Knowledge

Tonalite–trondhjemite–granodiorite

Source 📝

399: have long been noted by researchers. Adakites are one type of modern arc lavas, which differ from common arc lavas (mostly granitoids) in their felsic and sodic nature with high LREE but low HREE content. Their production is interpreted to be the partial melting of young and hot subducting oceanic slabs with minor interaction with surrounding mantle wedges, rather than mantle wedge melts like other arc-granitoids. Based on geochemical features (e.g. 314:. To produce the very low HREE pattern, the melting should be conducted under a garnet-stable pressure-temperature field. Given that garnet stability rises dramatically with increasing pressure, strongly HREE-depleted TTG melts are expected to form under relatively high pressure. Besides the source composition and the pressure, the degree of melting and temperature also influence the melt composition. 387: 31: 457: 235: 485:
of plateau bases. Mantle upwellings add mafic basement to the crust and the pressure due to the cumulation thickness may reach the requirement of low pressure TTG production. The partial melting of the plateau base (which can be induced by further mantle upwelling) would then lead to low pressure TTG
469:
Various evidence has shown that Archean TTG rocks were directly derived from preexisting mafic materials. The melting temperature of meta-mafic rocks (generally between 700 °C and 1000 °C) depends primarily on their water content but only a little on pressure. Different groups of TTG should
464:
into the lighter mantle. The pressure and temperature increases induce the partial melting of the delaminated mafic block to generate TTG magma, which rises and intrudes to the crust. In the lower figure, mantle plume rises to the base of the mafic crust and thicken the crust. The partial melting of
390:
Hypothesized Archean hot subduction induced Archean TTG generation model. The heavier oceanic crust sinks into the lighter mantle. The subducting slab is young and hot, thus when it is heated, it partially melts to generate TTG magmas, which rise and intrude into the continental crust. Light green:
365:
but no amphibole or plagioclase. The medium pressure group has transitional features between the other two groups, corresponding to melting under a pressure around 15 kbar with the source rock containing amphibole, much garnet, but little rutile and no plagioclase. Medium pressure TTGs are the
489:
The high pressure TTGs have experienced geotherms lower than 10 °C/km, which are close to modern hot subduction geotherms experienced by young slabs (but around 3 °C/km hotter than other modern subduction zones), whilst the geotherms for the most abundant TTG subseries, medium pressure
431:
in the Philippines), they argue that due to a higher mantle potential temperature of the Earth, a hotter and softer crust may have enabled intense adakite-type subduction during Archean time. TTGs packages were then generated in such settings, with large scale proto-continents formed by
422:
This geochemical similarity let some researchers infer that the geodynamic setting of Archean TTGs was analogous to that of modern adakites. They think that Archean TTGs were generated by hot subduction as well. Although modern adakites are rare and only found in a few localities (e.g.
1283:
Kemp, A.I.S.; Wilde, S.A.; Hawkesworth, C.J.; Coath, C.D.; Nemchin, A.; Pidgeon, R.T.; Vervoort, J.D.; DuFrane, S.A. (July 2010). "Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons".
584:
at the base of the continental crust. Tonalitic composition rock crystallised first before the magma differentiated to granodioritic and later granitic composition at a shallow depth. Some island arc plutonic roots also have TTG rocks, e.g.
1070:
Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.-F.; Champion, D. (January 2005). "An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution".
238:
TTG rock sample (Tsawela gneiss) with foliation from the Kaapvaal Craton, South Africa. The white minerals are plagioclase; the light grey ones are quartz; the dark, greenish ones are biotite and hornblende, which developed
317:
Archean TTGs are classified into three groups based on geochemical features, that are low, medium, and high pressure TTGs, although the three groups form a continuous series. The low pressure group shows relatively low
502:
extraction. Those delaminated meta-mafic bodies then sink down, melt, and interact with surrounding mantle to generate TTGs. Such delamination induced TTG generation process is petrogenetically similar to that of
34:
Archean TTG rock outcrop in Kongling Complex, South China Craton. The white TTG rock body is intruded by dark mafic dikes, as well as light color felsic dikes. The mafic minerals in the TTG rock body, possibly
1051:
Drummond, M. S. and Defant, M. J., 1990, A model for tronhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons: J. Geophysical Res., v. 95, p. 21,503 - 21,521.
563:
consists of 7–16% gabbro and diorite, 48–60% tonalite (including trondhjemite), and 20–30% granodiorite, with 1–4% granite. These TTG rocks in continental arc batholiths may partially originate from the
361:
and possibly amphibole or garnet. The high pressure group shows the opposite geochemical features, corresponding to melting at a pressure over 20 kbar, with the source rock containing garnet and
378:
of the Archean TTG rock generation is currently not well understood. Competing hypotheses include subduction related generation involving plate tectonics and other non-plate tectonic models.
1000:
Moyen, Jean-François (April 2011). "The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth".
419:
adakites (LSA). It was then noted that the Archean TTGs were geochemically almost identical to high silica adakites (HSA), but slightly different from low silica adakites (LSA).
1224:
Johnson, Tim E.; Brown, Michael; Gardiner, Nicholas J.; Kirkland, Christopher L.; Smithies, R. Hugh (2017-02-27). "Earth's first stable continents did not form by subduction".
864:
Johnson, Tim E.; Brown, Michael; Kaus, Boris J. P.; VanTongeren, Jill A. (2013-12-01). "Delamination and recycling of Archaean crust caused by gravitational instabilities".
1369:
Smithies, R.H.; Champion, D.C.; Van Kranendonk, M.J. (2009-05-15). "Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt".
920:
Foley, Stephen; Tiepolo, Massimo; Vannucci, Riccardo (June 2002). "Growth of early continental crust controlled by melting of amphibolite in subduction zones".
1471:
Bédard, Jean H. (March 2006). "A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle".
569: 299: 576:
melt at depth. However, the large volume of such TTG rocks infer their major generation mechanism is by the crustal thickening induced
440:
by pointing out the absence of major plate tectonic indicators during most of the Archean Eon. It is also noted that Archean TTGs were
1042:
Martin, H., 1986, Effect of steeper Archean geothermal gradient on geochemistry of subduction zone-magmas: Geology, v. 14, p. 753-756.
1117:
Defant, Marc J.; Drummond, Mark S. (October 1990). "Derivation of some modern arc magmas by melting of young subducted lithosphere".
744: 122:
minerals in TTG rocks is usually larger than 20% but less than 60%. In tonalite and trondhjemite, more than 90% of the
1181:
Clemens, J.D; Droop, G.T.R (October 1998). "Fluids, P–T paths and the fates of anatectic melts in the Earth's crust".
391:
continental crust; dark green: oceanic crust; red: TTG melts; orange: mantle. Modified from Moyen & Martin, 2012.
821:
Martin, H. (1986-09-01). "Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas".
490:
group, are between 12 and 20 °C/km. Other than hot subduction, such geotherms may also be possible during the
460:
The delamination and underplating induced Archean TTG generation models. In the upper figure, heavier mafic crust
560: 674:
Hernández-Montenegro, Juan David; Palin, Richard M.; Zuluaga, Carlos A.; Hernández-Uribe, David (4 March 2021).
465:
the mafic crust due to the plume heating generates TTG magma intrusions. Modified from Moyen & Martin, 2012.
1167:
Condie, K. C., & Kröner, A. (2008). When did plate tectonics begin? Evidence from the geologic record. In
842: 310:
Confirmed by geochemical modelling, TTG type magma can be generated through partial melting of hydrated meta-
602: 565: 1330:
Moyen, Jean-François; Laurent, Oscar (March 2018). "Archaean tectonic systems: A view from igneous rocks".
248: 1649: 491: 461: 495: 433: 375: 283: 1615: 1545: 1480: 1421: 1378: 1335: 1293: 1233: 1190: 1126: 1080: 1009: 929: 873: 830: 787: 478: 471: 17: 1569: 1453: 1265: 1150: 961: 680: 619: 437: 275: 67: 1412:
Kröner, A.; Layer, P. W. (1992-06-05). "Crust Formation and Plate Motion in the Early Archean".
1561: 1496: 1445: 1437: 1394: 1351: 1309: 1257: 1249: 1206: 1142: 1096: 1025: 953: 945: 899: 846: 803: 740: 709: 624: 219: 147: 1623: 1553: 1488: 1429: 1386: 1382: 1343: 1301: 1297: 1241: 1198: 1134: 1088: 1017: 937: 889: 881: 838: 795: 732: 699: 689: 279: 223: 577: 520: 499: 295: 278:(LREE) content yet low heavy rare earth element (HREE) content. However, they do not show 215: 106:(although of a small proportion), while Archean TTG rocks are major components of Archean 83: 1619: 1549: 1484: 1425: 1339: 1237: 1194: 1130: 1084: 1013: 933: 877: 834: 791: 676:"Archean continental crust formed by magma hybridization and voluminous partial melting" 736: 704: 675: 448:
in nature, thus their magma should differ in composition, especially in water content.
445: 441: 256: 51: 1202: 1643: 1573: 778:
Moyen, Jean-François; Martin, Hervé (September 2012). "Forty years of TTG research".
727:
Barker, F. (1979), "Trondhjemite: Definition, Environment and Hypotheses of Origin",
614: 597:
Tonalites (including trondhjemites) can be found above the layered gabbro section in
203: 171: 1457: 1154: 965: 601:, below or within sheeted dykes. They are often irregular in shape and produced by 581: 573: 516: 482: 187: 135: 131: 95: 87: 79: 75: 1433: 1269: 1347: 1092: 1021: 799: 424: 127: 1390: 1305: 694: 1492: 894: 556: 504: 211: 159: 143: 39:, were weathered, which introduced a brownish coating on the TTG rock surface. 1565: 1557: 1500: 1441: 1398: 1355: 1313: 1253: 1210: 1146: 1100: 1029: 949: 903: 850: 807: 598: 548: 524: 400: 342: 334: 291: 252: 155: 103: 99: 55: 1449: 1261: 957: 713: 498:
or an increase in density of the mafic crustal base due to metamorphism or
411:
contents), adakites can be further divided into two groups, namely high SiO
386: 274:
In terms of trace element characteristics, Archean TTGs exhibit high light
428: 408: 358: 346: 139: 123: 71: 63: 1628: 1603: 1245: 941: 544: 540: 396: 350: 338: 319: 260: 163: 151: 91: 36: 1171:(Vol. 440, pp. 281-294). Geological Society of America Special Papers. 1138: 885: 586: 552: 536: 507:, both of which involves deep burial of mafic rocks into the mantle. 404: 362: 287: 263: 244: 175: 167: 119: 107: 59: 731:, Developments in Petrology, vol. 6, Elsevier, pp. 1–12, 30: 481:
around 20–30 °C/km, which are comparable to those during the
311: 207: 456: 436:
at a later stage. However, other authors doubt the existence of
354: 234: 494:
of mafic crustal base. The delamination may be attributed to
1536:
Pitcher, W. S. (March 1978). "The anatomy of a batholith".
843:
10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2
474:, which corresponding to different geodynamic settings. 357:
with the source rock mineral assembly of plagioclase,
243:
Archean TTG rocks appear to be strongly deformed grey
535:
Continental arc TTG rocks are often associated with
353:
content, corresponding to melting under 10–12 
294:, but no plagioclase in the residual phase during 1604:"Essentials of igneous and metamorphic petrology" 142:, with most of the plagioclase in the rock being 27:Intrusive rocks with typical granitic composition 661:Principles of igneous and metamorphic petrology 395:Geochemical similarity shared between TTGs and 1169:When did plate tectonics begin on planet Earth 1112: 1110: 1065: 1063: 1061: 1059: 1057: 1325: 1323: 995: 515:Post Archean TTG rocks are commonly found in 259:. TTG rock is one of the major rock types in 94:(after 2.5 Ga) TTG rocks are present in 8: 1516: 1514: 1512: 1510: 993: 991: 989: 987: 985: 983: 981: 979: 977: 975: 915: 913: 773: 771: 769: 767: 765: 763: 761: 759: 757: 755: 654: 652: 650: 648: 646: 644: 642: 640: 527:also contains a small amount of TTG rocks. 286:. These features indicate the presence of 226:added together commonly smaller than 5%). 210:element content (the weight percentage of 1627: 893: 729:Trondhjemites, Dacites, and Related Rocks 703: 693: 66:) but containing only a small portion of 477:The low pressure group has formed along 455: 385: 247:, showing banding, lineation, and other 233: 29: 636: 182:) content (commonly over 70 percent SiO 366:most abundant among the three groups. 134:, this number is between 65% and 90%. 547:, which forms a plutonic sequence in 7: 470:therefore have experienced distinct 1602:Frost, B. R.; Frost, C. D. (2013). 1371:Earth and Planetary Science Letters 1286:Earth and Planetary Science Letters 737:10.1016/b978-0-444-41765-7.50006-x 44:Tonalite–trondhjemite–granodiorite 25: 18:Tonalite-Trondhjemite-Granodiorite 1589:Igneous and metamorphic petrology 1538:Journal of the Geological Society 1523:Igneous and metamorphic petrology 551:. They are formed by hundred of 1473:Geochimica et Cosmochimica Acta 589:, but they are rarely exposed. 298:or precipitation phase during 174:, TTG rocks often have a high 1: 1434:10.1126/science.256.5062.1405 1203:10.1016/s0024-4937(98)00020-6 1348:10.1016/j.lithos.2017.11.038 1093:10.1016/j.lithos.2004.04.048 1022:10.1016/j.lithos.2010.09.015 800:10.1016/j.lithos.2012.06.010 572:) of the subduction induced 444:while the modern adakite is 337:content and relatively high 306:Formation and classification 118:The quartz percentage among 452:Non-plate tectonic settings 202:O ratio) compared to other 1666: 1391:10.1016/j.epsl.2009.03.003 1306:10.1016/j.epsl.2010.04.043 695:10.1038/s41598-021-84300-y 570:fractional crystallisation 415:adakites (HSA) and low SiO 300:fractional crystallization 1493:10.1016/j.gca.2005.11.008 561:Coastal Batholith of Peru 555:that directly related to 531:Continental arc TTG rocks 1591:. John Wiley & Sons. 1558:10.1144/gsjgs.135.2.0157 82:often occur together in 1587:Best, Myron G. (2013). 1525:. Blackwell Publishers. 1383:2009E&PSL.281..298S 1298:2010E&PSL.296...45K 580:of the former gabbroic 659:J. D., Winter (2013). 593:TTG rocks in ophiolite 511:Post Archean TTG rocks 466: 392: 382:Plate tectonic setting 249:metamorphic structures 240: 194:O) content (with low K 40: 1608:American Mineralogist 603:magma differentiation 566:magma differentiation 459: 389: 237: 150:of TTG rocks include 138:is a special kind of 86:, indicating similar 33: 1521:M. G., Best (2003). 663:. Pearson Education. 472:geothermal gradients 270:Geochemical features 1629:10.2138/am-2015-657 1620:2015AmMin.100.1655K 1550:1978JGSoc.135..157P 1485:2006GeCoA..70.1188B 1426:1992Sci...256.1405K 1420:(5062): 1405–1411. 1340:2018Litho.302...99M 1334:. 302–303: 99–125. 1246:10.1038/nature21383 1238:2017Natur.543..239J 1195:1998Litho..44...21C 1131:1990Natur.347..662D 1085:2005Litho..79....1M 1014:2011Litho.123...21M 942:10.1038/nature00799 934:2002Natur.417..837F 878:2014NatGe...7...47J 835:1986Geo....14..753M 792:2012Litho.148..312M 370:Geodynamic settings 895:20.500.11937/31170 681:Scientific Reports 620:Archean subduction 496:mantle downwelling 467: 438:Archean subduction 393: 376:geodynamic setting 276:rare earth element 241: 148:accessory minerals 84:geological records 68:potassium feldspar 41: 1232:(7644): 239–242. 1125:(6294): 662–665. 928:(6891): 837–840. 866:Nature Geoscience 625:Eoarchean geology 230:Archean TTG rocks 220:manganese dioxide 16:(Redirected from 1657: 1634: 1633: 1631: 1599: 1593: 1592: 1584: 1578: 1577: 1533: 1527: 1526: 1518: 1505: 1504: 1479:(5): 1188–1214. 1468: 1462: 1461: 1409: 1403: 1402: 1377:(3–4): 298–306. 1366: 1360: 1359: 1327: 1318: 1317: 1280: 1274: 1273: 1221: 1215: 1214: 1178: 1172: 1165: 1159: 1158: 1139:10.1038/347662a0 1114: 1105: 1104: 1067: 1052: 1049: 1043: 1040: 1034: 1033: 997: 970: 969: 917: 908: 907: 897: 886:10.1038/ngeo2019 861: 855: 854: 818: 812: 811: 775: 750: 749: 724: 718: 717: 707: 697: 671: 665: 664: 656: 521:continental arcs 519:, especially in 224:titanium dioxide 102:, as well as in 90:processes. Post 21: 1665: 1664: 1660: 1659: 1658: 1656: 1655: 1654: 1640: 1639: 1638: 1637: 1601: 1600: 1596: 1586: 1585: 1581: 1535: 1534: 1530: 1520: 1519: 1508: 1470: 1469: 1465: 1411: 1410: 1406: 1368: 1367: 1363: 1329: 1328: 1321: 1282: 1281: 1277: 1223: 1222: 1218: 1180: 1179: 1175: 1166: 1162: 1116: 1115: 1108: 1069: 1068: 1055: 1050: 1046: 1041: 1037: 999: 998: 973: 919: 918: 911: 863: 862: 858: 820: 819: 815: 777: 776: 753: 747: 726: 725: 721: 673: 672: 668: 658: 657: 638: 633: 611: 595: 578:partial melting 559:. For example, 533: 513: 454: 442:intrusive rocks 418: 414: 384: 372: 332: 327: 323: 308: 296:partial melting 272: 257:intrusive rocks 232: 216:magnesium oxide 201: 197: 193: 185: 181: 116: 52:intrusive rocks 28: 23: 22: 15: 12: 11: 5: 1663: 1661: 1653: 1652: 1642: 1641: 1636: 1635: 1594: 1579: 1544:(2): 157–182. 1528: 1506: 1463: 1404: 1361: 1319: 1292:(1–2): 45–56. 1275: 1216: 1189:(1–2): 21–36. 1173: 1160: 1106: 1053: 1044: 1035: 1008:(1–4): 21–36. 971: 909: 856: 813: 751: 745: 719: 666: 635: 634: 632: 629: 628: 627: 622: 617: 610: 607: 594: 591: 532: 529: 512: 509: 453: 450: 427:in Alaska and 416: 412: 383: 380: 371: 368: 330: 325: 321: 307: 304: 271: 268: 231: 228: 208:ferromagnesian 204:plutonic rocks 199: 195: 191: 183: 179: 115: 112: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1662: 1651: 1650:Igneous rocks 1648: 1647: 1645: 1630: 1625: 1621: 1617: 1613: 1609: 1605: 1598: 1595: 1590: 1583: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1532: 1529: 1524: 1517: 1515: 1513: 1511: 1507: 1502: 1498: 1494: 1490: 1486: 1482: 1478: 1474: 1467: 1464: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1408: 1405: 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1365: 1362: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1326: 1324: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1279: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1220: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1177: 1174: 1170: 1164: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1111: 1107: 1102: 1098: 1094: 1090: 1086: 1082: 1079:(1–2): 1–24. 1078: 1074: 1066: 1064: 1062: 1060: 1058: 1054: 1048: 1045: 1039: 1036: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 996: 994: 992: 990: 988: 986: 984: 982: 980: 978: 976: 972: 967: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 916: 914: 910: 905: 901: 896: 891: 887: 883: 879: 875: 871: 867: 860: 857: 852: 848: 844: 840: 836: 832: 828: 824: 817: 814: 809: 805: 801: 797: 793: 789: 785: 781: 774: 772: 770: 768: 766: 764: 762: 760: 758: 756: 752: 748: 746:9780444417657 742: 738: 734: 730: 723: 720: 715: 711: 706: 701: 696: 691: 687: 683: 682: 677: 670: 667: 662: 655: 653: 651: 649: 647: 645: 643: 641: 637: 630: 626: 623: 621: 618: 616: 615:Acasta Gneiss 613: 612: 608: 606: 604: 600: 592: 590: 588: 583: 579: 575: 571: 567: 562: 558: 554: 550: 546: 542: 538: 530: 528: 526: 522: 518: 510: 508: 506: 501: 497: 493: 487: 484: 480: 475: 473: 463: 458: 451: 449: 447: 443: 439: 435: 430: 426: 420: 410: 406: 402: 398: 388: 381: 379: 377: 369: 367: 364: 360: 356: 352: 348: 344: 340: 336: 328: 315: 313: 305: 303: 301: 297: 293: 289: 285: 281: 277: 269: 267: 265: 262: 258: 254: 250: 246: 236: 229: 227: 225: 221: 217: 213: 209: 205: 189: 177: 173: 172:Geochemically 169: 165: 161: 157: 153: 149: 146:. The major 145: 141: 137: 133: 129: 125: 121: 113: 111: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 58:composition ( 57: 54:with typical 53: 49: 45: 38: 32: 19: 1611: 1607: 1597: 1588: 1582: 1541: 1537: 1531: 1522: 1476: 1472: 1466: 1417: 1413: 1407: 1374: 1370: 1364: 1331: 1289: 1285: 1278: 1229: 1225: 1219: 1186: 1182: 1176: 1168: 1163: 1122: 1118: 1076: 1072: 1047: 1038: 1005: 1001: 925: 921: 872:(1): 47–52. 869: 865: 859: 826: 822: 816: 783: 779: 728: 722: 685: 679: 669: 660: 596: 574:mantle wedge 534: 517:arc settings 514: 500:partial melt 492:delamination 488: 486:generation. 483:underplating 476: 468: 421: 394: 373: 316: 309: 284:Sr anomalies 273: 242: 188:sodium oxide 136:Trondhjemite 132:granodiorite 117: 88:petrogenetic 80:granodiorite 76:trondhjemite 50:) rocks are 47: 43: 42: 1614:(7): 1655. 786:: 312–336. 688:(1): 5263. 462:delaminates 425:Adak Island 312:mafic rocks 130:, while in 128:plagioclase 114:Composition 829:(9): 753. 631:References 599:ophiolites 582:underplate 557:subduction 549:batholiths 505:subduction 434:collisions 253:protoliths 239:foliation. 212:iron oxide 206:, and low 160:hornblende 156:amphiboles 144:oligoclase 104:ophiolites 100:batholiths 1574:130036558 1566:0016-7649 1501:0016-7037 1442:0036-8075 1399:0012-821X 1356:0024-4937 1314:0012-821X 1254:0028-0836 1211:0024-4937 1147:0028-0836 1101:0024-4937 1030:0024-4937 950:0028-0836 904:1752-0894 851:0091-7613 808:0024-4937 525:Ophiolite 479:geotherms 446:extrusive 292:amphibole 124:feldspars 98:-related 1644:Category 1458:35201760 1450:17791608 1262:28241147 958:12075348 714:33664326 609:See also 429:Mindanao 397:adakites 359:pyroxene 251:, whose 186:), high 140:tonalite 72:Tonalite 64:feldspar 56:granitic 1616:Bibcode 1546:Bibcode 1481:Bibcode 1422:Bibcode 1414:Science 1379:Bibcode 1336:Bibcode 1294:Bibcode 1234:Bibcode 1191:Bibcode 1155:4267494 1127:Bibcode 1081:Bibcode 1010:Bibcode 966:4394308 930:Bibcode 874:Bibcode 831:Bibcode 823:Geology 788:Bibcode 705:7933273 553:plutons 545:granite 541:diorite 264:cratons 261:Archean 164:epidote 152:biotite 108:cratons 92:Archean 37:biotite 1572:  1564:  1499:  1456:  1448:  1440:  1397:  1354:  1332:Lithos 1312:  1270:281446 1268:  1260:  1252:  1226:Nature 1209:  1183:Lithos 1153:  1145:  1119:Nature 1099:  1073:Lithos 1028:  1002:Lithos 964:  956:  948:  922:Nature 902:  849:  806:  780:Lithos 743:  712:  702:  587:Tobago 568:(i.e. 543:, and 537:gabbro 407:, and 363:rutile 349:, and 288:garnet 245:gneiss 222:, and 176:silica 168:zircon 166:, and 158:(e.g. 120:felsic 78:, and 60:quartz 1570:S2CID 1454:S2CID 1266:S2CID 1151:S2CID 962:S2CID 255:were 1562:ISSN 1497:ISSN 1446:PMID 1438:ISSN 1395:ISSN 1352:ISSN 1310:ISSN 1258:PMID 1250:ISSN 1207:ISSN 1143:ISSN 1097:ISSN 1026:ISSN 954:PMID 946:ISSN 900:ISSN 847:ISSN 804:ISSN 741:ISBN 710:PMID 374:The 355:kbar 329:, Na 290:and 282:and 198:O/Na 178:(SiO 126:are 62:and 1624:doi 1612:100 1554:doi 1542:135 1489:doi 1430:doi 1418:256 1387:doi 1375:281 1344:doi 1302:doi 1290:296 1242:doi 1230:543 1199:doi 1135:doi 1123:347 1089:doi 1018:doi 1006:123 938:doi 926:417 890:hdl 882:doi 839:doi 796:doi 784:148 733:doi 700:PMC 690:doi 333:O, 190:(Na 162:), 96:arc 48:TTG 1646:: 1622:. 1610:. 1606:. 1568:. 1560:. 1552:. 1540:. 1509:^ 1495:. 1487:. 1477:70 1475:. 1452:. 1444:. 1436:. 1428:. 1416:. 1393:. 1385:. 1373:. 1350:. 1342:. 1322:^ 1308:. 1300:. 1288:. 1264:. 1256:. 1248:. 1240:. 1228:. 1205:. 1197:. 1187:44 1185:. 1149:. 1141:. 1133:. 1121:. 1109:^ 1095:. 1087:. 1077:79 1075:. 1056:^ 1024:. 1016:. 1004:. 974:^ 960:. 952:. 944:. 936:. 924:. 912:^ 898:. 888:. 880:. 868:. 845:. 837:. 827:14 825:. 802:. 794:. 782:. 754:^ 739:, 708:. 698:. 686:11 684:. 678:. 639:^ 605:. 539:, 523:. 409:Cr 405:Ni 403:, 401:Mg 351:Nb 347:Ta 345:, 343:Yb 341:, 335:Sr 320:Al 302:. 280:Eu 266:. 218:, 214:, 170:. 154:, 110:. 74:, 70:. 1632:. 1626:: 1618:: 1576:. 1556:: 1548:: 1503:. 1491:: 1483:: 1460:. 1432:: 1424:: 1401:. 1389:: 1381:: 1358:. 1346:: 1338:: 1316:. 1304:: 1296:: 1272:. 1244:: 1236:: 1213:. 1201:: 1193:: 1157:. 1137:: 1129:: 1103:. 1091:: 1083:: 1032:. 1020:: 1012:: 968:. 940:: 932:: 906:. 892:: 884:: 876:: 870:7 853:. 841:: 833:: 810:. 798:: 790:: 735:: 716:. 692:: 417:2 413:2 339:Y 331:2 326:3 324:O 322:2 200:2 196:2 192:2 184:2 180:2 46:( 20:)

Index

Tonalite-Trondhjemite-Granodiorite

biotite
intrusive rocks
granitic
quartz
feldspar
potassium feldspar
Tonalite
trondhjemite
granodiorite
geological records
petrogenetic
Archean
arc
batholiths
ophiolites
cratons
felsic
feldspars
plagioclase
granodiorite
Trondhjemite
tonalite
oligoclase
accessory minerals
biotite
amphiboles
hornblende
epidote

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.