Knowledge (XXG)

Toroidal ring model

Source đź“ť

609:
should create a strong vacuum polarization. In accordance with QED, deviations from the Coulomb law are predicted at Compton scale distances from the centre of electron, 10 cm. Virtual processes in the Compton region determine the spin of electron and renormalization of its charge and mass. It shows that the Compton region of the electron should be considered as a coherent whole with its pointlike core, forming a physical ("dressed") electron. Notice that the Dirac theory of electron also exhibits the peculiar behaviour of the Compton region. In particular, electrons display
608:
of particle physics describes a pointlike electron with an intrinsic spin and magnetic moment. On the other hand, the usual assertion that an electron is pointlike may be conventionally associated only with a "bare" electron. The pointlike electron would have a diverging electromagnetic field, which
292:
The toroidal or "helicon" model did not demand a constant radius or inertial energy for a particle. In general its shape, size, and motion adjusted according to the external electromagnetic fields from its environment. These adjustments or reactions to external field changes constituted the
616:
The question of whether the electron has a substructure of any sort must be decided by experiment. All experiments to date agree with the Standard Model of the electron, with no substructure, ring-like or otherwise. The two major approaches are high-energy electron–positron scattering and
621:, both of which agree that the electron is point-like at resolutions down to 10 m. At present, the Compton region of virtual processes, 10 cm across, is not exhibited in the high-energy experiments on electron–positron scattering. 613:
at the Compton scale. From this point of view, the ring model does not contradict QED or the Dirac theory and some versions could possibly be used to incorporate gravity in quantum theory.
1180:
B. Odom, D. Hanneke, B. D'Urso, and G. Gabrielse, New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron, Phys. Rev. Lett. 97, 030801 (2006),
821: 770: 719: 875:, "A Magneton Theory of the Structure of the Atom", Smithsonian Miscellaneous Collection, Pub 2371, 80pp (Nov 1915) {Reprinted Pub 2419, V65, N11 (1916)}. 792: 1182: 909: 588:
The aspect of the Parson magneton with the most experimental relevance (and the aspect investigated by Grondahl and Webster) was the existence of an
850: 515: 298: 1225: 511: 294: 662: 375: 326:, who in 1823 proposed tiny magnetic "loops of charge" to explain the attractive force between current elements. In that same era 589: 351: 191: 818: 355: 246: 111:". In general, this path of charge could assume any shape, but tended toward a circular form due to internal repulsive 286: 479: 716: 1215: 475: 335: 766: 1220: 789: 199: 906: 637: 323: 411: 359: 618: 507: 463: 343: 183: 165: 402:
sparked a revolution with experiments confirming the existence and properties of electrons, protons, and
1098: 847: 749: 471: 387: 242: 112: 985: 565: 522: 367: 327: 872: 534: 495: 339: 278: 239: 85: 81: 671: 988:, "Proceedings of the American Physical Society: Experimental Evidence for the Parson Magneton", 743: 642:"Sur la théorie mathématique des phénomènes électrodynamiques uniquement déduite de l'expérience" 434: 48: 952:, "The Theory of Electromagnetic Mass of the Parson Magneton and other Non-Spherical Systems", 644:[On the mathematical theory of electrodynamic phenomena only deduced from experience]. 443:, suggested that something in the "resonators" themselves provided these discrete frequencies. 1075: 1057: 1039: 1021: 1003: 814: 712: 530: 399: 371: 265:
number of times as it proceeded around the ring. This requirement was thought to account for "
225: 67: 34: 1129: 1111: 1093: 967: 949: 931: 902: 577: 550: 546: 542: 467: 305:
for the particle. The model, then, claimed to explain how particles linked together to form
270: 210: 139: 394:". Then shortly before 1900, as scientists still debated over the very existence of atoms, 913: 854: 825: 796: 774: 723: 641: 499: 427: 331: 261:. Circuit completion demanded that each helical plasmoid fiber twisted around the ring an 203: 187: 127: 100: 666: 597: 1042:, "The Size and Shape of the Electron: II. The Absorption of High Frequency Radiation", 115:. In this configuration the charge elements circulated, but the ring as a whole did not 1006:, "The Size and Shape of the Electron – American Physical Society address (Dec 1917)", 610: 605: 601: 573: 558: 459: 403: 363: 347: 235: 231: 143: 135: 124: 120: 108: 1134: 1116: 1062: 1024:, "The Size and Shape of the Electron: I. TheScattering of High Frequency Radiation", 859: 830: 801: 728: 699: 677: 553:
wrote three papers connecting Parson's magneton with Page's oscillator and explaining
1209: 785: 690: 483: 447: 395: 383: 104: 1167: 478:
demanded from an accelerating charge, Bohr's electron radiated discretely when it "
17: 1080: 694: 1044: 1008: 990: 970:, "The Scattering of Alpha Rays as Evidence on the Parson Magnetron Hypothesis", 646:
Mémoires de l'Académie des sciences de l'Institut de France Académie des sciences
1026: 954: 889: 538: 142:
of the moving charge elements. These elements circulated around the ring at the
131: 107:
charge elements, which orbited or circulated along a common continuous path or "
936: 884: 843: 762: 593: 561: 526: 503: 455: 451: 407: 282: 450:
developed in the wake of all the new information, of which the 1913 model of
518: 423: 419: 302: 274: 216:
According to the model, electrons or protons could be viewed as bundles of "
150: 116: 1165:) at center-of-mass energies 192–208 GeV", Phys. Rev. D 64, 071701 (2001), 1132:, "The Angular Momentum and Some Related Properties of the Ring Electron", 819:
The Scattering of α and β Particles by Matter and the Structure of the Atom
1200:
Spinning Charged Ring Model of Electron Yielding Anomalous Magnetic Moment
1147:
D. Bourilkov, "Hint for axial-vector contact interactions in the data on
221: 73: 53: 918: 415: 289:
of the twist, was thought to distinguish the electron from the proton.
266: 262: 176: 576:, who wrote a series of papers on the properties of the electron, and 379: 254: 179: 169: 77: 60: 604:, and also a magnetic moment. The highly successful modern theory, 545:
was inspired in part by Parson's model in developing his theory of
190:, and was also inversely proportional to its radius, and therefore 258: 250: 217: 97: 887:, "The Distribution of Energy in the Normal Radiation Spectrum", 600:
showed that a pointlike particle could have an intrinsic quantum
426:". Planck's famous paper, which incidentally calculated both the 1114:, "Optical Rotation, Optical Isomerism, and the Ring Electron", 592:; this dipole moment is indeed present. However, later work by 569: 554: 506:, depicting finite-sized particles with the ability to maintain 391: 306: 568:
confirmed the model with his experiments on free electrons in
234:
between charge elements of the same sign was balanced by the
1202:, Galilean Electrodynamics. Vol. 1, 63-67 (Sept./Oct. 1990). 253:
of the ring as they progressed around its radius, forming a
767:
On the Law of Distribution of Energy in the Normal Spectrum
322:
The development of the helicon or toroidal ring began with
972: 572:
wires. Parson's theory next attracted the attention of
619:
high-precision atomic tests of quantum electrodynamics
103:, the toroidal ring was conceived as a collection of 1060:, "Possible Magnetic Polarity of Free Electrons", 580:, whose papers also argued for a "ring electron". 422:of radiation emanating from these "particles" or " 458:proposed electrons in circular orbit around the 134:. The ring produced an overall magnetic field (" 717:Uranium Radiation and the Electrical Conduction 934:, "Notes on Page's Theory of Heat Radiation", 1099:Proceedings of the Physical Society of London 1009:Journal of the Washington Academy of Sciences 769:”, Annalen der Physik, V4, p. 553 ff (1901). 672:Proceedings of the Royal Society of Edinburgh 366:, an assumption that remains foundational to 8: 541:", able to store energy without radiating. 848:On the Constitution of Atoms and Molecules 1198:David L. Bergman, J. Paul Wesley ; 919:Journal of the American Chemical Society 448:theories about the structure of the atom 629: 1048:, S2, V14, N3, pp. 247–259 (Sep 1919). 994:, S2, V10, N5, pp. 586–588 (Nov 1917). 805:, S6, V7, N39, pp. 237–265 (Mar 1904). 675:, V6, pp. 94–105 (1867) {reprinted in 958:, S2, V9, N6, pp. 484–499 (Jun 1917). 893:, S2, V7, N2, pp. 229–240 (Feb 1916). 410:added to the fire when he solved the 346:. When Maxwell expressed the laws of 7: 1030:, S2, V14, N1, pp. 20–43 (Jul 1919). 334:also uncovered foundational laws of 281:demanded the number of fibers to be 940:, S2, V8, N1, pp. 66–69 (Jul 1916). 285:, probably three, like a rope. The 1096:, "The Case for a Ring Electron", 1084:, V192, N2, pp. 145–155 (Aug 1921) 834:, S6, V21, pp. 669–688 (May 1911). 732:, S5, V47, pp. 109–163 (Jan 1899). 564:in terms of the magneton. In 1917 249:. These fibers twisted around the 25: 1081:Journal of the Franklin Institute 1102:, V31, N1, pp. 49–68 (Dec 1918). 486:of angular momentum to another. 863:, S6, V26, p. 1–25 (July 1913). 790:On the Structure of the Atom... 590:electron magnetic dipole moment 245:in the fibers of a bundle, per 1168:Physical Review Online Archive 198:. The theory claimed that the 72:. This physical model treated 1: 1138:, S6, V41, N6, p. 113 (1921). 1120:, S6, V40, N6, p. 426 (1920). 502:" as an improvement over the 472:radiating energy continuously 232:electrostatic repulsion force 1226:Obsolete theories in physics 84:, and was first proposed by 27:Model of subatomic particles 1078:, "The Magnetic Electron", 412:blackbody radiation problem 390:represented "the only true 1242: 922:, V38, pp. 762–786 (1916). 51:. It is also known as the 39:, known originally as the 907:The Atom and the Molecule 773:October 25, 2007, at the 703:, S5, V44, p. 293 (1897). 681:, V34, pp. 15–24 (1867)}. 525:. At about the same time 476:classical electrodynamics 454:came to predominate. The 336:classical electrodynamics 236:magnetic attraction force 47:, is a physical model of 418:particles, but discrete 200:proportionality constant 1183:PHYSICAL REVIEW LETTERS 1135:Philosophical Magazine 1117:Philosophical Magazine 1063:Philosophical Magazine 860:Philosophical Magazine 831:Philosophical Magazine 802:Philosophical Magazine 729:Philosophical Magazine 700:Philosophical Magazine 678:Philosophical Magazine 113:electromagnetic forces 1066:, S6, V41 (Feb 1921). 1012:, pp. 330 (Jan 1918). 750:Rutherford experiment 523:electromagnetic waves 414:by assuming not only 388:Hermann von Helmholtz 338:, later collected by 224:" with total charge ± 328:Carl Friedrich Gauss 96:Instead of a single 82:elementary particles 537:assuming rotating " 535:blackbody radiation 496:Alfred Lauck Parson 378:suggested that the 344:Maxwell's equations 86:Alfred Lauck Parson 49:subatomic particles 18:Toroidal Ring Model 912:2007-09-18 at the 853:2007-07-04 at the 824:2007-02-05 at the 795:2007-09-09 at the 744:Thomson experiment 722:2007-09-08 at the 638:AndrĂ©-Marie Ampère 435:Boltzmann constant 324:AndrĂ©-Marie Ampère 130:since it remained 119:due to changes in 1076:Arthur H. Compton 1058:Arthur H. Compton 1040:Arthur H. Compton 1022:Arthur H. Compton 1004:Arthur H. Compton 815:Ernest Rutherford 713:Ernest Rutherford 400:Ernest Rutherford 372:quantum mechanics 368:relativity theory 360:differential form 194:to its frequency 164:, which depended 45:magnetic electron 16:(Redirected from 1233: 1216:Particle physics 1187: 1178: 1172: 1145: 1139: 1130:H. Stanley Allen 1127: 1121: 1112:H. Stanley Allen 1109: 1103: 1094:H. Stanley Allen 1091: 1085: 1073: 1067: 1055: 1049: 1037: 1031: 1019: 1013: 1001: 995: 986:Lars O. Grondahl 983: 977: 976:, S2 (Feb 1918). 968:David L. Webster 965: 959: 950:David L. Webster 947: 941: 932:David L. Webster 929: 923: 903:Gilbert N. Lewis 900: 894: 882: 876: 873:Alfred L. Parson 870: 864: 841: 835: 812: 806: 783: 777: 760: 754: 739: 733: 710: 704: 688: 682: 660: 654: 653: 634: 578:H. Stanley Allen 566:Lars O. Grondahl 551:David L. Webster 547:chemical bonding 543:Gilbert N. Lewis 468:angular momentum 271:angular momentum 211:angular momentum 209:, the conserved 21: 1241: 1240: 1236: 1235: 1234: 1232: 1231: 1230: 1221:Nuclear physics 1206: 1205: 1195: 1193:Further reading 1190: 1179: 1175: 1146: 1142: 1128: 1124: 1110: 1106: 1092: 1088: 1074: 1070: 1056: 1052: 1045:Physical Review 1038: 1034: 1027:Physical Review 1020: 1016: 1002: 998: 991:Physical Review 984: 980: 973:Physical Review 966: 962: 955:Physical Review 948: 944: 937:Physical Review 930: 926: 914:Wayback Machine 901: 897: 890:Physical Review 883: 879: 871: 867: 855:Wayback Machine 842: 838: 826:Wayback Machine 813: 809: 797:Wayback Machine 784: 780: 775:Wayback Machine 761: 757: 740: 736: 724:Wayback Machine 711: 707: 689: 685: 667:On Vortex Atoms 663:William Thomson 661: 657: 636: 635: 631: 627: 586: 492: 490:Parson magneton 442: 428:Planck constant 374:today. In 1867 364:point particles 332:Michael Faraday 320: 315: 204:Planck constant 182:increased when 94: 41:Parson magneton 28: 23: 22: 15: 12: 11: 5: 1239: 1237: 1229: 1228: 1223: 1218: 1208: 1207: 1204: 1203: 1194: 1191: 1189: 1188: 1173: 1140: 1122: 1104: 1086: 1068: 1050: 1032: 1014: 996: 978: 960: 942: 924: 895: 877: 865: 836: 807: 778: 755: 734: 705: 683: 655: 628: 626: 623: 611:zitterbewegung 606:Standard Model 585: 584:Current status 582: 574:Arthur Compton 498:proposed his " 491: 488: 440: 386:discovered by 319: 316: 314: 311: 144:speed of light 138:") due to the 93: 90: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1238: 1227: 1224: 1222: 1219: 1217: 1214: 1213: 1211: 1201: 1197: 1196: 1192: 1185: 1184: 1177: 1174: 1170: 1169: 1164: 1160: 1157: 1153: 1150: 1144: 1141: 1137: 1136: 1131: 1126: 1123: 1119: 1118: 1113: 1108: 1105: 1101: 1100: 1095: 1090: 1087: 1083: 1082: 1077: 1072: 1069: 1065: 1064: 1059: 1054: 1051: 1047: 1046: 1041: 1036: 1033: 1029: 1028: 1023: 1018: 1015: 1011: 1010: 1005: 1000: 997: 993: 992: 987: 982: 979: 975: 974: 969: 964: 961: 957: 956: 951: 946: 943: 939: 938: 933: 928: 925: 921: 920: 915: 911: 908: 904: 899: 896: 892: 891: 886: 881: 878: 874: 869: 866: 862: 861: 856: 852: 849: 845: 840: 837: 833: 832: 827: 823: 820: 816: 811: 808: 804: 803: 798: 794: 791: 787: 786:J. J. Thomson 782: 779: 776: 772: 768: 764: 759: 756: 752: 751: 746: 745: 738: 735: 731: 730: 725: 721: 718: 714: 709: 706: 702: 701: 696: 692: 691:J. J. Thomson 687: 684: 680: 679: 674: 673: 668: 664: 659: 656: 651: 648:(in French). 647: 643: 639: 633: 630: 624: 622: 620: 614: 612: 607: 603: 599: 595: 591: 583: 581: 579: 575: 571: 567: 563: 560: 556: 552: 548: 544: 540: 536: 532: 528: 524: 520: 517: 513: 509: 505: 501: 497: 489: 487: 485: 481: 477: 473: 470:. Instead of 469: 465: 461: 457: 453: 449: 444: 439: 436: 432: 429: 425: 421: 417: 413: 409: 405: 401: 397: 396:J. J. Thomson 393: 389: 385: 384:perfect fluid 381: 377: 373: 369: 365: 362:, he assumed 361: 357: 353: 349: 345: 341: 340:James Maxwell 337: 333: 329: 325: 317: 312: 310: 308: 304: 300: 296: 290: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 244: 241: 237: 233: 229: 228: 223: 219: 214: 213:of the ring. 212: 208: 205: 201: 197: 193: 189: 185: 181: 178: 175:. The ring's 174: 171: 167: 163: 159: 156: =  155: 152: 148: 145: 141: 137: 133: 129: 126: 122: 118: 114: 110: 106: 105:infinitesimal 102: 99: 91: 89: 87: 83: 79: 75: 71: 69: 64: 62: 57: 55: 50: 46: 42: 38: 36: 30: 19: 1199: 1181: 1176: 1166: 1162: 1158: 1155: 1151: 1148: 1143: 1133: 1125: 1115: 1107: 1097: 1089: 1079: 1071: 1061: 1053: 1043: 1035: 1025: 1017: 1007: 999: 989: 981: 971: 963: 953: 945: 935: 927: 917: 898: 888: 880: 868: 858: 839: 829: 810: 800: 781: 758: 753:for details. 748: 742: 737: 727: 708: 698: 695:Cathode Rays 686: 676: 670: 658: 649: 645: 632: 615: 598:Alfred LandĂ© 587: 529:developed a 493: 445: 437: 430: 321: 291: 269:" values of 247:Ampère's law 238:between the 226: 215: 206: 195: 192:proportional 172: 161: 157: 153: 146: 95: 66: 59: 52: 44: 40: 33: 31: 29: 539:oscillators 482:" from one 420:frequencies 382:rings of a 376:Lord Kelvin 1210:Categories 885:Leigh Page 844:Niels Bohr 763:Max Planck 625:References 594:Paul Dirac 562:scattering 533:theory of 527:Leigh Page 504:Bohr model 466:values of 456:Bohr model 452:Niels Bohr 424:resonators 408:Max Planck 318:Beginnings 299:absorption 184:compressed 132:stationary 37:ring model 531:classical 519:radiation 508:stability 494:In 1915, 464:quantized 446:Numerous 303:radiation 279:Chirality 275:radiation 222:plasmoids 186:, like a 166:inversely 151:frequency 149:, but at 88:in 1915. 74:electrons 910:Archived 851:Archived 822:Archived 793:Archived 771:Archived 720:Archived 640:(1823). 500:magneton 433:and the 416:discrete 295:emission 287:helicity 243:currents 240:parallel 202:was the 177:inertial 125:magnetic 121:electric 98:orbiting 54:plasmoid 35:toroidal 549:. Then 460:nucleus 352:Faraday 313:History 267:quantum 263:integer 168:on the 140:current 117:radiate 78:protons 68:helicon 652:: 175. 516:absorb 480:leaped 404:nuclei 380:vortex 356:Ampère 354:, and 257:-like 255:Slinky 230:. The 220:" or " 218:fibers 188:spring 180:energy 170:radius 128:fields 101:charge 92:Theory 61:vortex 559:alpha 521:from 484:state 474:, as 462:with 392:atoms 348:Gauss 307:atoms 259:helix 251:torus 65:, or 747:and 741:See 602:spin 596:and 570:iron 557:and 555:mass 514:and 512:emit 510:and 398:and 370:and 330:and 273:and 136:spin 109:loop 76:and 70:ring 63:ring 56:ring 32:The 916:", 905:, " 857:", 846:, " 828:", 817:, " 799:", 788:, " 765:, " 726:", 715:, " 697:", 693:, " 669:", 665:, " 358:in 342:as 301:of 297:or 283:odd 160:/2Ď€ 123:or 80:as 43:or 1212:: 1154:→ 406:. 350:, 309:. 277:. 58:, 1186:. 1171:. 1163:Îł 1161:( 1159:e 1156:e 1152:e 1149:e 650:6 441:B 438:k 431:h 227:e 207:h 196:ν 173:R 162:R 158:c 154:ν 147:c 20:)

Index

Toroidal Ring Model
toroidal
subatomic particles
plasmoid
vortex
helicon
electrons
protons
elementary particles
Alfred Lauck Parson
orbiting
charge
infinitesimal
loop
electromagnetic forces
radiate
electric
magnetic
fields
stationary
spin
current
speed of light
frequency
inversely
radius
inertial
energy
compressed
spring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑