Knowledge (XXG)

Tietze's graph

Source đź“ť

382: 366: 398: 418: 41: 20: 214:
rather than on the Möbius strip. If one cuts a hole from this subdivision of the projective plane, surrounding a single vertex, the surrounded vertex is replaced by a triangle of region boundaries around the hole, giving the previously described construction of the Tietze graph.
272:
that is not 3-edge-colorable. However, most authors restrict snarks to graphs without 3-cycles, so Tietze's graph is not generally considered to be a snark. Nevertheless, it is
198:. The boundary segments of the regions of Tietze's subdivision (including the segments along the boundary of the Möbius strip itself) form an embedding of Tietze's graph. 190:
can be subdivided into six regions that all touch each other – three along the boundary of the strip and three along its center line – and therefore that graphs that are
210:
by replacing one of its vertices with a triangle. Like the Tietze graph, the Petersen graph forms the boundary of six mutually touching regions, but on the
381: 397: 257:
Tietze's graph requires four colors; that is, its chromatic index is 4. Equivalently, the edges of Tietze's graph can be partitioned into four
365: 350:(including both rotations and reflections). This group has two orbits of size 3 and one of size 6 on vertices, and thus this graph is not 152: 417: 27:
into six mutually-adjacent regions. The vertices and edges of the subdivision form an embedding of Tietze's graph onto the strip.
458: 183: 611:
Esperet, L.; Mazzuoccolo, G. (2014), "On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings",
404: 285: 179: 462: 669: 236: 674: 351: 316: 258: 81: 71: 243: 51: 328: 312: 265: 145: 91: 576:
Isaacs, R. (1975), "Infinite families of nontrivial trivalent graphs which are not Tait colorable",
320: 61: 246:: removing one of its three triangle vertices forms a smaller graph that remains non-Hamiltonian. 646: 620: 593: 508: 324: 296: 101: 526: 332: 273: 228: 630: 585: 500: 372: 292: 269: 232: 211: 173: 118: 642: 638: 388: 344: 191: 128: 187: 24: 551: 438: 434: 408: 336: 207: 195: 107: 663: 512: 254: 650: 281: 165: 529: 300: 176: 161: 141: 40: 491:
Clark, L.; Entringer, R. (1983), "Smallest maximally nonhamiltonian graphs",
534: 465:[Some remarks on the problem of map coloring on one-sided surfaces] 19: 463:"Einige Bemerkungen zum Problem des Kartenfärbens auf einseitigen Flächen" 299:
that testing whether a graph can be covered by four perfect matchings is
597: 504: 347: 634: 589: 291:
Unlike the Petersen graph, the Tietze graph can be covered by four
625: 550:
Punnim, Narong; Saenpholphat, Varaporn; Thaithae, Sermsri (2007),
559:
International Journal of Computer Science and Network Security
311:
Tietze's graph has chromatic number 3, chromatic index 4,
231:, but any two non-adjacent vertices can be connected by a 239:
cubic non-Hamiltonian graphs with 12 or fewer vertices.
235:. Tietze's graph and the Petersen graph are the only 16:
Undirected cubic graph with 12 vertices and 18 edges
584:(3), Mathematical Association of America: 221–239, 264:Tietze's graph matches part of the definition of a 137: 127: 117: 100: 90: 80: 70: 60: 50: 33: 423:A three-dimensional embedding of the Tietze graph. 242:Unlike the Petersen graph, Tietze's graph is not 182:with 12 vertices and 18 edges. It is named after 223:Both Tietze's graph and the Petersen graph are 8: 624: 18: 450: 361: 295:. This property plays a key role in a 206:Tietze's graph may be formed from the 194:onto the Möbius strip may require six 30: 7: 486: 484: 250:Edge coloring and perfect matchings 441:, two other 12-vertex cubic graphs 14: 552:"Almost Hamiltonian cubic graphs" 416: 396: 380: 364: 280:, part of an infinite family of 39: 493:Periodica Mathematica Hungarica 343:, the group of symmetries of a 184:Heinrich Franz Friedrich Tietze 186:, who showed in 1910 that the 153:Table of graphs and parameters 1: 691: 202:Relation to Petersen graph 23:Tietze's subdivision of a 391:of the Tietze graph is 4. 375:of the Tietze graph is 3. 151: 38: 225:maximally nonhamiltonian 613:Journal of Graph Theory 28: 403:The Tietze graph has 307:Additional properties 22: 578:Amer. Math. Monthly 321:independence number 527:Weisstein, Eric W. 505:10.1007/BF02023582 325:automorphism group 237:2-vertex-connected 29: 670:Individual graphs 635:10.1002/jgt.21778 471:DMV Annual Report 352:vertex-transitive 293:perfect matchings 229:Hamiltonian cycle 158: 157: 682: 655: 653: 628: 608: 602: 600: 573: 567: 566: 556: 547: 541: 540: 539: 530:"Tietze's Graph" 522: 516: 515: 488: 479: 478: 468: 459:Tietze, Heinrich 455: 420: 400: 384: 373:chromatic number 368: 270:bridgeless graph 268:: it is a cubic 261:, but no fewer. 233:Hamiltonian path 212:projective plane 119:Chromatic number 45:The Tietze graph 43: 31: 690: 689: 685: 684: 683: 681: 680: 679: 660: 659: 658: 610: 609: 605: 590:10.2307/2319844 575: 574: 570: 554: 549: 548: 544: 525: 524: 523: 519: 490: 489: 482: 466: 457: 456: 452: 448: 431: 424: 421: 412: 405:crossing number 401: 392: 389:chromatic index 385: 376: 369: 360: 342: 309: 279: 252: 244:hypohamiltonian 227:: they have no 221: 204: 144: 129:Chromatic index 111: 46: 17: 12: 11: 5: 688: 686: 678: 677: 675:Regular graphs 672: 662: 661: 657: 656: 619:(2): 144–157, 603: 568: 542: 517: 480: 449: 447: 444: 443: 442: 439:Franklin graph 430: 427: 426: 425: 422: 415: 413: 402: 395: 393: 386: 379: 377: 370: 363: 359: 356: 340: 337:dihedral group 308: 305: 284:introduced by 277: 276:to the graph J 251: 248: 220: 217: 208:Petersen graph 203: 200: 170:Tietze's graph 156: 155: 149: 148: 139: 135: 134: 131: 125: 124: 121: 115: 114: 109: 104: 98: 97: 94: 88: 87: 84: 78: 77: 74: 68: 67: 64: 58: 57: 54: 48: 47: 44: 36: 35: 34:Tietze's graph 15: 13: 10: 9: 6: 4: 3: 2: 687: 676: 673: 671: 668: 667: 665: 652: 648: 644: 640: 636: 632: 627: 622: 618: 614: 607: 604: 599: 595: 591: 587: 583: 579: 572: 569: 564: 560: 553: 546: 543: 537: 536: 531: 528: 521: 518: 514: 510: 506: 502: 498: 494: 487: 485: 481: 476: 472: 464: 460: 454: 451: 445: 440: 436: 433: 432: 428: 419: 414: 410: 406: 399: 394: 390: 383: 378: 374: 367: 362: 357: 355: 353: 349: 346: 338: 334: 330: 326: 322: 318: 314: 306: 304: 302: 298: 294: 289: 287: 283: 282:flower snarks 275: 271: 267: 262: 260: 256: 255:Edge coloring 249: 247: 245: 240: 238: 234: 230: 226: 219:Hamiltonicity 218: 216: 213: 209: 201: 199: 197: 193: 189: 185: 181: 178: 175: 171: 167: 163: 154: 150: 147: 143: 140: 136: 132: 130: 126: 122: 120: 116: 112: 105: 103: 102:Automorphisms 99: 95: 93: 89: 85: 83: 79: 75: 73: 69: 65: 63: 59: 55: 53: 49: 42: 37: 32: 26: 21: 616: 612: 606: 581: 577: 571: 562: 558: 545: 533: 520: 499:(1): 57–68, 496: 492: 474: 470: 453: 310: 290: 263: 253: 241: 224: 222: 205: 188:Möbius strip 169: 166:graph theory 162:mathematical 159: 25:Möbius strip 435:DĂĽrer graph 331:12, and is 301:NP-complete 664:Categories 565:(1): 83–86 333:isomorphic 323:is 5. Its 274:isomorphic 174:undirected 138:Properties 626:1301.6926 535:MathWorld 513:122218690 477:: 155–159 407:2 and is 288:in 1975. 286:R. Isaacs 259:matchings 164:field of 651:15284123 461:(1910), 429:See also 409:1-planar 319:3. The 317:diameter 192:embedded 82:Diameter 52:Vertices 643:3246172 598:2319844 358:Gallery 348:hexagon 345:regular 335:to the 160:In the 649:  641:  596:  511:  315:3 and 196:colors 172:is an 72:Radius 647:S2CID 621:arXiv 594:JSTOR 555:(PDF) 509:S2CID 467:(PDF) 446:Notes 329:order 313:girth 297:proof 266:snark 180:graph 177:cubic 146:Snark 142:Cubic 92:Girth 62:Edges 437:and 387:The 371:The 327:has 106:12 ( 631:doi 586:doi 501:doi 666:: 645:, 639:MR 637:, 629:, 617:77 615:, 592:, 582:82 580:, 561:, 557:, 532:. 507:, 497:14 495:, 483:^ 475:19 473:, 469:, 354:. 303:. 168:, 66:18 56:12 654:. 633:: 623:: 601:. 588:: 563:7 538:. 503:: 411:. 341:6 339:D 278:3 133:4 123:3 113:) 110:6 108:D 96:3 86:3 76:3

Index


Möbius strip

Vertices
Edges
Radius
Diameter
Girth
Automorphisms
D6
Chromatic number
Chromatic index
Cubic
Snark
Table of graphs and parameters
mathematical
graph theory
undirected
cubic
graph
Heinrich Franz Friedrich Tietze
Möbius strip
embedded
colors
Petersen graph
projective plane
Hamiltonian cycle
Hamiltonian path
2-vertex-connected
hypohamiltonian

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑