electron transfer chain. The redox state of the electron carrier plastoquinone in the thylakoid membrane directly affects the transcription of chloroplast genes encoding proteins of the reaction centers of the photosystems, thus counteracting imbalances in the electron transfer chain. 517: 593:
photosystems in the thylakoid membrane system, mobile electron carriers are required to shuttle electrons between them. These carriers are plastoquinone and plastocyanin. Plastoquinone shuttles electrons from photosystem II to the cytochrome b6f complex, whereas plastocyanin carries electrons from the cytochrome b6f complex to photosystem I.
295: 205: 821:
inside the chloroplast. Most thylakoid proteins encoded by a plant's nuclear genome need two targeting signals for proper localization: An N-terminal chloroplast targeting peptide (shown in yellow in the figure), followed by a thylakoid targeting peptide (shown in blue). Proteins are imported through
1116:
In contrast to the thylakoid network of higher plants, which is differentiated into grana and stroma lamellae, the thylakoids in cyanobacteria are organized into multiple concentric shells that split and fuse to parallel layers forming a highly connected network. This results in a continuous network
764:
took place. This results in the four major thylakoid protein complexes being encoded in part by the chloroplast genome and in part by the nuclear genome. Plants have developed several mechanisms to co-regulate the expression of the different subunits encoded in the two different organelles to assure
536:
consists of at least 335 different proteins. Out of these, 89 are in the lumen, 116 are integral membrane proteins, 62 are peripheral proteins on the stroma side, and 68 peripheral proteins on the lumenal side. Additional low-abundance lumenal proteins can be predicted through computational methods.
365:
that are asymmetrically arranged along and across the membranes. Thylakoid membranes are richer in galactolipids rather than phospholipids; also they predominantly consist of hexagonal phase II forming monogalacotosyl diglyceride lipid. Despite this unique composition, plant thylakoid membranes have
1816:
Elena Aseeva; Friederich OssenbĂŒhl; Claudia Sippel; Won K. Cho; Bernhard Stein; Lutz A. Eichacker; Jörg Meurer; Gerhard Wanner; Peter Westhoff; JĂŒrgen Soll; Ute C. Vothknecht (2007). "Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes".
421:
study of the thylakoid membranes has shown that the stroma lamellae are organized in wide sheets perpendicular to the grana stack axis and form multiple right-handed helical surfaces at the granal interface. Left-handed helical surfaces consolidate between the right-handed helices and sheets. This
997:
consumes two protons from the stroma. These are released in the lumen when the reduced plastoquinol is oxidized by the cytochrome b6f protein complex on the lumen side of the thylakoid membrane. From the plastoquinone pool, electrons pass through the cytochrome b6f complex. This integral membrane
877:
The first step in photosynthesis is the light-driven reduction (splitting) of water to provide the electrons for the photosynthetic electron transport chains as well as protons for the establishment of a proton gradient. The water-splitting reaction occurs on the lumenal side of the thylakoid
592:
Photosystem II is located mostly in the grana thylakoids, whereas photosystem I and ATP synthase are mostly located in the stroma thylakoids and the outer layers of grana. The cytochrome b6f complex is distributed evenly throughout thylakoid membranes. Due to the separate location of the two
697:
The cytochrome b6f complex is part of the thylakoid electron transport chain and couples electron transfer to the pumping of protons into the thylakoid lumen. Energetically, it is situated between the two photosystems and transfers electrons from photosystem II-plastoquinone to
324:
The prevailing model of the granum-stroma assembly is stacks of granal thylakoids wrapped by right-handed helical stromal thylakoids which are connected to large parallel sheets of stromal thylakoids and adjacent right-handed helices by left-handed helical structures. (Based on
712:
The thylakoid ATP synthase is a CF1FO-ATP synthase similar to the mitochondrial ATPase. It is integrated into the thylakoid membrane with the CF1-part sticking into the stroma. Thus, ATP synthesis occurs on the stromal side of the thylakoids where the ATP is needed for the
1045:
due to charge separation, thylakoid membranes lack a charge gradient. To compensate for this, the 10,000 fold proton concentration gradient across the thylakoid membrane is much higher compared to a 10 fold gradient across the inner membrane of mitochondria. The resulting
915:
Photosystem I uses light energy to reduce NADP to NADPH + H, and is active in both noncyclic and cyclic electron transport. In cyclic mode, the energized electron is passed down a chain that ultimately returns it (in its base state) to the chlorophyll that energized
834:
motif in their thylakoid signal peptide are shuttled through the Tat (twin arginine translocation) pathway, which requires a membrane-bound Tat complex and the pH gradient as an energy source. Some other proteins are inserted into the membrane via the SRP
1113:, and thylakoid membranes each have specialized roles in the cyanobacterial cell. Understanding the organization, functionality, protein composition, and dynamics of the membrane systems remains a great challenge in cyanobacterial cell biology. 729:
is present in the lumen and shuttles electrons from the cytochrome b6f protein complex to photosystem I. While plastoquinones are lipid-soluble and therefore move within the thylakoid membrane, plastocyanin moves through the thylakoid lumen.
946:
A major function of the thylakoid membrane and its integral photosystems is the establishment of chemiosmotic potential. The carriers in the electron transport chain use some of the electron's energy to actively transport protons from the
366:
been shown to assume largely lipid-bilayer dynamic organization. Lipids forming the thylakoid membranes, richest in high-fluidity linolenic acid are synthesized in a complex pathway involving exchange of lipid precursors between the
683:). The P is short for pigment and the number is the specific absorption peak in nanometers for the chlorophyll molecules in each reaction center. This is the green pigment present in plants that is not visible to unaided eyes. 863:, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome complex, and ATP synthesis by the ATP synthase utilizing the generated proton gradient. 480:. Disruption of isolated thylakoids, for example by mechanical shearing, releases the lumenal fraction. Peripheral and integral membrane fractions can be extracted from the remaining membrane fraction. Treatment with 446:
that contain semicrystalline membrane structures called prolamellar bodies. When exposed to light, these prolamellar bodies develop into thylakoids. This does not happen in seedlings grown in the dark, which undergo
658:
to harvest light at a variety of wavelengths. Each antenna complex has between 250 and 400 pigment molecules and the energy they absorb is shuttled by resonance energy transfer to a specialized chlorophyll
1903:
Liu C, Willmund F, Golecki J, Cacace S, Markert C, Heß B, Schroda M, Schroda M (2007). "The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas".
528:
studies of thylakoid fractions have provided further details on the protein composition of the thylakoids. These data have been summarized in several plastid protein databases that are available online.
1332: 1093:
are photosynthetic prokaryotes with highly differentiated membrane systems. Cyanobacteria have an internal system of thylakoid membranes where the fully functional electron transfer chains of
744:
signal, the largest groups with known functions are 19% involved in protein processing (proteolysis and folding), 18% in photosynthesis, 11% in metabolism, and 7% redox carriers and defense.
1037:
of the PMF to generate the potential energy required for ATP synthesis. The PMF is the sum of a proton chemical potential (given by the proton concentration gradient) and a transmembrane
417:. Grana thylakoids and stroma thylakoids can be distinguished by their different protein composition. Grana contribute to chloroplasts' large surface area to volume ratio. A recent 2398:
Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Klösgen R (2006). "Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts".
565:
which play an important role in light-harvesting and the light-dependent reactions of photosynthesis. There are four major protein complexes in the thylakoid membrane:
667:
molecules at the reaction center absorb energy, an electron is excited and transferred to an electron-acceptor molecule. Photosystem I contains a pair of chlorophyll
1702:
Horowitz CJ; Berry DK; Briggs CM; Caplan ME; Cumming A; Schneider AS (2015). "Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars".
789:
rate of chloroplast-encoded proteins is controlled by the presence or absence of assembly partners (control by epistasy of synthesis). This mechanism involves
2568:
Olive, J; Ajlani, G; Astier, C; Recouvreur, M; Vernotte, C (1997). "Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803".
2262:
Choquet Y, Wostrikoff K, Rimbault B, Zito F, Girard-Bascou J, Drapier D, Wollman F (2001). "Assembly-controlled regulation of chloroplast gene translation".
426:
and in ultradense nuclear matter. This structural organization may constitute a fundamental geometry for connecting between densely packed layers or sheets.
413:) is a stack of thylakoid discs. Chloroplasts can have from 10 to 100 grana. Grana are connected by stroma thylakoids, also called intergranal thylakoids or 1105:. Cyanobacteria must be able to reorganize the membranes, synthesize new membrane lipids, and properly target proteins to the correct membrane system. The 2088:"In-Depth Analysis of the Thylakoid Membrane Proteome of Arabidopsis thaliana Chloroplasts: New Proteins, New Functions, and a Plastid Proteome Database" 740:
Lumenal proteins can be predicted computationally based on their targeting signals. In Arabidopsis, out of the predicted lumenal proteins possessing the
1289:
Sato N (2004). "Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution".
537:
Of the thylakoid proteins with known functions, 42% are involved in photosynthesis. The next largest functional groups include proteins involved in
923:), and is only active in noncyclic transport. Electrons in this system are not conserved, but are rather continually entering from oxidized 2H 2697: 2676: 2649: 2503: 2001:"Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction" 911:
The noncyclic variety involves the participation of both photosystems, while the cyclic electron flow is dependent on only photosystem I.
878:
membrane and is driven by the light energy captured by the photosystems. This oxidation of water conveniently produces the waste product O
2139:
Kleffmann T, Hirsch-Hoffmann M, Gruissem W, Baginsky S (2006). "plprot: a comprehensive proteome database for different plastid types".
1594:
Terasaki M, Shemesh T, Kasthuri N, Klemm R, Schalek R, Hayworth K, Hand A, Yankova M, Huber G, Lichtman J, Rapoport T, Kozlov M (2013).
827: 741: 451:. An underexposure to light can cause the thylakoids to fail. This causes the chloroplasts to fail resulting to the death of the plant. 309:
10-nm-thick STEM tomographic slice from a lettuce chloroplast. Grana stacks are interconnected by unstacked stromal thylakoids, called
442:
emerge from the ground. Thylakoid formation requires light. In the plant embryo and in the absence of light, proplastids develop into
397:. During the light-dependent reaction, protons are pumped across the thylakoid membrane into the lumen making it acidic down to pH 4. 1041:(given by charge separation across the membrane). Compared to the inner membranes of mitochondria, which have a significantly higher 1121:. This macrostructure, as in the case of higher plants, shows some flexibility during changes in the physicochemical environment. 2348:"Balancing the two photosystems: photosynthetic electron transfer governs transcription of reaction centre genes in chloroplasts" 1017:
The proton gradient is also caused by the consumption of protons in the stroma to make NADPH from NADP+ at the NADP reductase.
2180:"Proteomics of the Chloroplast: Systematic Identification and Targeting Analysis of Lumenal and Peripheral Thylakoid Proteins" 1763:
Schneider AS; Berry DK; Caplan ME; Horowitz CJ; Lin Z (2016). "Effect of topological defects on "nuclear pasta" observables".
2596: 919:
Photosystem II uses light energy to oxidize water molecules, producing electrons (e), protons (H), and molecular oxygen (O
756:, which encodes a number of thylakoid proteins. However, during the course of plastid evolution from their cyanobacterial 2299:"Chloroplast Biogenesis of Photosystem II Cores Involves a Series of Assembly-Controlled Steps That Regulate Translation" 1178: 1195: 2595:
Nagy, G; Posselt, D; KovĂĄcs, L; Holm, JK; SzabĂł, M; Ughy, B; Rosta, L; Peters, J; Timmins, P; Garab, G (1 June 2011).
1547:"The Three-Dimensional Network of the Thylakoid Membranes in Plants: Quasihelical Model of the Granum-Stroma Assembly" 836: 493: 1190: 714: 370:
and inner membrane of the plastid envelope and transported from the inner membrane to the thylakoids via vesicles.
193: 108: 90: 2716: 1345:
Spraque SG (1987). "Structural and functional organization of galactolipids on thylakoid membrane organization".
1135: 1067: 1010: 994: 856: 562: 505: 346: 224: 1498:"Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography" 2597:"Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering" 1145: 1106: 895: 770: 597: 1854:"Vipp1 deletion mutant of Synechocystis: A connection between bacterial phage shock and thylakoid biogenesis?" 679:
chlorophyll that absorbs 680 nm light best (note that these wavelengths correspond to deep red – see the
2227:
Vener AV, Ohad I, Andersson B (1998). "Protein phosphorylation and redox sensing in chloroplast thylakoids".
2721: 1995:
Peltier J, Emanuelsson O, Kalume D, Ytterberg J, Friso G, Rudella A, Liberles D, Söderberg L, Roepstorff P,
1130: 734: 959:, as low as pH 4, compared to pH 8 in the stroma. This represents a 10,000 fold concentration gradient for 2726: 1047: 692: 647: 617: 601: 581: 350: 1025:
The molecular mechanism of ATP (Adenosine triphosphate) generation in chloroplasts is similar to that in
353:
embedded directly in the membrane. It is an alternating pattern of dark and light bands measuring each 1
786: 550: 423: 367: 524:
Thylakoids contain many integral and peripheral membrane proteins, as well as lumenal proteins. Recent
2446: 1782: 1721: 1666: 1234: 1098: 1038: 883: 621: 464: 390: 80: 1939:
Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht U, Soll J, Westhoff P (2001).
1461:
Benning C, Xu C, Awai K (2006). "Non-vesicular and vesicular lipid trafficking involving plastids".
1030: 418: 99: 1279:"Photosynthesis" McGraw Hill Encyclopedia of Science and Technology, 10th ed. 2007. Vol. 13 p. 469 1798: 1772: 1745: 1711: 1684: 1656: 1412: 1370: 1314: 1042: 1034: 386: 148: 2521:"Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria" 2668: 1101:
reside. The presence of different membrane systems lends these cells a unique complexity among
2731: 2693: 2672: 2645: 2619: 2550: 2499: 2474: 2415: 2377: 2328: 2279: 2244: 2209: 2156: 2117: 2065: 2030: 1996: 1972: 1921: 1885: 1834: 1737: 1625: 1576: 1527: 1478: 1443: 1362: 1306: 1262: 818: 790: 538: 158: 476:
Thylakoids can be purified from plant cells using a combination of differential and gradient
2611: 2577: 2540: 2532: 2464: 2454: 2407: 2367: 2359: 2318: 2310: 2271: 2236: 2199: 2191: 2148: 2107: 2099: 2057: 2020: 2012: 1962: 1952: 1913: 1875: 1865: 1826: 1790: 1729: 1674: 1615: 1607: 1566: 1558: 1517: 1509: 1470: 1404: 1354: 1298: 1252: 1242: 1155: 860: 680: 655: 546: 481: 904:
Noncyclic electron transport or non-cyclic photophosphorylation produces NADPH + H and ATP.
675:, at its reaction center that maximally absorbs 700 nm light. Photosystem II contains 1941:"VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation" 1200: 1110: 952: 823: 778: 639: 542: 501: 381: 172: 138: 31: 2450: 1786: 1725: 1670: 1238: 2545: 2520: 2372: 2347: 2323: 2298: 1620: 1595: 1571: 1546: 1522: 1497: 1390:"Magnetic resonance studies of dynamic organization of lipids in chloroplast membranes" 1257: 1222: 1160: 1118: 1094: 814: 576: 477: 394: 330: 271: 248: 228: 220: 186: 165: 2661: 2581: 2469: 2434: 2240: 2204: 2179: 2112: 2087: 2025: 2000: 2710: 2178:
Peltier J, Friso G, Kalume D, Roepstorff P, Nilsson F, Adamska I, van Wijk K (2000).
1967: 1940: 1917: 1880: 1853: 1431: 1186: 1150: 1090: 1002: 990: 777:. Biogenesis, stability and turnover of thylakoid protein complexes are regulated by 766: 572: 459: 358: 2640:
Heller, H. Craig; Orians, Gordan H.; Purves, William K. & Sadava, David (2004).
1802: 1749: 1688: 1389: 1318: 1221:
Bussi Y, Shimoni E, Weiner A, Kapon R, Charuvi D, Nevo R, Efrati E, Reich Z (2019).
847: 405:
In higher plants thylakoids are organized into a granum-stroma membrane assembly. A
1733: 1374: 1140: 1059: 1055: 1051: 1026: 948: 941: 805: 793:
through binding of excess protein to the 5' untranslated region of the chloroplast
761: 757: 726: 707: 613: 586: 362: 317: 42: 1596:"Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs" 1416: 251:
thylakoids, which join granum stacks together as a single functional compartment.
2061: 1830: 2411: 2086:
Friso G, Giacomelli L, Ytterberg A, Peltier J, Rudella A, Sun Q, Wijk K (2004).
773:
of nuclear genes encoding parts of the photosynthetic apparatus is regulated by
651: 643: 633: 569: 302: 216: 51: 1794: 1679: 1644: 1611: 900:
Two different variations of electron transport are used during photosynthesis:
886:. The molecular oxygen formed by the reaction is released into the atmosphere. 663:
at the reaction center of each photosystem. When either of the two chlorophyll
307:
Scanning transmission electron microscope (STEM) imaging of thylakoid membranes
61: 1474: 1302: 1006: 975: 872: 525: 448: 435: 255: 2536: 1645:""Parking-garage" structures in nuclear astrophysics and cellular biophysics" 1223:"Fundamental helical geometry consolidates the plant photosynthetic membrane" 1247: 516: 497: 443: 354: 2623: 2554: 2519:
Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007).
2419: 2381: 2363: 2332: 2314: 2283: 2248: 2213: 2160: 2121: 2069: 2034: 1976: 1957: 1925: 1889: 1870: 1838: 1741: 1629: 1580: 1562: 1531: 1513: 1482: 1310: 1266: 1078: 907:
Cyclic electron transport or cyclic photophosphorylation produces only ATP.
333:. A stack of thylakoids is called a granum and resembles a stack of coins. 2478: 2459: 1447: 1366: 17: 2195: 2152: 1102: 983: 831: 638:
These photosystems are light-driven redox centers, each consisting of an
533: 439: 254:
In thylakoid membranes, chlorophyll pigments are found in packets called
179: 2667:(7th ed.). New York: W.H. Freeman and Company Publishers. pp.  239:. Chloroplast thylakoids frequently form stacks of disks referred to as 2615: 2275: 2103: 2016: 1408: 1358: 931:+ 4 H + 4 e) and exiting with NADP when it is finally reduced to NADPH. 733:
The lumen of the thylakoids is also the site of water oxidation by the
204: 2435:"ATP formation caused by acid-base transition of spinach chloroplasts" 760:
ancestors, extensive gene transfer from the chloroplast genome to the
1432:"13C NMR studies of lipid fatty-acyl chains of chloroplast membranes" 979: 960: 956: 851:
Light-dependent reactions of photosynthesis at the thylakoid membrane
782: 753: 329:
Thylakoids are membrane-bound structures embedded in the chloroplast
2687: 2493: 1777: 1661: 1058:. As the protons travel back down the gradient through channels in 1716: 859:
of photosynthesis. These include light-driven water oxidation and
774: 609: 605: 294: 809:
Schematic representation of thylakoid protein targeting pathways.
1643:
Berry DK; Caplan ME; Horowitz CJ; Huber G; Schneider AS (2016).
794: 676: 672: 27:
Membrane enclosed compartments in chloroplasts and cyanobacteria
2127: 2166: 1179: 1070:
are coupled to the synthesis of ATP via the proton gradient.
258:. Each quantasome contains 230 to 250 chlorophyll molecules. 2689:
The Cyanobacteria: Molecular Biology, Genomics and Evolution
2495:
The Cyanobacteria: Molecular Biology, Genomics and Evolution
1545:
MustĂĄrdy, L.; Buttle, K.; Steinbach, G.; Garab, G. (2008).
596:
Together, these proteins make use of light energy to drive
1496:
Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005).
971:
The protons in the lumen come from three primary sources.
2659:
Raven, Peter H.; Ray F. Evert; Susan E. Eichhorn (2005).
1333:
EncyclopĂŠdia Britannica 2006 Ultimate Reference Suite DVD
813:
Thylakoid proteins are targeted to their destination via
1013:
also transfers two protons from the stroma to the lumen.
769:
and assembly of these protein complexes. For example,
520:
Thylakoid disc with embedded and associated proteins.
30:"Granum" redirects here. For the town in Canada, see 2297:
Minai L, Wostrikoff K, Wollman F, Choquet Y (2006).
737:
associated with the lumenal side of photosystem II.
2570:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
41: 2660: 1852:Westphal S, Heins L, Soll J, Vothknecht U (2001). 989:The transfer of electrons from photosystem II to 2686:Herrero, Antonia; Flores, Enrique, eds. (2008). 2492:Herrero, Antonia; Flores, Enrique, eds. (2008). 1331:"photosynthesis."EncyclopĂŠdia Britannica. 2008. 1054:is high enough to drive ATP synthesis using the 822:the translocon of the outer and inner membrane ( 310: 240: 73: 1990: 1988: 1986: 1033:(PMF). However, chloroplasts rely more on the 385:is a continuous aqueous phase enclosed by the 1436:Indian Journal of Biochemistry and Biophysics 8: 2393: 2391: 1082:Thylakoids (green) inside a cyanobacterium ( 208:Thylakoids (dark green) inside a chloroplast 1066:are combined into ATP. In this manner, the 955:. During photosynthesis, the lumen becomes 454:Thylakoid formation requires the action of 532:According to these studies, the thylakoid 2644:(7th ed.). Sinauer Associates, Inc. 2544: 2468: 2458: 2371: 2322: 2203: 2111: 2048:van Wijk K (2004). "Plastid proteomics". 2024: 1966: 1956: 1879: 1869: 1776: 1715: 1678: 1660: 1619: 1570: 1521: 1256: 1246: 247:). Grana are connected by intergranal or 2692:(1st ed.). Caister Academic Press. 2498:(1st ed.). Caister Academic Press. 2081: 2079: 1655:(5). American Physical Society: 055801. 1077: 846: 804: 616:uses the chemiosmotic potential to make 515: 316: 301: 293: 203: 1216: 1214: 1212: 1210: 1208: 1171: 1029:and takes the required energy from the 215:are membrane-bound compartments inside 456:vesicle-inducing protein in plastids 1 38: 2433:Jagendorf A. T. and E. Uribe (1966). 7: 1074:Thylakoid membranes in cyanobacteria 978:by photosystem II oxidises water to 855:The thylakoids are the site of the 801:Protein targeting to the thylakoids 67:Components of a typical chloroplast 2352:Philos Trans R Soc Lond B Biol Sci 998:assembly resembles cytochrome bc1. 604:across the thylakoid membrane and 286:means "sac-like" or "pouch-like". 282:, meaning "sac" or "pouch". Thus, 25: 389:. It plays an important role for 2346:Allen J, Pfannschmidt T (2000). 1918:10.1111/j.1365-313X.2007.03047.x 785:in the thylakoid membranes. The 322:Granum-stroma assembly structure 60: 963:across the thylakoid membrane. 725:The electron transport protein 1734:10.1103/PhysRevLett.114.031102 1: 2582:10.1016/S0005-2728(96)00168-5 2241:10.1016/S1369-5266(98)80107-6 2128:The Plastid Proteome Database 995:non-cyclic electron transport 462:, and higher plants, such as 232: 2642:LIFE: The Science of Biology 2062:10.1016/j.plaphy.2004.10.015 1831:10.1016/j.plaphy.2007.01.005 752:Chloroplasts have their own 698:plastocyanin-photosystem I. 608:, a product of the terminal 561:Thylakoid membranes contain 494:peripheral membrane proteins 2412:10.1016/j.jplph.2005.11.009 837:signal recognition particle 715:light-independent reactions 472:Isolation and fractionation 349:of photosynthesis with the 223:. They are the site of the 2748: 2439:Proc. Natl. Acad. Sci. USA 1795:10.1103/PhysRevC.93.065806 1680:10.1103/PhysRevC.94.055801 1612:10.1016/j.cell.2013.06.031 1180: 939: 893: 870: 705: 690: 631: 563:integral membrane proteins 557:Integral membrane proteins 506:integral membrane proteins 434:Chloroplasts develop from 401:Granum and stroma lamellae 236: 231:. Thylakoids consist of a 29: 1475:10.1016/j.pbi.2006.03.012 1303:10.1007/s10265-004-0183-1 1068:light-dependent reactions 1011:cyclic electron transport 967:Source of proton gradient 890:Electron transport chains 857:light-dependent reactions 598:electron transport chains 496:, whereas treatment with 347:light-dependent reactions 313:. Scalebar = 200 nm. See. 225:light-dependent reactions 59: 50: 2537:10.1038/sj.emboj.7601594 2167:Plastid Protein Database 1146:Electrochemical gradient 896:electron transport chain 2604:The Biochemical Journal 1248:10.1073/pnas.1905994116 1196:A Greek–English Lexicon 1131:Arthur Meyer (botanist) 735:oxygen evolving complex 648:photosynthetic pigments 351:photosynthetic pigments 2364:10.1098/rstb.2000.0697 2315:10.1105/tpc.105.037705 1999:, van Wijk KJ (2002). 1958:10.1073/pnas.061500998 1945:Proc Natl Acad Sci USA 1871:10.1073/pnas.061501198 1858:Proc Natl Acad Sci USA 1563:10.1105/tpc.108.059147 1514:10.1105/tpc.105.035030 1430:YashRoy, R.C. (1987). 1397:Journal of Biosciences 1388:YashRoy, R.C. (1990). 1227:Proc Natl Acad Sci USA 1087: 1050:between the lumen and 1048:chemiosmotic potential 852: 810: 693:Cytochrome b6f complex 687:Cytochrome b6f complex 671:molecules, designated 602:chemiosmotic potential 582:Cytochrome b6f complex 521: 326: 314: 299: 209: 2460:10.1073/pnas.55.1.170 2050:Plant Physiol Biochem 1819:Plant Physiol Biochem 1187:Liddell, Henry George 1081: 850: 828:Tat-dependent pathway 817:and prokaryotic-type 808: 519: 424:endoplasmic reticulum 368:endoplasmic reticulum 320: 305: 297: 207: 2229:Curr Opin Plant Biol 2196:10.1105/tpc.12.3.319 1463:Curr Opin Plant Biol 1039:electrical potential 884:cellular respiration 781:via redox-sensitive 622:photophosphorylation 465:Arabidopsis thaliana 391:photophosphorylation 298:Thylakoid structures 81:Chloroplast envelope 2451:1966PNAS...55..170J 1787:2016PhRvC..93f5806S 1726:2015PhRvL.114c1102H 1671:2016PhRvC..94e5801B 1347:J Bioenerg Biomembr 1239:2019PNAS..11622366B 1233:(44): 22366–22375. 1031:proton motive force 717:of photosynthesis. 419:electron tomography 345:is the site of the 173:Nucleoid (DNA ring) 100:Intermembrane space 2616:10.1042/BJ20110180 2276:10.1042/BST0290421 2153:10.1093/pcp/pcj005 2141:Plant Cell Physiol 2104:10.1105/tpc.017814 2017:10.1105/tpc.010304 1409:10.1007/bf02702669 1359:10.1007/BF00762303 1088: 1043:membrane potential 1035:chemical potential 882:that is vital for 853: 819:secretory pathways 811: 748:Protein expression 549:response (9%) and 522: 387:thylakoid membrane 343:thylakoid membrane 327: 315: 300: 233:thylakoid membrane 210: 149:Thylakoid membrane 2699:978-1-904455-15-8 2678:978-0-7167-1007-3 2663:Biology of Plants 2651:978-0-7167-9856-9 2505:978-1-904455-15-8 2264:Biochem Soc Trans 1765:Physical Review C 1649:Physical Review C 1557:(10): 2552–2557. 1001:The reduction of 791:negative feedback 656:phycobiliproteins 541:, processing and 539:protein targeting 202: 201: 159:Stromal thylakoid 16:(Redirected from 2739: 2717:Membrane biology 2703: 2682: 2666: 2655: 2634:Textbook sources 2628: 2627: 2601: 2592: 2586: 2585: 2576:(2–3): 275–282. 2565: 2559: 2558: 2548: 2531:(5): 1467–1473. 2516: 2510: 2509: 2489: 2483: 2482: 2472: 2462: 2430: 2424: 2423: 2400:J. Plant Physiol 2395: 2386: 2385: 2375: 2358:(1402): 1351–9. 2343: 2337: 2336: 2326: 2294: 2288: 2287: 2259: 2253: 2252: 2224: 2218: 2217: 2207: 2175: 2169: 2164: 2136: 2130: 2125: 2115: 2083: 2074: 2073: 2045: 2039: 2038: 2028: 1992: 1981: 1980: 1970: 1960: 1936: 1930: 1929: 1900: 1894: 1893: 1883: 1873: 1849: 1843: 1842: 1813: 1807: 1806: 1780: 1760: 1754: 1753: 1719: 1699: 1693: 1692: 1682: 1664: 1640: 1634: 1633: 1623: 1591: 1585: 1584: 1574: 1542: 1536: 1535: 1525: 1493: 1487: 1486: 1458: 1452: 1451: 1427: 1421: 1420: 1394: 1385: 1379: 1378: 1342: 1336: 1329: 1323: 1322: 1286: 1280: 1277: 1271: 1270: 1260: 1250: 1218: 1203: 1183: 1182: 1176: 1156:Oxygen evolution 867:Water photolysis 861:oxygen evolution 681:visible spectrum 600:that generate a 547:oxidative stress 502:organic solvents 482:sodium carbonate 126: 64: 54: 45: 39: 21: 2747: 2746: 2742: 2741: 2740: 2738: 2737: 2736: 2707: 2706: 2700: 2685: 2679: 2658: 2652: 2639: 2636: 2631: 2599: 2594: 2593: 2589: 2567: 2566: 2562: 2518: 2517: 2513: 2506: 2491: 2490: 2486: 2432: 2431: 2427: 2397: 2396: 2389: 2345: 2344: 2340: 2296: 2295: 2291: 2270:(Pt 4): 421–6. 2261: 2260: 2256: 2226: 2225: 2221: 2177: 2176: 2172: 2138: 2137: 2133: 2085: 2084: 2077: 2047: 2046: 2042: 1994: 1993: 1984: 1938: 1937: 1933: 1902: 1901: 1897: 1851: 1850: 1846: 1815: 1814: 1810: 1762: 1761: 1757: 1701: 1700: 1696: 1642: 1641: 1637: 1593: 1592: 1588: 1544: 1543: 1539: 1495: 1494: 1490: 1460: 1459: 1455: 1429: 1428: 1424: 1392: 1387: 1386: 1382: 1344: 1343: 1339: 1330: 1326: 1288: 1287: 1283: 1278: 1274: 1220: 1219: 1206: 1201:Perseus Project 1177: 1173: 1169: 1136:AndrĂ© Jagendorf 1127: 1111:plasma membrane 1076: 1065: 1023: 969: 944: 938: 930: 926: 922: 898: 892: 881: 875: 869: 845: 815:signal peptides 803: 779:phosphorylation 750: 723: 710: 704: 695: 689: 640:antenna complex 636: 630: 559: 514: 491: 487: 474: 432: 403: 376: 339: 311:stroma lamellae 292: 270:comes from the 264: 237:thylakoid lumen 198: 197: 189: 182: 175: 168: 161: 151: 142: 135:Thylakoid space 127: 121: 111: 102: 93: 83: 76: 52: 43: 35: 32:Granum, Alberta 28: 23: 22: 15: 12: 11: 5: 2745: 2743: 2735: 2734: 2729: 2724: 2722:Photosynthesis 2719: 2709: 2708: 2705: 2704: 2698: 2683: 2677: 2656: 2650: 2635: 2632: 2630: 2629: 2587: 2560: 2511: 2504: 2484: 2445:(1): 170–177. 2425: 2387: 2338: 2289: 2254: 2219: 2170: 2131: 2075: 2056:(12): 963–77. 2040: 1982: 1951:(7): 4238–42. 1931: 1895: 1844: 1808: 1755: 1694: 1635: 1586: 1537: 1488: 1453: 1442:(3): 177–178. 1422: 1403:(4): 281–288. 1380: 1353:(6): 691–703. 1337: 1324: 1297:(6): 495–505. 1281: 1272: 1204: 1170: 1168: 1165: 1164: 1163: 1161:Photosynthesis 1158: 1153: 1148: 1143: 1138: 1133: 1126: 1123: 1119:phycobilisomes 1107:outer membrane 1095:photosynthesis 1075: 1072: 1063: 1022: 1021:ATP generation 1019: 1015: 1014: 999: 987: 982:, protons and 968: 965: 940:Main article: 937: 934: 933: 932: 928: 924: 920: 917: 909: 908: 905: 894:Main article: 891: 888: 879: 871:Main article: 868: 865: 844: 841: 802: 799: 749: 746: 722: 721:Lumen proteins 719: 706:Main article: 703: 700: 691:Main article: 688: 685: 646:and accessory 632:Main article: 629: 626: 612:reaction. The 590: 589: 584: 579: 558: 555: 513: 510: 489: 485: 478:centrifugation 473: 470: 431: 428: 402: 399: 395:photosynthesis 375: 372: 338: 335: 291: 288: 263: 260: 235:surrounding a 229:photosynthesis 200: 199: 194:Starch granule 187:Plastoglobulus 153: 152: 143: 113: 112: 109:Inner membrane 103: 94: 91:Outer membrane 65: 57: 56: 48: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2744: 2733: 2730: 2728: 2727:Plant anatomy 2725: 2723: 2720: 2718: 2715: 2714: 2712: 2701: 2695: 2691: 2690: 2684: 2680: 2674: 2670: 2665: 2664: 2657: 2653: 2647: 2643: 2638: 2637: 2633: 2625: 2621: 2617: 2613: 2610:(2): 225–30. 2609: 2605: 2598: 2591: 2588: 2583: 2579: 2575: 2571: 2564: 2561: 2556: 2552: 2547: 2542: 2538: 2534: 2530: 2526: 2522: 2515: 2512: 2507: 2501: 2497: 2496: 2488: 2485: 2480: 2476: 2471: 2466: 2461: 2456: 2452: 2448: 2444: 2440: 2436: 2429: 2426: 2421: 2417: 2413: 2409: 2406:(3): 333–47. 2405: 2401: 2394: 2392: 2388: 2383: 2379: 2374: 2369: 2365: 2361: 2357: 2353: 2349: 2342: 2339: 2334: 2330: 2325: 2320: 2316: 2312: 2309:(1): 159–75. 2308: 2304: 2300: 2293: 2290: 2285: 2281: 2277: 2273: 2269: 2265: 2258: 2255: 2250: 2246: 2242: 2238: 2235:(3): 217–23. 2234: 2230: 2223: 2220: 2215: 2211: 2206: 2201: 2197: 2193: 2190:(3): 319–41. 2189: 2185: 2181: 2174: 2171: 2168: 2162: 2158: 2154: 2150: 2146: 2142: 2135: 2132: 2129: 2123: 2119: 2114: 2109: 2105: 2101: 2098:(2): 478–99. 2097: 2093: 2089: 2082: 2080: 2076: 2071: 2067: 2063: 2059: 2055: 2051: 2044: 2041: 2036: 2032: 2027: 2022: 2018: 2014: 2011:(1): 211–36. 2010: 2006: 2002: 1998: 1991: 1989: 1987: 1983: 1978: 1974: 1969: 1964: 1959: 1954: 1950: 1946: 1942: 1935: 1932: 1927: 1923: 1919: 1915: 1912:(2): 265–77. 1911: 1907: 1899: 1896: 1891: 1887: 1882: 1877: 1872: 1867: 1864:(7): 4243–8. 1863: 1859: 1855: 1848: 1845: 1840: 1836: 1832: 1828: 1825:(2): 119–28. 1824: 1820: 1812: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1779: 1774: 1771:(6): 065806. 1770: 1766: 1759: 1756: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1718: 1713: 1710:(3): 031102. 1709: 1705: 1704:Phys Rev Lett 1698: 1695: 1690: 1686: 1681: 1676: 1672: 1668: 1663: 1658: 1654: 1650: 1646: 1639: 1636: 1631: 1627: 1622: 1617: 1613: 1609: 1606:(2): 285–96. 1605: 1601: 1597: 1590: 1587: 1582: 1578: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1541: 1538: 1533: 1529: 1524: 1519: 1515: 1511: 1508:(9): 2580–6. 1507: 1503: 1499: 1492: 1489: 1484: 1480: 1476: 1472: 1468: 1464: 1457: 1454: 1449: 1445: 1441: 1437: 1433: 1426: 1423: 1418: 1414: 1410: 1406: 1402: 1398: 1391: 1384: 1381: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1348: 1341: 1338: 1334: 1328: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1285: 1282: 1276: 1273: 1268: 1264: 1259: 1254: 1249: 1244: 1240: 1236: 1232: 1228: 1224: 1217: 1215: 1213: 1211: 1209: 1205: 1202: 1198: 1197: 1192: 1191:Scott, Robert 1188: 1184: 1175: 1172: 1166: 1162: 1159: 1157: 1154: 1152: 1151:Endosymbiosis 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1129: 1128: 1124: 1122: 1120: 1114: 1112: 1108: 1104: 1100: 1096: 1092: 1091:Cyanobacteria 1085: 1084:Synechocystis 1080: 1073: 1071: 1069: 1061: 1057: 1053: 1049: 1044: 1040: 1036: 1032: 1028: 1020: 1018: 1012: 1008: 1004: 1003:plastoquinone 1000: 996: 992: 991:plastoquinone 988: 986:in the lumen. 985: 981: 977: 974: 973: 972: 966: 964: 962: 958: 954: 950: 943: 935: 918: 914: 913: 912: 906: 903: 902: 901: 897: 889: 887: 885: 874: 866: 864: 862: 858: 849: 842: 840: 838: 833: 829: 825: 820: 816: 807: 800: 798: 796: 792: 788: 784: 780: 776: 772: 771:transcription 768: 767:stoichiometry 763: 759: 758:endosymbiotic 755: 747: 745: 743: 738: 736: 731: 728: 720: 718: 716: 709: 701: 699: 694: 686: 684: 682: 678: 674: 670: 666: 662: 657: 653: 649: 645: 641: 635: 627: 625: 623: 619: 615: 611: 607: 603: 599: 594: 588: 585: 583: 580: 578: 574: 571: 568: 567: 566: 564: 556: 554: 552: 548: 544: 540: 535: 530: 527: 518: 511: 509: 507: 503: 499: 495: 483: 479: 471: 469: 467: 466: 461: 460:Chlamydomonas 457: 452: 450: 445: 441: 437: 429: 427: 425: 420: 416: 412: 408: 400: 398: 396: 392: 388: 384: 383: 373: 371: 369: 364: 363:galactolipids 360: 359:phospholipids 356: 352: 348: 344: 336: 334: 332: 323: 319: 312: 308: 304: 296: 289: 287: 285: 281: 277: 273: 269: 261: 259: 257: 252: 250: 246: 242: 238: 234: 230: 226: 222: 221:cyanobacteria 218: 214: 206: 196: 195: 192: 188: 185: 181: 178: 174: 171: 167: 164: 160: 157: 150: 147: 144: 140: 136: 133: 130: 129: 128: 125: 120: 117: 110: 107: 104: 101: 98: 95: 92: 89: 86: 85: 84: 82: 79: 75: 72: 68: 63: 58: 55: 49: 46: 40: 37: 33: 19: 2688: 2662: 2641: 2607: 2603: 2590: 2573: 2569: 2563: 2528: 2524: 2514: 2494: 2487: 2442: 2438: 2428: 2403: 2399: 2355: 2351: 2341: 2306: 2302: 2292: 2267: 2263: 2257: 2232: 2228: 2222: 2187: 2183: 2173: 2147:(3): 432–6. 2144: 2140: 2134: 2095: 2091: 2053: 2049: 2043: 2008: 2004: 1997:von Heijne G 1948: 1944: 1934: 1909: 1905: 1898: 1861: 1857: 1847: 1822: 1818: 1811: 1768: 1764: 1758: 1707: 1703: 1697: 1652: 1648: 1638: 1603: 1599: 1589: 1554: 1550: 1540: 1505: 1501: 1491: 1469:(3): 241–7. 1466: 1462: 1456: 1439: 1435: 1425: 1400: 1396: 1383: 1350: 1346: 1340: 1327: 1294: 1290: 1284: 1275: 1230: 1226: 1194: 1174: 1141:Chemiosmosis 1115: 1089: 1083: 1060:ATP synthase 1056:ATP synthase 1027:mitochondria 1024: 1016: 970: 945: 942:chemiosmosis 936:Chemiosmosis 910: 899: 876: 854: 812: 762:cell nucleus 751: 739: 732: 727:plastocyanin 724: 711: 708:ATP synthase 702:ATP synthase 696: 668: 664: 660: 644:chlorophylls 637: 628:Photosystems 614:ATP synthase 595: 591: 587:ATP synthase 570:Photosystems 560: 531: 523: 504:solubilizes 475: 463: 455: 453: 433: 414: 410: 406: 404: 379: 377: 342: 340: 328: 321: 306: 283: 279: 275: 267: 265: 253: 244: 217:chloroplasts 212: 211: 190: 183: 176: 169: 162: 155: 154: 145: 134: 131: 124:You are here 123: 118: 115: 114: 105: 96: 87: 77: 70: 69: 66: 44:Cell biology 36: 1335:9 Apr. 2008 1291:J Plant Res 1099:respiration 824:Toc and Tic 787:translation 765:the proper 652:carotenoids 634:Photosystem 551:translation 492:) detaches 436:proplastids 256:quantasomes 243:(singular: 53:Chloroplast 2711:Categories 2303:Plant Cell 2184:Plant Cell 2092:Plant Cell 2005:Plant Cell 1778:1602.03215 1662:1509.00410 1551:Plant Cell 1502:Plant Cell 1167:References 1007:ferredoxin 976:Photolysis 873:photolysis 642:that uses 545:with 11%, 526:proteomics 498:detergents 449:etiolation 444:etioplasts 380:thylakoid 213:Thylakoids 18:Thylakoids 1717:1410.2197 1062:, ADP + P 984:electrons 440:seedlings 430:Formation 355:nanometre 290:Structure 284:thylakoid 268:Thylakoid 266:The word 262:Etymology 122:  ◄ 119:Thylakoid 2732:Plastids 2624:21473741 2555:17304210 2420:16386331 2382:11127990 2333:16339851 2284:11498001 2249:10066592 2214:10715320 2161:16418230 2122:14729914 2070:15707834 2035:11826309 1977:11274447 1926:17355436 1890:11274448 1839:17346982 1803:28272522 1750:12021024 1742:25658989 1689:36462725 1630:23870120 1581:18952780 1532:16055630 1483:16603410 1319:27225926 1311:15538651 1267:31611387 1125:See also 1103:bacteria 843:Function 832:arginine 650:such as 534:proteome 512:Proteins 415:lamellae 409:(plural 337:Membrane 276:thylakos 180:Ribosome 2669:115–127 2546:1817639 2479:5220864 2447:Bibcode 2373:1692884 2324:1323491 1906:Plant J 1783:Bibcode 1722:Bibcode 1667:Bibcode 1621:3767119 1572:2590735 1523:1197436 1448:3428918 1375:6076741 1367:3320041 1258:6825288 1235:Bibcode 1199:at the 1181:ΞύλαÎșÎżÏ‚ 1009:during 993:during 961:protons 951:to the 783:kinases 620:during 543:folding 393:during 280:ΞύλαÎșÎżÏ‚ 249:stromal 2696:  2675:  2648:  2622:  2553:  2543:  2525:EMBO J 2502:  2477:  2470:285771 2467:  2418:  2380:  2370:  2331:  2321:  2282:  2247:  2212:  2205:139834 2202:  2159:  2120:  2113:341918 2110:  2068:  2033:  2026:150561 2023:  1975:  1965:  1924:  1888:  1878:  1837:  1801:  1748:  1740:  1687:  1628:  1618:  1579:  1569:  1530:  1520:  1481:  1446:  1417:360223 1415:  1373:  1365:  1317:  1309:  1265:  1255:  1052:stroma 980:oxygen 957:acidic 949:stroma 754:genome 553:(8%). 407:granum 331:stroma 245:granum 166:Stroma 74:Granum 2600:(PDF) 1968:31209 1881:31210 1799:S2CID 1773:arXiv 1746:S2CID 1712:arXiv 1685:S2CID 1657:arXiv 1413:S2CID 1393:(PDF) 1371:S2CID 1315:S2CID 953:lumen 775:light 610:redox 606:NADPH 438:when 411:grana 382:lumen 374:Lumen 274:word 272:Greek 241:grana 139:lumen 2694:ISBN 2673:ISBN 2646:ISBN 2620:PMID 2574:1319 2551:PMID 2500:ISBN 2475:PMID 2416:PMID 2378:PMID 2329:PMID 2280:PMID 2245:PMID 2210:PMID 2157:PMID 2118:PMID 2066:PMID 2031:PMID 1973:PMID 1922:PMID 1886:PMID 1835:PMID 1738:PMID 1626:PMID 1600:Cell 1577:PMID 1528:PMID 1479:PMID 1444:PMID 1363:PMID 1307:PMID 1263:PMID 1097:and 927:O (O 795:mRNA 677:P680 673:P700 654:and 575:and 500:and 378:The 361:and 341:The 219:and 2612:doi 2608:436 2578:doi 2541:PMC 2533:doi 2465:PMC 2455:doi 2408:doi 2404:163 2368:PMC 2360:doi 2356:355 2319:PMC 2311:doi 2272:doi 2237:doi 2200:PMC 2192:doi 2149:doi 2108:PMC 2100:doi 2058:doi 2021:PMC 2013:doi 1963:PMC 1953:doi 1914:doi 1876:PMC 1866:doi 1827:doi 1791:doi 1730:doi 1708:114 1675:doi 1616:PMC 1608:doi 1604:154 1567:PMC 1559:doi 1518:PMC 1510:doi 1471:doi 1405:doi 1355:doi 1299:doi 1295:117 1253:PMC 1243:doi 1231:116 1005:by 916:it. 742:Tat 618:ATP 484:(Na 278:or 227:of 146:3.2 132:3.1 106:2.3 97:2.2 88:2.1 2713:: 2671:. 2618:. 2606:. 2602:. 2572:. 2549:. 2539:. 2529:26 2527:. 2523:. 2473:. 2463:. 2453:. 2443:55 2441:. 2437:. 2414:. 2402:. 2390:^ 2376:. 2366:. 2354:. 2350:. 2327:. 2317:. 2307:18 2305:. 2301:. 2278:. 2268:29 2266:. 2243:. 2231:. 2208:. 2198:. 2188:12 2186:. 2182:. 2165:– 2155:. 2145:47 2143:. 2126:- 2116:. 2106:. 2096:16 2094:. 2090:. 2078:^ 2064:. 2054:42 2052:. 2029:. 2019:. 2009:14 2007:. 2003:. 1985:^ 1971:. 1961:. 1949:98 1947:. 1943:. 1920:. 1910:50 1908:. 1884:. 1874:. 1862:98 1860:. 1856:. 1833:. 1823:45 1821:. 1797:. 1789:. 1781:. 1769:93 1767:. 1744:. 1736:. 1728:. 1720:. 1706:. 1683:. 1673:. 1665:. 1653:94 1651:. 1647:. 1624:. 1614:. 1602:. 1598:. 1575:. 1565:. 1555:20 1553:. 1549:. 1526:. 1516:. 1506:17 1504:. 1500:. 1477:. 1465:. 1440:24 1438:. 1434:. 1411:. 1401:15 1399:. 1395:. 1369:. 1361:. 1351:19 1349:. 1313:. 1305:. 1293:. 1261:. 1251:. 1241:. 1229:. 1225:. 1207:^ 1193:; 1189:; 1185:. 1109:, 624:. 577:II 508:. 488:CO 468:. 325:). 2702:. 2681:. 2654:. 2626:. 2614:: 2584:. 2580:: 2557:. 2535:: 2508:. 2481:. 2457:: 2449:: 2422:. 2410:: 2384:. 2362:: 2335:. 2313:: 2286:. 2274:: 2251:. 2239:: 2233:1 2216:. 2194:: 2163:. 2151:: 2124:. 2102:: 2072:. 2060:: 2037:. 2015:: 1979:. 1955:: 1928:. 1916:: 1892:. 1868:: 1841:. 1829:: 1805:. 1793:: 1785:: 1775:: 1752:. 1732:: 1724:: 1714:: 1691:. 1677:: 1669:: 1659:: 1632:. 1610:: 1583:. 1561:: 1534:. 1512:: 1485:. 1473:: 1467:9 1450:. 1419:. 1407:: 1377:. 1357:: 1321:. 1301:: 1269:. 1245:: 1237:: 1086:) 1064:i 929:2 925:2 921:2 880:2 835:( 669:a 665:a 661:a 573:I 490:3 486:2 191:9 184:8 177:7 170:6 163:5 156:4 141:) 137:( 116:3 78:2 71:1 34:. 20:)

Index

Thylakoids
Granum, Alberta
Cell biology
Chloroplast

Granum
Chloroplast envelope
Outer membrane
Intermembrane space
Inner membrane
Thylakoid
Thylakoid space
lumen
Thylakoid membrane
Stromal thylakoid
Stroma
Nucleoid (DNA ring)
Ribosome
Plastoglobulus
Starch granule

chloroplasts
cyanobacteria
light-dependent reactions
photosynthesis
thylakoid membrane
thylakoid lumen
grana
stromal
quantasomes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑