Knowledge

Torsion tensor

Source 📝

42: 6126:. But the vine may also be stretched out to maximize its extent (or length). In this case, the torsion of the vine is related to the torsion of the pair of filaments (or equivalently the surface torsion of the ribbon connecting the filaments), and it reflects the difference between the length-maximizing (geodesic) configuration of the vine and its energy-minimizing configuration. 4049: 4830: 6122:, ideas of torsion also play an important role. One problem models the growth of vines, focusing on the question of how vines manage to twist around objects. The vine itself is modeled as a pair of elastic filaments twisted around one another. In its energy-minimizing state, the vine naturally grows in the shape of a 4087:
For example, consider rolling a plane along a small circle drawn on a sphere. If the plane does not slip or twist, then when the plane is rolled all the way along the circle, it will also trace a circle in the plane. It turns out that the plane will have rotated (despite there being no twist whilst
3476: 4092:
of the sphere. But the curve traced out will still be a circle, and so in particular a closed curve that begins and ends at the same point. On the other hand, if the plane were rolled along the sphere, but it was allowed it to slip or twist in the process, then the path the circle traces on the
3782: 1945: 4577: 3610: 2553: 7330:
In other words, the symmetric part of the difference of two connections determines whether they have the same parametrized geodesics, whereas the skew part of the difference is determined by the relative torsions of the two connections. Another consequence is:
1772: 933: 2652: 2245: 2859: 6511: 3304: 3117: 6952: 4108:
along each of the four sides of the parallelogram, marking the point of contact as it goes. When the circuit is completed, the marked curve will have been displaced out of the plane of the parallelogram by a vector, denoted
3320: 2130: 7196: 7096: 4044:{\displaystyle {\begin{aligned}R(X,Y)Z&=u\left(2\Omega \left(\pi ^{-1}(X),\pi ^{-1}(Y)\right)\right)\left(u^{-1}(Z)\right),\\T(X,Y)&=u\left(2\Theta \left(\pi ^{-1}(X),\pi ^{-1}(Y)\right)\right),\end{aligned}}} 6635: 2942: 2026: 1783: 7306: 6352: 4071:
is the function specifying the frame in the fibre, and the choice of lift of the vectors via π is irrelevant since the curvature and torsion forms are horizontal (they vanish on the ambiguous vertical vectors).
1587: 7335:
Given any affine connection ∇, there is a unique torsion-free connection ∇′ with the same family of affinely parametrized geodesics. The difference between these two connections is in fact a tensor, the
6768: 5734: 3685: 146: 5672: 4825:{\displaystyle {\begin{array}{rl}0={\dot {X}}&=\nabla _{e_{1}}X={\dot {a}}e_{2}+{\dot {b}}e_{3}+ae_{1}\times e_{2}+be_{1}\times e_{3}\\&=({\dot {a}}-b)e_{2}+({\dot {b}}+a)e_{3}.\end{array}}} 4397: 1357: 6419: 5085: 1458: 3787: 582: 3489: 5861: 2391: 5581: 3730: 1648: 1287: 1101: 4955: 2763: 4889: 6238: 4530: 778: 5217: 405:. Given a system of parametrized geodesics, one can specify a class of affine connections having those geodesics, but differing by their torsions. There is a unique connection which 210: 6100: 6062: 4093:
plane could be a much more general curve that need not even be closed. The torsion is a way to quantify this additional slipping and twisting while rolling a plane along a curve.
5087:
Thus we see that, in the presence of torsion, parallel transport tends to twist a frame around the direction of motion, analogously to the role played by torsion in the classical
1028: 6828: 2380: 5982: 5610: 5446: 4267: 975: 4320: 2283: 3122:
For vectors at a point, this definition is independent of how the vectors are extended to vector fields away from the point (thus it defines a tensor, much like the torsion).
72: 6424: 6195: 3151: 5525: 5397: 2578: 5809: 5141: 5896: 5863:. The development of this parallelogram, using the connection, is no longer closed in general, and the displacement in going around the loop is translation by the vector 695: 6271: 5284: 3760: 2175: 4572: 6547: 6024: 5916: 5417: 5304: 5237: 2782: 6837:
of the connection: roughly the family of all affinely parametrized geodesics. Torsion is the ambiguity of classifying connections in terms of their geodesic sprays:
6665: 5767: 5476: 5361: 5167: 4185: 4142: 362: 5331: 5005: 4451: 4424: 273: 233: 166: 7348:
to general affine (possibly non-metric) connections. Picking out the unique torsion-free connection subordinate to a family of parametrized geodesics is known as
5942: 388: 327: 7596:. In Bergmann, P. G., & De Sabbata, V. Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity (Vol. 58). Springer Science & Business Media. 6163: 5257: 4978: 253: 6552: 3175: 364:
representing the displacement within a tangent space when the tangent space is developed (or "rolled") along an infinitesimal parallelogram whose sides are
3471:{\displaystyle {\mathfrak {S}}\left(R\left(X,Y\right)Z\right)={\mathfrak {S}}\left(T\left(T(X,Y),Z\right)+\left(\nabla _{X}T\right)\left(Y,Z\right)\right)} 6280: 4211:: the torsion of a connection measures a dislocation of a developed curve out of its plane, while the torsion of a curve is also a dislocation out of its 3001: 7345: 6026:
is then determined by the curvature of the connection. Together, the linear transformation of the frame and the translation of the starting point from
2046: 650:
which is a first order differential operator: it gives a 2-form on tangent vectors, while the covariant derivative is only defined for vector fields.
8571: 4199:, a reflection of the fact that traversing the circuit in the opposite sense undoes the original displacement, in much the same way that twisting a 7567:
Ozakin, A., & Yavari, A. (2014). Affine development of closed curves in Weitzenböck manifolds and the Burgers vector of dislocation mechanics.
6869: 7102: 7002: 4080:
The torsion is a manner of characterizing the amount of slipping or twisting that a plane does when rolling along a surface or higher dimensional
592: 1940:{\displaystyle {T^{k}}_{ij}=\theta ^{k}\left(\nabla _{\mathbf {e} _{i}}\mathbf {e} _{j}-\nabla _{\mathbf {e} _{j}}\mathbf {e} _{i}-\left\right)} 4329: 2874: 1959: 1167: 6785:, which associates with γ the tangent vector pointing along it.) Each geodesic is uniquely determined by its initial tangent vector at time 6356: 7822: 5010: 6841:
Two connections ∇ and ∇′ which have the same affinely parametrized geodesics (i.e., the same geodesic spray) differ only by torsion.
1523: 7993: 7568: 6701: 7207: 8755: 8434: 8040: 5677: 3694:
denotes the exterior covariant derivative. In terms of the curvature form and torsion form, the corresponding Bianchi identities are
394:
in its inputs, because developing over the parallelogram in the opposite sense produces the opposite displacement, similarly to how a
7729: 3640: 8863: 8214: 8128: 8065: 7946: 7831: 5530: 77: 8868: 8636: 5615: 4203:
in opposite directions displaces the screw in opposite ways. The torsion tensor thus is related to, although distinct from, the
8015: 5088: 8858: 7385: 1318: 35: 7353: 426: 417:). The difference between a connection with torsion, and a corresponding connection without torsion is a tensor, called the 8487: 8419: 7554: 5743:
The foregoing considerations can be made more quantitative by considering a small parallelogram, originating at the point
4096:
Thus the torsion tensor can be intuitively understood by taking a small parallelogram circuit with sides given by vectors
2293: 1406: 1371: 1136: 7594:
Comments on the paper by Elie Cartan: Sur une generalisation de la notion de courbure de Riemann et les espaces a torsion
3605:{\displaystyle {\mathfrak {S}}\left(\left(\nabla _{X}R\right)\left(Y,Z\right)+R\left(T\left(X,Y\right),Z\right)\right)=0} 8512: 3765:
Moreover, one can recover the curvature and torsion tensors from the curvature and torsion forms as follows. At a point
2548:{\displaystyle B^{i}{}_{jk}=T^{i}{}_{jk}+{\frac {1}{n-1}}\delta ^{i}{}_{j}a_{k}-{\frac {1}{n-1}}\delta ^{i}{}_{k}a_{j},} 588: 502: 8095: 1767:{\displaystyle \Theta ^{k}=d\theta ^{k}+{\omega ^{k}}_{j}\wedge \theta ^{j}={T^{k}}_{ij}\theta ^{i}\wedge \theta ^{j}.} 8750: 7549: 8035: 5814: 4208: 438: 5099:
One interpretation of the torsion involves the development of a curve. Suppose that a piecewise smooth closed loop
3700: 1222: 1033: 8561: 8381: 7892: 4894: 2309: 647: 8233: 2709: 928:{\displaystyle T^{k}{}_{ij}:=\Gamma ^{k}{}_{ij}-\Gamma ^{k}{}_{ji}-\gamma ^{k}{}_{ij},\quad i,j,k=1,2,\ldots ,n.} 8735: 7971: 4835: 8817: 8689: 8396: 8158: 8133: 8055: 7534:. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231(1185), 263-273. 7375: 4269:. On it, we put a connection that is flat, but with non-zero torsion, defined on the standard Euclidean frame 2964: 31: 6200: 4456: 5172: 8787: 8474: 8391: 8361: 8105: 7986: 698: 171: 7668:"Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite)" 6067: 6029: 8745: 8601: 8556: 8110: 8100: 7380: 2313: 1468: 988: 978: 721: 410: 7605:
See Spivak (1999) Volume II, Addendum 1 to Chapter 6. See also Bishop and Goldberg (1980), section 5.10.
6795: 2330: 8827: 8782: 8262: 8207: 8007: 7869: 5958: 5586: 5422: 4237: 941: 430: 284: 5674:). On the other hand, if the torsion is non-zero, then the developed curve may not be closed, so that 4272: 2647:{\displaystyle T\in \operatorname {Hom} \left({\textstyle \bigwedge }^{2}{\rm {T}}M,{\rm {T}}M\right).} 2256: 1107:
determine the symmetric part of the connection, the torsion tensor determines the antisymmetric part.
48: 8802: 8730: 8616: 8482: 8444: 8376: 7915: 7884: 7858: 7800: 7768: 7701: 7532:
Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry
6168: 5736:. Thus the development of a loop in the presence of torsion can become dislocated, analogously to a 3132: 462: 7531: 5481: 5366: 2240:{\displaystyle \Theta \in {\text{Hom}}\left({\textstyle \bigwedge }^{2}{\rm {T}}M,{\rm {T}}M\right)} 8679: 8502: 8492: 8341: 8326: 8282: 8148: 8120: 8075: 7639:"Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie)" 5772: 5102: 41: 5866: 661: 429:. Torsion is also useful in the study of unparametrized families of geodesics, via the associated 8812: 8669: 8522: 8336: 8272: 8080: 8030: 7979: 7848: 7717: 7627: 6274: 6243: 5262: 3736: 3154: 482: 4535: 2854:{\displaystyle (\operatorname {tr} \,T)(X){\stackrel {\text{def}}{=}}\operatorname {tr} (T(X)).} 2154:
corresponding to the identity endomorphism of the tangent bundle under the duality isomorphism
17: 8807: 8715: 8576: 8551: 8366: 8277: 8257: 7942: 7840: 7827: 7619: 7390: 7365: 7337: 6516: 6119: 6115: 5737: 4204: 454: 434: 418: 296: 7692:
Elzanowski, M.; Epstein, M. (1985), "Geometric characterization of hyperelastic uniformity",
7544: 5991: 5901: 5402: 5289: 5222: 74:, with four different choices of flat connection preserving the Euclidean metric, defined by 8873: 8822: 8720: 8497: 8464: 8449: 8331: 8200: 8143: 8045: 7923: 7899: 7808: 7788: 7776: 7709: 7679: 7650: 6640: 5746: 5451: 5336: 5146: 4212: 4155: 4112: 2952: 1953:
It can be easily shown that Θ transforms tensorially in the sense that if a different frame
1132: 414: 332: 5309: 4983: 4429: 4402: 2142:
Alternatively, the solder form can be characterized in a frame-independent fashion as the T
1517:. The connection form expresses the exterior covariant derivative of these basic sections: 258: 215: 151: 8792: 8740: 8684: 8664: 8566: 8454: 8321: 8292: 8138: 8050: 7877: 7744: 7740: 7370: 7311:∇ and ∇′ define the same families of affinely parametrized geodesics if and only if 6637:
These are the equations satisfied by an equilibrium continuous medium with moment density
4232: 4081: 2566: 2297: 1639: 1490: 1484: 982: 632: 6957:
be the difference of the two connections, calculated in terms of arbitrary extensions of
5921: 367: 306: 7919: 7862: 7804: 7772: 7705: 6506:{\displaystyle D\Omega _{b}^{a}=0,\quad D\Theta ^{a}=\Omega _{b}^{a}\wedge \theta ^{b}.} 3299:{\displaystyle {\mathfrak {S}}\left(R\left(X,Y\right)Z\right):=R(X,Y)Z+R(Y,Z)X+R(Z,X)Y.} 8832: 8797: 8777: 8527: 8517: 8507: 8429: 8401: 8386: 8371: 8287: 8166: 8085: 7934: 7663: 7638: 7634: 6834: 6148: 6135: 5945: 5242: 4963: 4188: 3623: 2317: 1378: 1150:)-valued one-form which maps vertical vectors to the generators of the right action in 458: 391: 238: 8852: 8769: 8674: 8586: 8459: 8090: 7961: 7721: 7667: 4323: 4219:
describes how a surface twists about a curve on the surface. The companion notion of
4105: 1950:
are the frame-components of the torsion tensor, as given in the previous definition.
276: 3112:{\displaystyle R(X,Y)Z=\nabla _{X}\nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{}Z.} 8837: 8641: 8626: 8591: 8439: 8424: 6970: 5952: 4144:. Thus the torsion tensor is a tensor: a (bilinear) function of two input vectors 1120: 486: 300: 8725: 8699: 8621: 8310: 8249: 8176: 7903: 7756: 6139: 2125:{\displaystyle {\tilde {\Theta }}^{i}={\left(g^{-1}\right)^{i}}_{j}\Theta ^{j}.} 1593: 1397: 1179: 422: 4582: 8606: 7927: 7780: 1597: 6947:{\displaystyle \Delta (X,Y)=\nabla _{X}{\tilde {Y}}-\nabla '_{X}{\tilde {Y}}} 8581: 8532: 8025: 8003: 7191:{\displaystyle A(X,Y)={\tfrac {1}{2}}\left(\Delta (X,Y)-\Delta (Y,X)\right)} 7091:{\displaystyle S(X,Y)={\tfrac {1}{2}}\left(\Delta (X,Y)+\Delta (Y,X)\right)} 5239:
is homotopic to zero. The curve can be developed into the tangent space at
4223:
measures how moving frames roll along a curve without slipping or twisting.
4220: 4089: 643: 7826:, vol. 1 & 2 (New ed.), Wiley-Interscience (published 1996), 27:
Manner of characterizing a twist or screw of a moving frame around a curve
8611: 8596: 8181: 6103: 1104: 402: 6630:{\displaystyle Ds_{ab}=\theta _{a}\wedge t_{b}-\theta _{b}\wedge t_{a}.} 8305: 8267: 7713: 7684: 7655: 2937:{\displaystyle T_{0}=T-{\frac {1}{n-1}}\iota (\operatorname {tr} \,T),} 2021:{\displaystyle {\tilde {\mathbf {e} }}_{i}=\mathbf {e} _{j}{g^{j}}_{i}} 421:. Absorption of torsion also plays a fundamental role in the study of 7812: 8631: 8223: 7757:"General relativity with spin and torsion: Foundations and prospects" 292: 6347:{\displaystyle t_{a}={\tfrac {1}{2}}\eta _{abc}\wedge \Omega ^{bc},} 1582:{\displaystyle D\mathbf {e} _{i}=\mathbf {e} _{j}{\omega ^{j}}_{i}.} 7965: 7755:
Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. (1976),
7580: 7853: 7728:
Goriely, A.; Robertson-Tessi, M.; Tabor, M.; Vandiver, R. (2006),
7506: 6763:{\displaystyle \nabla _{{\dot {\gamma }}(t)}{\dot {\gamma }}(t)=0} 6123: 4200: 395: 40: 7301:{\displaystyle A(X,Y)={\tfrac {1}{2}}\left(T(X,Y)-T'(X,Y)\right)} 7939:
A comprehensive introduction to differential geometry, Volume II
5729:{\displaystyle {\tilde {\gamma }}(0)\not ={\tilde {\gamma }}(1)} 2316:
part and another part which contains the trace terms. Using the
8196: 7975: 7507:
Elie Cartan's torsion in geometry and in field theory, an essay
3680:{\displaystyle \Omega =D\omega =d\omega +\omega \wedge \omega } 401:
Torsion is particularly useful in the study of the geometry of
1119:, an alternative characterization of torsion, applies to the 398:
moves in opposite ways when it is twisted in two directions.
141:{\displaystyle \nabla _{e_{i}}e_{j}=\tau \,e_{i}\times e_{j}} 6833:
One application of the torsion of a connection involves the
5667:{\displaystyle {\tilde {\gamma }}(0)={\tilde {\gamma }}(1)} 8192: 7791:(1961), "Lorentz invariance and the gravitational field", 6781:. (Here the dot denotes differentiation with respect to 4453:
axis, starting at the origin. The parallel vector field
2776:) is defined as the trace of this endomorphism. That is, 2139:(carrying one contravariant and two covariant indices). 6421:
Then the Bianchi identities The Bianchi identities are
4392:{\displaystyle \nabla _{e_{i}}e_{j}=e_{i}\times e_{j}.} 1596:
for the tangent bundle (relative to this frame) is the
1352:{\displaystyle \Theta =d\theta +\omega \wedge \theta .} 1306:
is the projection mapping for the principal bundle and
1158:) and equivariantly intertwines the right action of GL( 7233: 7128: 7028: 6414:{\displaystyle s_{ab}=-\eta _{abc}\wedge \Theta ^{c}.} 6298: 2601: 2197: 1497:, written in a particular frame of the tangent bundle 45:
Development of the unit circle in the Euclidean space
7210: 7105: 7005: 6872: 6798: 6704: 6643: 6555: 6519: 6427: 6359: 6283: 6246: 6203: 6171: 6151: 6070: 6032: 5994: 5961: 5924: 5904: 5869: 5817: 5811:. Then the tangent bivector to the parallelogram is 5775: 5749: 5680: 5618: 5589: 5533: 5484: 5454: 5425: 5405: 5369: 5339: 5312: 5292: 5265: 5245: 5225: 5175: 5149: 5105: 5080:{\displaystyle x\,e_{1}+\cos x\,e_{2}-\sin x\,e_{3}.} 5013: 4986: 4966: 4897: 4838: 4580: 4538: 4459: 4432: 4405: 4332: 4275: 4240: 4158: 4115: 3785: 3739: 3703: 3643: 3492: 3323: 3178: 3135: 3004: 2877: 2785: 2712: 2581: 2394: 2333: 2259: 2178: 2049: 1962: 1786: 1651: 1526: 1409: 1321: 1225: 1036: 991: 944: 781: 664: 505: 370: 335: 309: 261: 241: 218: 174: 154: 80: 51: 7530:
Bilby, B. A., Bullough, R., & Smith, E. (1955).
6165:
is given in three dimensions, with curvature 2-form
1453:{\displaystyle R_{g}^{*}\Theta =g^{-1}\cdot \Theta } 8768: 8708: 8657: 8650: 8542: 8473: 8410: 8354: 8301: 8248: 8241: 8157: 8119: 8064: 8014: 7672:
Annales Scientifiques de l'École Normale Supérieure
7643:
Annales Scientifiques de l'École Normale Supérieure
5918:is the torsion tensor, up to higher order terms in 7966:Rolling without slipping interpretation of torsion 7300: 7190: 7090: 6973:, one sees that Δ does not actually depend on how 6946: 6822: 6762: 6659: 6629: 6541: 6505: 6413: 6346: 6265: 6232: 6189: 6157: 6094: 6056: 6018: 5976: 5944:. This displacement is directly analogous to the 5936: 5910: 5890: 5855: 5803: 5761: 5728: 5666: 5604: 5575: 5519: 5470: 5440: 5411: 5391: 5355: 5325: 5298: 5278: 5251: 5231: 5211: 5161: 5135: 5079: 4999: 4972: 4949: 4883: 4824: 4566: 4524: 4445: 4418: 4399:Consider now the parallel transport of the vector 4391: 4314: 4261: 4179: 4136: 4043: 3754: 3724: 3679: 3604: 3470: 3298: 3145: 3111: 2936: 2853: 2757: 2646: 2547: 2374: 2277: 2239: 2124: 2020: 1939: 1766: 1581: 1452: 1351: 1281: 1095: 1022: 969: 927: 689: 577:{\displaystyle T(X,Y):=\nabla _{X}Y-\nabla _{Y}X-} 576: 437:, such ideas have been implemented in the form of 413:to other, possibly non-metric situations (such as 382: 356: 321: 267: 247: 227: 204: 160: 140: 66: 5583:If the torsion is zero, then the developed curve 3129:relate the curvature and torsion as follows. Let 5988:transformation that the frame undergoes between 1489:The torsion form may be expressed in terms of a 724:of the tangent bundle can be derived by setting 7518: 7493: 7481: 7469: 7457: 7445: 7433: 7421: 7409: 5856:{\displaystyle v\wedge w\in \Lambda ^{2}T_{p}M} 754:and by introducing the commutator coefficients 7904:"The physical structure of general relativity" 5576:{\displaystyle dx^{i}=\gamma ^{*}\theta ^{i}.} 3725:{\displaystyle D\Theta =\Omega \wedge \theta } 2308:The torsion tensor can be decomposed into two 1312:is its push-forward. The torsion form is then 1282:{\displaystyle \theta (X)=u^{-1}(\pi _{*}(X))} 1096:{\displaystyle T^{k}{}_{ij}=2\Gamma ^{k}{}_{}} 8208: 7987: 6996:be the symmetric and alternating parts of Δ: 4950:{\displaystyle X=\cos x\,e_{2}-\sin x\,e_{3}} 8: 2031:for some invertible matrix-valued function ( 212:. The resulting curves all have arc length 7694:Archive for Rational Mechanics and Analysis 2758:{\displaystyle T(X):Y\mapsto T(X\wedge Y).} 1642:). Then the torsion 2-form has components 8654: 8245: 8215: 8201: 8193: 7994: 7980: 7972: 7505:Hehl, F. W., & Obukhov, Y. N. (2007). 7346:fundamental theorem of Riemannian geometry 4884:{\displaystyle {\dot {a}}=b,{\dot {b}}=-a} 2669:defined as follows. For each vector fixed 772:. The components of the torsion are then 7852: 7683: 7654: 7308:is the difference of the torsion tensors. 7232: 7209: 7127: 7104: 7027: 7004: 6933: 6932: 6923: 6905: 6904: 6898: 6871: 6800: 6799: 6797: 6734: 6733: 6711: 6710: 6709: 6703: 6648: 6642: 6618: 6605: 6592: 6579: 6563: 6554: 6527: 6518: 6494: 6481: 6476: 6463: 6440: 6435: 6426: 6402: 6383: 6364: 6358: 6332: 6313: 6297: 6288: 6282: 6251: 6245: 6224: 6208: 6202: 6181: 6176: 6170: 6150: 6072: 6071: 6069: 6034: 6033: 6031: 5993: 5963: 5962: 5960: 5951:More generally, one can also transport a 5923: 5903: 5868: 5844: 5834: 5816: 5792: 5774: 5748: 5706: 5705: 5682: 5681: 5679: 5644: 5643: 5620: 5619: 5617: 5591: 5590: 5588: 5564: 5554: 5541: 5532: 5502: 5489: 5483: 5459: 5453: 5427: 5426: 5424: 5404: 5374: 5368: 5344: 5338: 5317: 5311: 5291: 5270: 5264: 5244: 5224: 5174: 5148: 5104: 5068: 5063: 5045: 5040: 5022: 5017: 5012: 4991: 4985: 4965: 4941: 4936: 4918: 4913: 4896: 4861: 4860: 4840: 4839: 4837: 4809: 4785: 4784: 4772: 4748: 4747: 4730: 4717: 4701: 4688: 4672: 4657: 4656: 4647: 4632: 4631: 4617: 4612: 4592: 4591: 4581: 4579: 4558: 4537: 4516: 4491: 4458: 4437: 4431: 4410: 4404: 4380: 4367: 4354: 4342: 4337: 4331: 4306: 4293: 4280: 4274: 4253: 4249: 4248: 4239: 4157: 4114: 4006: 3981: 3903: 3866: 3841: 3786: 3784: 3738: 3702: 3642: 3618:The curvature form and Bianchi identities 3514: 3494: 3493: 3491: 3430: 3370: 3369: 3325: 3324: 3322: 3180: 3179: 3177: 3137: 3136: 3134: 3085: 3069: 3059: 3043: 3033: 3003: 2924: 2897: 2882: 2876: 2816: 2811: 2809: 2808: 2792: 2784: 2711: 2627: 2626: 2614: 2613: 2607: 2600: 2580: 2536: 2526: 2524: 2517: 2495: 2486: 2476: 2474: 2467: 2445: 2433: 2431: 2424: 2408: 2406: 2399: 2393: 2360: 2358: 2351: 2338: 2332: 2258: 2223: 2222: 2210: 2209: 2203: 2196: 2185: 2177: 2113: 2103: 2096: 2083: 2073: 2063: 2052: 2051: 2048: 2012: 2005: 2000: 1993: 1988: 1978: 1967: 1965: 1964: 1961: 1921: 1916: 1906: 1901: 1886: 1881: 1872: 1867: 1865: 1852: 1847: 1838: 1833: 1831: 1816: 1800: 1793: 1788: 1785: 1755: 1742: 1729: 1722: 1717: 1707: 1694: 1687: 1682: 1672: 1656: 1650: 1570: 1563: 1558: 1551: 1546: 1536: 1531: 1525: 1435: 1419: 1414: 1408: 1385:, meaning that under the right action of 1320: 1261: 1245: 1224: 1078: 1076: 1069: 1050: 1048: 1041: 1035: 1005: 1003: 996: 990: 981:defining the connection. If the basis is 958: 951: 946: 943: 870: 868: 861: 845: 843: 836: 820: 818: 811: 795: 793: 786: 780: 678: 676: 669: 663: 547: 531: 504: 369: 334: 308: 260: 240: 217: 173: 153: 132: 119: 114: 102: 90: 85: 79: 58: 54: 53: 50: 8572:Covariance and contravariance of vectors 6984:are extended (so it defines a tensor on 6233:{\displaystyle \Theta ^{a}=D\theta ^{a}} 4525:{\displaystyle X(x)=a(x)e_{2}+b(x)e_{3}} 1467:acts on the right-hand side through its 646:, despite being defined in terms of the 7402: 6671:Geodesics and the absorption of torsion 5212:{\displaystyle \gamma (0)=\gamma (1)=p} 2169:. Then the torsion 2-form is a section 1103:. In particular (see below), while the 2135:In other terms, Θ is a tensor of type 205:{\displaystyle \tau =0.01,0.1,0.5,1.0} 7941:, Houston, Texas: Publish or Perish, 6138:, torsion is naturally associated to 6095:{\displaystyle {\tilde {\gamma }}(1)} 6057:{\displaystyle {\tilde {\gamma }}(0)} 4076:Characterizations and interpretations 658:The components of the torsion tensor 7: 7823:Foundations of Differential Geometry 4215:. In the geometry of surfaces, the 2959:Curvature and the Bianchi identities 1023:{\displaystyle \gamma ^{k}{}_{ij}=0} 168:is a constant scalar, respectively: 7569:Mathematics and Mechanics of Solids 6823:{\displaystyle {\dot {\gamma }}(0)} 3495: 3371: 3326: 3309:Then the following identities hold 3181: 3138: 2375:{\displaystyle a_{i}=T^{k}{}_{ik},} 1377:The torsion form is a (horizontal) 1178:). The frame bundle also carries a 8435:Tensors in curvilinear coordinates 8041:Radius of curvature (applications) 7820:Kobayashi, S.; Nomizu, K. (1963), 7165: 7144: 7065: 7044: 6920: 6895: 6873: 6706: 6473: 6460: 6432: 6399: 6329: 6205: 6173: 5977:{\displaystyle {\tilde {\gamma }}} 5905: 5870: 5831: 5605:{\displaystyle {\tilde {\gamma }}} 5527:sastify the differential equation 5441:{\displaystyle {\tilde {\gamma }}} 4609: 4334: 4262:{\displaystyle M=\mathbb {R} ^{3}} 4088:rolling it), an effect due to the 3969: 3829: 3743: 3713: 3707: 3644: 3511: 3427: 3082: 3066: 3056: 3040: 3030: 2628: 2615: 2260: 2224: 2211: 2179: 2110: 2054: 1862: 1828: 1653: 1447: 1425: 1322: 1066: 970:{\displaystyle {\Gamma ^{k}}_{ij}} 948: 833: 808: 544: 528: 82: 25: 8129:Curvature of Riemannian manifolds 7509:. arXiv preprint arXiv:0711.1535. 7352:, and it is one of the stages of 6853:are a pair of tangent vectors at 4980:, as it is transported along the 4315:{\displaystyle e_{1},e_{2},e_{3}} 2278:{\displaystyle \Theta =D\theta ,} 329:, that produces an output vector 7472:, Volume 1, Proposition III.5.2. 7344:This is a generalization of the 4574:, and the differential equation 1989: 1968: 1917: 1902: 1882: 1868: 1848: 1834: 1547: 1532: 654:Components of the torsion tensor 67:{\displaystyle \mathbb {R} ^{3}} 6455: 6190:{\displaystyle \Omega _{a}^{b}} 5612:is also a closed loop (so that 5089:differential geometry of curves 4152:that produces an output vector 3146:{\displaystyle {\mathfrak {S}}} 1199:(regarded as a linear function 882: 18:Torsion (differential geometry) 7424:, Chapter III, Proposition 7.6 7290: 7278: 7264: 7252: 7226: 7214: 7180: 7168: 7159: 7147: 7121: 7109: 7080: 7068: 7059: 7047: 7021: 7009: 6938: 6910: 6888: 6876: 6817: 6811: 6751: 6745: 6728: 6722: 6693:affinely parametrized geodesic 6089: 6083: 6077: 6051: 6045: 6039: 5968: 5885: 5873: 5723: 5717: 5711: 5699: 5693: 5687: 5661: 5655: 5649: 5637: 5631: 5625: 5596: 5520:{\displaystyle x^{i}=x^{i}(t)} 5514: 5508: 5432: 5392:{\displaystyle \theta ^{i}(p)} 5386: 5380: 5259:in the following manner. Let 5200: 5194: 5185: 5179: 5127: 5124: 5112: 4802: 4781: 4765: 4744: 4548: 4542: 4509: 4503: 4484: 4478: 4469: 4463: 4174: 4162: 4131: 4119: 4021: 4015: 3996: 3990: 3948: 3936: 3918: 3912: 3881: 3875: 3856: 3850: 3805: 3793: 3404: 3392: 3287: 3275: 3263: 3251: 3239: 3227: 3098: 3086: 3020: 3008: 2928: 2918: 2845: 2842: 2836: 2830: 2805: 2799: 2796: 2786: 2749: 2737: 2731: 2722: 2716: 2057: 1972: 1374:determined by the connection. 1276: 1273: 1267: 1254: 1235: 1229: 1088: 1079: 985:then the Lie brackets vanish, 591:of two vector fields. By the 571: 559: 521: 509: 351: 339: 36:Torsion field (disambiguation) 1: 8488:Exterior covariant derivative 8420:Tensor (intrinsic definition) 7519:Kobayashi & Nomizu (1963) 7458:Kobayashi & Nomizu (1963) 7446:Kobayashi & Nomizu (1963) 7434:Kobayashi & Nomizu (1963) 7422:Kobayashi & Nomizu (1963) 7410:Kobayashi & Nomizu (1963) 5804:{\displaystyle v,w\in T_{p}M} 5143:is given, based at the point 5136:{\displaystyle \gamma :\to M} 4104:, in a space and rolling the 2294:exterior covariant derivative 1777:In the rightmost expression, 1372:exterior covariant derivative 8513:Raising and lowering indices 7968:, URL (version: 2011-01-27). 7624:Tensor analysis on manifolds 5891:{\displaystyle \Theta (v,w)} 5286:be a parallel coframe along 1162:) on the tangent bundle of F 690:{\displaystyle T^{c}{}_{ab}} 8751:Gluon field strength tensor 7550:Encyclopedia of Mathematics 7494:Kobayashi & Nomizu 1963 7482:Kobayashi & Nomizu 1963 7470:Kobayashi & Nomizu 1963 7354:Cartan's equivalence method 6266:{\displaystyle \eta _{abc}} 5279:{\displaystyle \theta ^{i}} 3755:{\displaystyle D\Omega =0.} 2385:and the trace-free part is 427:Cartan's equivalence method 299:. The torsion tensor is a 8890: 8562:Cartan formalism (physics) 8382:Penrose graphical notation 7893:Cambridge University Press 7448:, Chapter III, Theorem 2.4 7412:, Chapter III, Theorem 5.1 6145:Suppose that a connection 5007:axis traces out the helix 4960:Now the tip of the vector 4567:{\displaystyle X(0)=e_{2}} 3483:Bianchi's second identity: 1482: 295:that is associated to any 29: 8234:Glossary of tensor theory 8230: 7928:10.1103/RevModPhys.36.463 7781:10.1103/revmodphys.48.393 7622:; Goldberg, S.I. (1980), 6110:The torsion of a filament 3314:Bianchi's first identity: 2983:defined on vector fields 2304:Irreducible decomposition 255:, and respective torsion 8864:Connection (mathematics) 8818:Gregorio Ricci-Curbastro 8690:Riemann curvature tensor 8397:Van der Waerden notation 8159:Curvature of connections 8134:Riemann curvature tensor 8056:Total absolute curvature 7521:, Chapter III, Section 4 7460:, Chapter III, Section 7 7436:, Chapter III, Section 2 6542:{\displaystyle Dt_{a}=0} 32:Torsion (disambiguation) 8869:Curvature (mathematics) 8788:Elwin Bruno Christoffel 8721:Angular momentum tensor 8392:Tetrad (index notation) 8362:Abstract index notation 8106:Second fundamental form 8096:Gauss–Codazzi equations 7730:"Elastic growth models" 6019:{\displaystyle t=0,t=1} 5911:{\displaystyle \Theta } 5412:{\displaystyle \gamma } 5299:{\displaystyle \gamma } 5232:{\displaystyle \gamma } 4207:, as it appears in the 2864:The trace-free part of 2572:Intrinsically, one has 1479:Torsion form in a frame 979:connection coefficients 8602:Levi-Civita connection 8111:Third fundamental form 8101:First fundamental form 8066:Differential geometry 8036:Frenet–Serret formulas 8016:Differential geometry 7381:Levi-Civita connection 7302: 7192: 7092: 6948: 6824: 6764: 6661: 6660:{\displaystyle s_{ab}} 6631: 6543: 6507: 6415: 6348: 6273:be the skew-symmetric 6267: 6234: 6191: 6159: 6096: 6058: 6020: 5978: 5938: 5912: 5892: 5857: 5805: 5763: 5762:{\displaystyle p\in M} 5730: 5668: 5606: 5577: 5521: 5472: 5471:{\displaystyle T_{p}M} 5442: 5413: 5393: 5357: 5356:{\displaystyle T_{p}M} 5333:be the coordinates on 5327: 5300: 5280: 5253: 5233: 5213: 5163: 5162:{\displaystyle p\in M} 5137: 5081: 5001: 4974: 4951: 4891:, and the solution is 4885: 4826: 4568: 4526: 4447: 4420: 4393: 4316: 4263: 4209:Frenet–Serret formulas 4181: 4180:{\displaystyle T(v,w)} 4138: 4137:{\displaystyle T(v,w)} 4045: 3756: 3726: 3681: 3606: 3472: 3300: 3147: 3113: 2938: 2855: 2759: 2648: 2549: 2376: 2300:for further details.) 2279: 2241: 2126: 2022: 1941: 1768: 1583: 1469:adjoint representation 1454: 1353: 1283: 1168:adjoint representation 1097: 1024: 971: 929: 691: 578: 469:(sometimes called the 453:be a manifold with an 439:Einstein–Cartan theory 411:Levi-Civita connection 384: 358: 357:{\displaystyle T(X,Y)} 323: 280: 269: 249: 229: 206: 162: 142: 68: 8859:Differential geometry 8828:Jan Arnoldus Schouten 8783:Augustin-Louis Cauchy 8263:Differential geometry 8008:differential geometry 7350:absorption of torsion 7303: 7193: 7093: 6949: 6825: 6765: 6662: 6632: 6544: 6508: 6416: 6349: 6268: 6235: 6192: 6160: 6130:Torsion and vorticity 6097: 6059: 6021: 5979: 5939: 5913: 5893: 5858: 5806: 5764: 5731: 5669: 5607: 5578: 5522: 5473: 5443: 5414: 5394: 5358: 5328: 5326:{\displaystyle x^{i}} 5301: 5281: 5254: 5234: 5214: 5164: 5138: 5082: 5002: 5000:{\displaystyle e_{1}} 4975: 4952: 4886: 4827: 4569: 4527: 4448: 4446:{\displaystyle e_{1}} 4421: 4419:{\displaystyle e_{2}} 4394: 4317: 4264: 4182: 4139: 4046: 3757: 3727: 3682: 3607: 3473: 3301: 3148: 3114: 2939: 2856: 2760: 2649: 2550: 2377: 2280: 2242: 2127: 2023: 1942: 1769: 1584: 1493:on the base manifold 1455: 1354: 1284: 1186:, defined at a frame 1098: 1025: 972: 930: 692: 579: 431:projective connection 385: 359: 324: 303:of two input vectors 285:differential geometry 270: 268:{\displaystyle \tau } 250: 230: 228:{\displaystyle 2\pi } 207: 163: 161:{\displaystyle \tau } 143: 69: 44: 8803:Carl Friedrich Gauss 8736:stress–energy tensor 8731:Cauchy stress tensor 8483:Covariant derivative 8445:Antisymmetric tensor 8377:Multi-index notation 8076:Principal curvatures 7889:Space-Time Structure 7845:Spacetime and fields 7208: 7103: 7003: 6971:Leibniz product rule 6870: 6796: 6702: 6641: 6553: 6517: 6425: 6357: 6281: 6244: 6201: 6169: 6149: 6068: 6030: 5992: 5959: 5948:of crystallography. 5922: 5902: 5867: 5815: 5773: 5747: 5678: 5616: 5587: 5531: 5482: 5452: 5423: 5403: 5399:. A development of 5367: 5337: 5310: 5290: 5263: 5243: 5223: 5173: 5147: 5103: 5011: 4984: 4964: 4895: 4836: 4578: 4536: 4457: 4430: 4403: 4330: 4273: 4238: 4231:Consider the (flat) 4156: 4113: 3783: 3737: 3701: 3641: 3490: 3321: 3176: 3133: 3002: 2875: 2783: 2710: 2665:, is an element of T 2579: 2392: 2331: 2257: 2176: 2047: 1960: 1784: 1649: 1524: 1407: 1319: 1223: 1034: 989: 942: 779: 697:in terms of a local 662: 503: 483:vector-valued 2-form 463:covariant derivative 368: 333: 307: 259: 239: 216: 172: 152: 78: 49: 30:For other uses, see 8680:Nonmetricity tensor 8535:(2nd-order tensors) 8503:Hodge star operator 8493:Exterior derivative 8342:Transport phenomena 8327:Continuum mechanics 8283:Multilinear algebra 8149:Sectional curvature 8121:Riemannian geometry 8002:Various notions of 7920:1964RvMP...36..463S 7863:2009arXiv0911.0334P 7805:1961JMP.....2..212K 7773:1976RvMP...48..393H 7706:1985ArRMA..88..347E 7581:Goriely et al. 2006 7386:Torsion coefficient 6931: 6845:More precisely, if 6486: 6445: 6197:and torsion 2-form 6186: 6106:of the connection. 5937:{\displaystyle v,w} 4322:by the (Euclidean) 2683:defines an element 1424: 1135:is equipped with a 409:, generalizing the 407:absorbs the torsion 383:{\displaystyle X,Y} 322:{\displaystyle X,Y} 8813:Tullio Levi-Civita 8756:Metric tensor (GR) 8670:Levi-Civita symbol 8523:Tensor contraction 8337:General relativity 8273:Euclidean geometry 8081:Gaussian curvature 8031:Torsion of a curve 7714:10.1007/BF00250871 7685:10.24033/asens.753 7656:10.24033/asens.751 7628:Dover Publications 7496:, Volume 1, III.5. 7484:, Volume 1, III.2. 7298: 7242: 7188: 7137: 7088: 7037: 6944: 6919: 6820: 6760: 6657: 6627: 6539: 6503: 6472: 6431: 6411: 6344: 6307: 6275:Levi-Civita tensor 6263: 6230: 6187: 6172: 6155: 6092: 6054: 6016: 5974: 5934: 5908: 5888: 5853: 5801: 5759: 5726: 5664: 5602: 5573: 5517: 5478:whose coordinates 5468: 5438: 5409: 5389: 5353: 5323: 5296: 5276: 5249: 5229: 5219:. We assume that 5209: 5159: 5133: 5077: 4997: 4970: 4947: 4881: 4822: 4820: 4564: 4522: 4443: 4416: 4389: 4312: 4259: 4205:torsion of a curve 4177: 4134: 4041: 4039: 3752: 3722: 3677: 3602: 3468: 3296: 3143: 3127:Bianchi identities 3109: 2967:of ∇ is a mapping 2934: 2851: 2755: 2644: 2605: 2545: 2372: 2275: 2237: 2201: 2122: 2018: 1937: 1764: 1579: 1450: 1410: 1362:Equivalently, Θ = 1349: 1279: 1182:θ, with values in 1180:canonical one-form 1105:geodesic equations 1093: 1020: 967: 925: 687: 574: 380: 354: 319: 281: 265: 245: 225: 202: 158: 138: 64: 8846: 8845: 8808:Hermann Grassmann 8764: 8763: 8716:Moment of inertia 8577:Differential form 8552:Affine connection 8367:Einstein notation 8350: 8349: 8278:Exterior calculus 8258:Coordinate system 8190: 8189: 7813:10.1063/1.1703702 7571:, 19(3), 299-307. 7391:Torsion of curves 7366:Contorsion tensor 7338:contorsion tensor 7241: 7136: 7036: 6941: 6913: 6808: 6777:in the domain of 6742: 6719: 6306: 6158:{\displaystyle D} 6120:elasticity theory 6118:, and especially 6116:materials science 6080: 6042: 5971: 5738:screw dislocation 5714: 5690: 5652: 5628: 5599: 5435: 5252:{\displaystyle p} 4973:{\displaystyle X} 4869: 4848: 4793: 4756: 4665: 4640: 4600: 4191:in the arguments 3169:. For instance, 2913: 2821: 2819: 2511: 2461: 2188: 2146:-valued one-form 2060: 1975: 455:affine connection 435:relativity theory 419:contorsion tensor 297:affine connection 275:(in the sense of 248:{\displaystyle 1} 16:(Redirected from 8881: 8823:Bernhard Riemann 8655: 8498:Exterior product 8465:Two-point tensor 8450:Symmetric tensor 8332:Electromagnetism 8246: 8217: 8210: 8203: 8194: 8144:Scalar curvature 8046:Affine curvature 7996: 7989: 7982: 7973: 7951: 7930: 7895: 7880: 7865: 7856: 7836: 7815: 7783: 7751: 7749: 7743:, archived from 7734: 7724: 7688: 7687: 7659: 7658: 7630: 7606: 7603: 7597: 7592:Trautman (1980) 7590: 7584: 7578: 7572: 7565: 7559: 7558: 7541: 7535: 7528: 7522: 7516: 7510: 7503: 7497: 7491: 7485: 7479: 7473: 7467: 7461: 7455: 7449: 7443: 7437: 7431: 7425: 7419: 7413: 7407: 7376:Curvature tensor 7325: 7307: 7305: 7304: 7299: 7297: 7293: 7277: 7243: 7234: 7197: 7195: 7194: 7189: 7187: 7183: 7138: 7129: 7097: 7095: 7094: 7089: 7087: 7083: 7038: 7029: 6983: 6953: 6951: 6950: 6945: 6943: 6942: 6934: 6927: 6915: 6914: 6906: 6903: 6902: 6862: 6829: 6827: 6826: 6821: 6810: 6809: 6801: 6791: 6769: 6767: 6766: 6761: 6744: 6743: 6735: 6732: 6731: 6721: 6720: 6712: 6683:) is a curve on 6666: 6664: 6663: 6658: 6656: 6655: 6636: 6634: 6633: 6628: 6623: 6622: 6610: 6609: 6597: 6596: 6584: 6583: 6571: 6570: 6548: 6546: 6545: 6540: 6532: 6531: 6512: 6510: 6509: 6504: 6499: 6498: 6485: 6480: 6468: 6467: 6444: 6439: 6420: 6418: 6417: 6412: 6407: 6406: 6394: 6393: 6372: 6371: 6353: 6351: 6350: 6345: 6340: 6339: 6324: 6323: 6308: 6299: 6293: 6292: 6272: 6270: 6269: 6264: 6262: 6261: 6239: 6237: 6236: 6231: 6229: 6228: 6213: 6212: 6196: 6194: 6193: 6188: 6185: 6180: 6164: 6162: 6161: 6156: 6101: 6099: 6098: 6093: 6082: 6081: 6073: 6063: 6061: 6060: 6055: 6044: 6043: 6035: 6025: 6023: 6022: 6017: 5983: 5981: 5980: 5975: 5973: 5972: 5964: 5955:along the curve 5943: 5941: 5940: 5935: 5917: 5915: 5914: 5909: 5897: 5895: 5894: 5889: 5862: 5860: 5859: 5854: 5849: 5848: 5839: 5838: 5810: 5808: 5807: 5802: 5797: 5796: 5768: 5766: 5765: 5760: 5735: 5733: 5732: 5727: 5716: 5715: 5707: 5692: 5691: 5683: 5673: 5671: 5670: 5665: 5654: 5653: 5645: 5630: 5629: 5621: 5611: 5609: 5608: 5603: 5601: 5600: 5592: 5582: 5580: 5579: 5574: 5569: 5568: 5559: 5558: 5546: 5545: 5526: 5524: 5523: 5518: 5507: 5506: 5494: 5493: 5477: 5475: 5474: 5469: 5464: 5463: 5447: 5445: 5444: 5439: 5437: 5436: 5428: 5418: 5416: 5415: 5410: 5398: 5396: 5395: 5390: 5379: 5378: 5362: 5360: 5359: 5354: 5349: 5348: 5332: 5330: 5329: 5324: 5322: 5321: 5305: 5303: 5302: 5297: 5285: 5283: 5282: 5277: 5275: 5274: 5258: 5256: 5255: 5250: 5238: 5236: 5235: 5230: 5218: 5216: 5215: 5210: 5168: 5166: 5165: 5160: 5142: 5140: 5139: 5134: 5086: 5084: 5083: 5078: 5073: 5072: 5050: 5049: 5027: 5026: 5006: 5004: 5003: 4998: 4996: 4995: 4979: 4977: 4976: 4971: 4956: 4954: 4953: 4948: 4946: 4945: 4923: 4922: 4890: 4888: 4887: 4882: 4871: 4870: 4862: 4850: 4849: 4841: 4831: 4829: 4828: 4823: 4821: 4814: 4813: 4795: 4794: 4786: 4777: 4776: 4758: 4757: 4749: 4739: 4735: 4734: 4722: 4721: 4706: 4705: 4693: 4692: 4677: 4676: 4667: 4666: 4658: 4652: 4651: 4642: 4641: 4633: 4624: 4623: 4622: 4621: 4602: 4601: 4593: 4573: 4571: 4570: 4565: 4563: 4562: 4531: 4529: 4528: 4523: 4521: 4520: 4496: 4495: 4452: 4450: 4449: 4444: 4442: 4441: 4425: 4423: 4422: 4417: 4415: 4414: 4398: 4396: 4395: 4390: 4385: 4384: 4372: 4371: 4359: 4358: 4349: 4348: 4347: 4346: 4321: 4319: 4318: 4313: 4311: 4310: 4298: 4297: 4285: 4284: 4268: 4266: 4265: 4260: 4258: 4257: 4252: 4217:geodesic torsion 4213:osculating plane 4186: 4184: 4183: 4178: 4143: 4141: 4140: 4135: 4070: 4050: 4048: 4047: 4042: 4040: 4033: 4029: 4028: 4024: 4014: 4013: 3989: 3988: 3925: 3921: 3911: 3910: 3893: 3889: 3888: 3884: 3874: 3873: 3849: 3848: 3761: 3759: 3758: 3753: 3731: 3729: 3728: 3723: 3686: 3684: 3683: 3678: 3634:)-valued 2-form 3611: 3609: 3608: 3603: 3595: 3591: 3590: 3586: 3579: 3575: 3546: 3542: 3527: 3523: 3519: 3518: 3499: 3498: 3477: 3475: 3474: 3469: 3467: 3463: 3462: 3458: 3443: 3439: 3435: 3434: 3417: 3413: 3375: 3374: 3365: 3361: 3357: 3353: 3330: 3329: 3305: 3303: 3302: 3297: 3220: 3216: 3212: 3208: 3185: 3184: 3152: 3150: 3149: 3144: 3142: 3141: 3118: 3116: 3115: 3110: 3102: 3101: 3074: 3073: 3064: 3063: 3048: 3047: 3038: 3037: 2982: 2965:curvature tensor 2953:interior product 2943: 2941: 2940: 2935: 2914: 2912: 2898: 2887: 2886: 2860: 2858: 2857: 2852: 2823: 2822: 2820: 2817: 2815: 2810: 2764: 2762: 2761: 2756: 2702: 2678: 2653: 2651: 2650: 2645: 2640: 2636: 2632: 2631: 2619: 2618: 2612: 2611: 2606: 2554: 2552: 2551: 2546: 2541: 2540: 2531: 2530: 2525: 2522: 2521: 2512: 2510: 2496: 2491: 2490: 2481: 2480: 2475: 2472: 2471: 2462: 2460: 2446: 2441: 2440: 2432: 2429: 2428: 2416: 2415: 2407: 2404: 2403: 2381: 2379: 2378: 2373: 2368: 2367: 2359: 2356: 2355: 2343: 2342: 2284: 2282: 2281: 2276: 2246: 2244: 2243: 2238: 2236: 2232: 2228: 2227: 2215: 2214: 2208: 2207: 2202: 2189: 2186: 2168: 2138: 2131: 2129: 2128: 2123: 2118: 2117: 2108: 2107: 2102: 2101: 2100: 2095: 2091: 2090: 2068: 2067: 2062: 2061: 2053: 2027: 2025: 2024: 2019: 2017: 2016: 2011: 2010: 2009: 1998: 1997: 1992: 1983: 1982: 1977: 1976: 1971: 1966: 1946: 1944: 1943: 1938: 1936: 1932: 1931: 1927: 1926: 1925: 1920: 1911: 1910: 1905: 1891: 1890: 1885: 1879: 1878: 1877: 1876: 1871: 1857: 1856: 1851: 1845: 1844: 1843: 1842: 1837: 1821: 1820: 1808: 1807: 1799: 1798: 1797: 1773: 1771: 1770: 1765: 1760: 1759: 1747: 1746: 1737: 1736: 1728: 1727: 1726: 1712: 1711: 1699: 1698: 1693: 1692: 1691: 1677: 1676: 1661: 1660: 1637: 1608: 1588: 1586: 1585: 1580: 1575: 1574: 1569: 1568: 1567: 1556: 1555: 1550: 1541: 1540: 1535: 1516: 1459: 1457: 1456: 1451: 1443: 1442: 1423: 1418: 1395: 1358: 1356: 1355: 1350: 1311: 1305: 1288: 1286: 1285: 1280: 1266: 1265: 1253: 1252: 1215: 1198: 1133:principal bundle 1127:of the manifold 1111:The torsion form 1102: 1100: 1099: 1094: 1092: 1091: 1077: 1074: 1073: 1058: 1057: 1049: 1046: 1045: 1029: 1027: 1026: 1021: 1013: 1012: 1004: 1001: 1000: 976: 974: 973: 968: 966: 965: 957: 956: 955: 934: 932: 931: 926: 878: 877: 869: 866: 865: 853: 852: 844: 841: 840: 828: 827: 819: 816: 815: 803: 802: 794: 791: 790: 771: 753: 738: 719: 696: 694: 693: 688: 686: 685: 677: 674: 673: 583: 581: 580: 575: 552: 551: 536: 535: 415:Finsler geometry 389: 387: 386: 381: 363: 361: 360: 355: 328: 326: 325: 320: 274: 272: 271: 266: 254: 252: 251: 246: 234: 232: 231: 226: 211: 209: 208: 203: 167: 165: 164: 159: 147: 145: 144: 139: 137: 136: 124: 123: 107: 106: 97: 96: 95: 94: 73: 71: 70: 65: 63: 62: 57: 21: 8889: 8888: 8884: 8883: 8882: 8880: 8879: 8878: 8849: 8848: 8847: 8842: 8793:Albert Einstein 8760: 8741:Einstein tensor 8704: 8685:Ricci curvature 8665:Kronecker delta 8651:Notable tensors 8646: 8567:Connection form 8544: 8538: 8469: 8455:Tensor operator 8412: 8406: 8346: 8322:Computer vision 8315: 8297: 8293:Tensor calculus 8237: 8226: 8221: 8191: 8186: 8153: 8139:Ricci curvature 8115: 8067: 8060: 8051:Total curvature 8017: 8010: 8000: 7958: 7949: 7933: 7908:Rev. Mod. Phys. 7898: 7885:Schrödinger, E. 7883: 7878:Springer-Verlag 7868: 7841:Poplawski, N.J. 7839: 7834: 7819: 7787: 7761:Rev. Mod. Phys. 7754: 7747: 7741:Springer-Verlag 7732: 7727: 7691: 7662: 7633: 7618: 7615: 7610: 7609: 7604: 7600: 7591: 7587: 7579: 7575: 7566: 7562: 7543: 7542: 7538: 7529: 7525: 7517: 7513: 7504: 7500: 7492: 7488: 7480: 7476: 7468: 7464: 7456: 7452: 7444: 7440: 7432: 7428: 7420: 7416: 7408: 7404: 7399: 7371:Curtright field 7362: 7312: 7270: 7248: 7244: 7206: 7205: 7143: 7139: 7101: 7100: 7043: 7039: 7001: 7000: 6981: 6894: 6868: 6867: 6854: 6794: 6793: 6786: 6705: 6700: 6699: 6673: 6644: 6639: 6638: 6614: 6601: 6588: 6575: 6559: 6551: 6550: 6523: 6515: 6514: 6490: 6459: 6423: 6422: 6398: 6379: 6360: 6355: 6354: 6328: 6309: 6284: 6279: 6278: 6247: 6242: 6241: 6220: 6204: 6199: 6198: 6167: 6166: 6147: 6146: 6132: 6112: 6066: 6065: 6028: 6027: 5990: 5989: 5957: 5956: 5920: 5919: 5900: 5899: 5865: 5864: 5840: 5830: 5813: 5812: 5788: 5771: 5770: 5745: 5744: 5676: 5675: 5614: 5613: 5585: 5584: 5560: 5550: 5537: 5529: 5528: 5498: 5485: 5480: 5479: 5455: 5450: 5449: 5421: 5420: 5401: 5400: 5370: 5365: 5364: 5340: 5335: 5334: 5313: 5308: 5307: 5288: 5287: 5266: 5261: 5260: 5241: 5240: 5221: 5220: 5171: 5170: 5145: 5144: 5101: 5100: 5097: 5064: 5041: 5018: 5009: 5008: 4987: 4982: 4981: 4962: 4961: 4937: 4914: 4893: 4892: 4834: 4833: 4819: 4818: 4805: 4768: 4737: 4736: 4726: 4713: 4697: 4684: 4668: 4643: 4613: 4608: 4603: 4576: 4575: 4554: 4534: 4533: 4532:thus satisfies 4512: 4487: 4455: 4454: 4433: 4428: 4427: 4406: 4401: 4400: 4376: 4363: 4350: 4338: 4333: 4328: 4327: 4302: 4289: 4276: 4271: 4270: 4247: 4236: 4235: 4233:Euclidean space 4229: 4154: 4153: 4111: 4110: 4082:affine manifold 4078: 4066: 4055: 4038: 4037: 4002: 3977: 3976: 3972: 3965: 3961: 3951: 3930: 3929: 3899: 3898: 3894: 3862: 3837: 3836: 3832: 3825: 3821: 3811: 3781: 3780: 3772: 3735: 3734: 3699: 3698: 3639: 3638: 3620: 3565: 3561: 3557: 3553: 3532: 3528: 3510: 3509: 3505: 3504: 3500: 3488: 3487: 3448: 3444: 3426: 3425: 3421: 3388: 3384: 3380: 3376: 3343: 3339: 3335: 3331: 3319: 3318: 3198: 3194: 3190: 3186: 3174: 3173: 3131: 3130: 3081: 3065: 3055: 3039: 3029: 3000: 2999: 2968: 2961: 2902: 2878: 2873: 2872: 2781: 2780: 2708: 2707: 2692: 2670: 2599: 2598: 2594: 2577: 2576: 2567:Kronecker delta 2563: 2532: 2523: 2513: 2500: 2482: 2473: 2463: 2450: 2430: 2420: 2405: 2395: 2390: 2389: 2357: 2347: 2334: 2329: 2328: 2320:, the trace of 2306: 2298:connection form 2255: 2254: 2195: 2194: 2190: 2174: 2173: 2155: 2136: 2109: 2079: 2075: 2074: 2072: 2050: 2045: 2044: 2039: 2001: 1999: 1987: 1963: 1958: 1957: 1915: 1900: 1899: 1895: 1880: 1866: 1861: 1846: 1832: 1827: 1826: 1822: 1812: 1789: 1787: 1782: 1781: 1751: 1738: 1718: 1716: 1703: 1683: 1681: 1668: 1652: 1647: 1646: 1640:Kronecker delta 1635: 1629: 1619: 1617: 1600: 1559: 1557: 1545: 1530: 1522: 1521: 1514: 1505: 1498: 1491:connection form 1487: 1485:connection form 1481: 1431: 1405: 1404: 1386: 1381:with values in 1317: 1316: 1307: 1293: 1257: 1241: 1221: 1220: 1211: 1200: 1194: 1187: 1137:connection form 1113: 1075: 1065: 1047: 1037: 1032: 1031: 1002: 992: 987: 986: 947: 945: 940: 939: 867: 857: 842: 832: 817: 807: 792: 782: 777: 776: 769: 760: 755: 752: 740: 737: 725: 717: 708: 701: 675: 665: 660: 659: 656: 633:smooth function 543: 527: 501: 500: 481:) of ∇ is the 447: 366: 365: 331: 330: 305: 304: 257: 256: 237: 236: 214: 213: 170: 169: 150: 149: 128: 115: 98: 86: 81: 76: 75: 52: 47: 46: 39: 28: 23: 22: 15: 12: 11: 5: 8887: 8885: 8877: 8876: 8871: 8866: 8861: 8851: 8850: 8844: 8843: 8841: 8840: 8835: 8833:Woldemar Voigt 8830: 8825: 8820: 8815: 8810: 8805: 8800: 8798:Leonhard Euler 8795: 8790: 8785: 8780: 8774: 8772: 8770:Mathematicians 8766: 8765: 8762: 8761: 8759: 8758: 8753: 8748: 8743: 8738: 8733: 8728: 8723: 8718: 8712: 8710: 8706: 8705: 8703: 8702: 8697: 8695:Torsion tensor 8692: 8687: 8682: 8677: 8672: 8667: 8661: 8659: 8652: 8648: 8647: 8645: 8644: 8639: 8634: 8629: 8624: 8619: 8614: 8609: 8604: 8599: 8594: 8589: 8584: 8579: 8574: 8569: 8564: 8559: 8554: 8548: 8546: 8540: 8539: 8537: 8536: 8530: 8528:Tensor product 8525: 8520: 8518:Symmetrization 8515: 8510: 8508:Lie derivative 8505: 8500: 8495: 8490: 8485: 8479: 8477: 8471: 8470: 8468: 8467: 8462: 8457: 8452: 8447: 8442: 8437: 8432: 8430:Tensor density 8427: 8422: 8416: 8414: 8408: 8407: 8405: 8404: 8402:Voigt notation 8399: 8394: 8389: 8387:Ricci calculus 8384: 8379: 8374: 8372:Index notation 8369: 8364: 8358: 8356: 8352: 8351: 8348: 8347: 8345: 8344: 8339: 8334: 8329: 8324: 8318: 8316: 8314: 8313: 8308: 8302: 8299: 8298: 8296: 8295: 8290: 8288:Tensor algebra 8285: 8280: 8275: 8270: 8268:Dyadic algebra 8265: 8260: 8254: 8252: 8243: 8239: 8238: 8231: 8228: 8227: 8222: 8220: 8219: 8212: 8205: 8197: 8188: 8187: 8185: 8184: 8179: 8174: 8172:Torsion tensor 8169: 8167:Curvature form 8163: 8161: 8155: 8154: 8152: 8151: 8146: 8141: 8136: 8131: 8125: 8123: 8117: 8116: 8114: 8113: 8108: 8103: 8098: 8093: 8088: 8086:Mean curvature 8083: 8078: 8072: 8070: 8062: 8061: 8059: 8058: 8053: 8048: 8043: 8038: 8033: 8028: 8022: 8020: 8012: 8011: 8001: 7999: 7998: 7991: 7984: 7976: 7970: 7969: 7957: 7956:External links 7954: 7953: 7952: 7947: 7931: 7896: 7881: 7874:Ricci Calculus 7870:Schouten, J.A. 7866: 7837: 7832: 7817: 7799:(2): 212–221, 7793:J. Math. Phys. 7789:Kibble, T.W.B. 7785: 7767:(3): 393–416, 7752: 7725: 7700:(4): 347–357, 7689: 7660: 7631: 7614: 7611: 7608: 7607: 7598: 7585: 7573: 7560: 7536: 7523: 7511: 7498: 7486: 7474: 7462: 7450: 7438: 7426: 7414: 7401: 7400: 7398: 7395: 7394: 7393: 7388: 7383: 7378: 7373: 7368: 7361: 7358: 7342: 7341: 7328: 7327: 7309: 7296: 7292: 7289: 7286: 7283: 7280: 7276: 7273: 7269: 7266: 7263: 7260: 7257: 7254: 7251: 7247: 7240: 7237: 7231: 7228: 7225: 7222: 7219: 7216: 7213: 7199: 7198: 7186: 7182: 7179: 7176: 7173: 7170: 7167: 7164: 7161: 7158: 7155: 7152: 7149: 7146: 7142: 7135: 7132: 7126: 7123: 7120: 7117: 7114: 7111: 7108: 7098: 7086: 7082: 7079: 7076: 7073: 7070: 7067: 7064: 7061: 7058: 7055: 7052: 7049: 7046: 7042: 7035: 7032: 7026: 7023: 7020: 7017: 7014: 7011: 7008: 6955: 6954: 6940: 6937: 6930: 6926: 6922: 6918: 6912: 6909: 6901: 6897: 6893: 6890: 6887: 6884: 6881: 6878: 6875: 6843: 6842: 6835:geodesic spray 6819: 6816: 6813: 6807: 6804: 6771: 6770: 6759: 6756: 6753: 6750: 6747: 6741: 6738: 6730: 6727: 6724: 6718: 6715: 6708: 6695:provided that 6672: 6669: 6654: 6651: 6647: 6626: 6621: 6617: 6613: 6608: 6604: 6600: 6595: 6591: 6587: 6582: 6578: 6574: 6569: 6566: 6562: 6558: 6538: 6535: 6530: 6526: 6522: 6502: 6497: 6493: 6489: 6484: 6479: 6475: 6471: 6466: 6462: 6458: 6454: 6451: 6448: 6443: 6438: 6434: 6430: 6410: 6405: 6401: 6397: 6392: 6389: 6386: 6382: 6378: 6375: 6370: 6367: 6363: 6343: 6338: 6335: 6331: 6327: 6322: 6319: 6316: 6312: 6305: 6302: 6296: 6291: 6287: 6260: 6257: 6254: 6250: 6227: 6223: 6219: 6216: 6211: 6207: 6184: 6179: 6175: 6154: 6136:fluid dynamics 6131: 6128: 6111: 6108: 6091: 6088: 6085: 6079: 6076: 6053: 6050: 6047: 6041: 6038: 6015: 6012: 6009: 6006: 6003: 6000: 5997: 5970: 5967: 5946:Burgers vector 5933: 5930: 5927: 5907: 5887: 5884: 5881: 5878: 5875: 5872: 5852: 5847: 5843: 5837: 5833: 5829: 5826: 5823: 5820: 5800: 5795: 5791: 5787: 5784: 5781: 5778: 5758: 5755: 5752: 5725: 5722: 5719: 5713: 5710: 5704: 5701: 5698: 5695: 5689: 5686: 5663: 5660: 5657: 5651: 5648: 5642: 5639: 5636: 5633: 5627: 5624: 5598: 5595: 5572: 5567: 5563: 5557: 5553: 5549: 5544: 5540: 5536: 5516: 5513: 5510: 5505: 5501: 5497: 5492: 5488: 5467: 5462: 5458: 5434: 5431: 5408: 5388: 5385: 5382: 5377: 5373: 5352: 5347: 5343: 5320: 5316: 5295: 5273: 5269: 5248: 5228: 5208: 5205: 5202: 5199: 5196: 5193: 5190: 5187: 5184: 5181: 5178: 5158: 5155: 5152: 5132: 5129: 5126: 5123: 5120: 5117: 5114: 5111: 5108: 5096: 5093: 5076: 5071: 5067: 5062: 5059: 5056: 5053: 5048: 5044: 5039: 5036: 5033: 5030: 5025: 5021: 5016: 4994: 4990: 4969: 4944: 4940: 4935: 4932: 4929: 4926: 4921: 4917: 4912: 4909: 4906: 4903: 4900: 4880: 4877: 4874: 4868: 4865: 4859: 4856: 4853: 4847: 4844: 4817: 4812: 4808: 4804: 4801: 4798: 4792: 4789: 4783: 4780: 4775: 4771: 4767: 4764: 4761: 4755: 4752: 4746: 4743: 4740: 4738: 4733: 4729: 4725: 4720: 4716: 4712: 4709: 4704: 4700: 4696: 4691: 4687: 4683: 4680: 4675: 4671: 4664: 4661: 4655: 4650: 4646: 4639: 4636: 4630: 4627: 4620: 4616: 4611: 4607: 4604: 4599: 4596: 4590: 4587: 4584: 4583: 4561: 4557: 4553: 4550: 4547: 4544: 4541: 4519: 4515: 4511: 4508: 4505: 4502: 4499: 4494: 4490: 4486: 4483: 4480: 4477: 4474: 4471: 4468: 4465: 4462: 4440: 4436: 4413: 4409: 4388: 4383: 4379: 4375: 4370: 4366: 4362: 4357: 4353: 4345: 4341: 4336: 4309: 4305: 4301: 4296: 4292: 4288: 4283: 4279: 4256: 4251: 4246: 4243: 4228: 4225: 4189:skew symmetric 4176: 4173: 4170: 4167: 4164: 4161: 4133: 4130: 4127: 4124: 4121: 4118: 4077: 4074: 4064: 4052: 4051: 4036: 4032: 4027: 4023: 4020: 4017: 4012: 4009: 4005: 4001: 3998: 3995: 3992: 3987: 3984: 3980: 3975: 3971: 3968: 3964: 3960: 3957: 3954: 3952: 3950: 3947: 3944: 3941: 3938: 3935: 3932: 3931: 3928: 3924: 3920: 3917: 3914: 3909: 3906: 3902: 3897: 3892: 3887: 3883: 3880: 3877: 3872: 3869: 3865: 3861: 3858: 3855: 3852: 3847: 3844: 3840: 3835: 3831: 3828: 3824: 3820: 3817: 3814: 3812: 3810: 3807: 3804: 3801: 3798: 3795: 3792: 3789: 3788: 3770: 3763: 3762: 3751: 3748: 3745: 3742: 3732: 3721: 3718: 3715: 3712: 3709: 3706: 3690:where, again, 3688: 3687: 3676: 3673: 3670: 3667: 3664: 3661: 3658: 3655: 3652: 3649: 3646: 3624:curvature form 3619: 3616: 3615: 3614: 3613: 3612: 3601: 3598: 3594: 3589: 3585: 3582: 3578: 3574: 3571: 3568: 3564: 3560: 3556: 3552: 3549: 3545: 3541: 3538: 3535: 3531: 3526: 3522: 3517: 3513: 3508: 3503: 3497: 3480: 3479: 3478: 3466: 3461: 3457: 3454: 3451: 3447: 3442: 3438: 3433: 3429: 3424: 3420: 3416: 3412: 3409: 3406: 3403: 3400: 3397: 3394: 3391: 3387: 3383: 3379: 3373: 3368: 3364: 3360: 3356: 3352: 3349: 3346: 3342: 3338: 3334: 3328: 3307: 3306: 3295: 3292: 3289: 3286: 3283: 3280: 3277: 3274: 3271: 3268: 3265: 3262: 3259: 3256: 3253: 3250: 3247: 3244: 3241: 3238: 3235: 3232: 3229: 3226: 3223: 3219: 3215: 3211: 3207: 3204: 3201: 3197: 3193: 3189: 3183: 3140: 3120: 3119: 3108: 3105: 3100: 3097: 3094: 3091: 3088: 3084: 3080: 3077: 3072: 3068: 3062: 3058: 3054: 3051: 3046: 3042: 3036: 3032: 3028: 3025: 3022: 3019: 3016: 3013: 3010: 3007: 2960: 2957: 2945: 2944: 2933: 2930: 2927: 2923: 2920: 2917: 2911: 2908: 2905: 2901: 2896: 2893: 2890: 2885: 2881: 2862: 2861: 2850: 2847: 2844: 2841: 2838: 2835: 2832: 2829: 2826: 2814: 2807: 2804: 2801: 2798: 2795: 2791: 2788: 2766: 2765: 2754: 2751: 2748: 2745: 2742: 2739: 2736: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2655: 2654: 2643: 2639: 2635: 2630: 2625: 2622: 2617: 2610: 2604: 2597: 2593: 2590: 2587: 2584: 2561: 2556: 2555: 2544: 2539: 2535: 2529: 2520: 2516: 2509: 2506: 2503: 2499: 2494: 2489: 2485: 2479: 2470: 2466: 2459: 2456: 2453: 2449: 2444: 2439: 2436: 2427: 2423: 2419: 2414: 2411: 2402: 2398: 2383: 2382: 2371: 2366: 2363: 2354: 2350: 2346: 2341: 2337: 2318:index notation 2305: 2302: 2286: 2285: 2274: 2271: 2268: 2265: 2262: 2248: 2247: 2235: 2231: 2226: 2221: 2218: 2213: 2206: 2200: 2193: 2184: 2181: 2133: 2132: 2121: 2116: 2112: 2106: 2099: 2094: 2089: 2086: 2082: 2078: 2071: 2066: 2059: 2056: 2035: 2029: 2028: 2015: 2008: 2004: 1996: 1991: 1986: 1981: 1974: 1970: 1948: 1947: 1935: 1930: 1924: 1919: 1914: 1909: 1904: 1898: 1894: 1889: 1884: 1875: 1870: 1864: 1860: 1855: 1850: 1841: 1836: 1830: 1825: 1819: 1815: 1811: 1806: 1803: 1796: 1792: 1775: 1774: 1763: 1758: 1754: 1750: 1745: 1741: 1735: 1732: 1725: 1721: 1715: 1710: 1706: 1702: 1697: 1690: 1686: 1680: 1675: 1671: 1667: 1664: 1659: 1655: 1633: 1627: 1613: 1590: 1589: 1578: 1573: 1566: 1562: 1554: 1549: 1544: 1539: 1534: 1529: 1510: 1503: 1480: 1477: 1461: 1460: 1449: 1446: 1441: 1438: 1434: 1430: 1427: 1422: 1417: 1413: 1396:it transforms 1379:tensorial form 1360: 1359: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1327: 1324: 1290: 1289: 1278: 1275: 1272: 1269: 1264: 1260: 1256: 1251: 1248: 1244: 1240: 1237: 1234: 1231: 1228: 1209: 1192: 1112: 1109: 1090: 1087: 1084: 1081: 1072: 1068: 1064: 1061: 1056: 1053: 1044: 1040: 1019: 1016: 1011: 1008: 999: 995: 964: 961: 954: 950: 936: 935: 924: 921: 918: 915: 912: 909: 906: 903: 900: 897: 894: 891: 888: 885: 881: 876: 873: 864: 860: 856: 851: 848: 839: 835: 831: 826: 823: 814: 810: 806: 801: 798: 789: 785: 765: 758: 748: 733: 713: 706: 684: 681: 672: 668: 655: 652: 587:where is the 585: 584: 573: 570: 567: 564: 561: 558: 555: 550: 546: 542: 539: 534: 530: 526: 523: 520: 517: 514: 511: 508: 467:torsion tensor 459:tangent bundle 446: 443: 392:skew symmetric 379: 376: 373: 353: 350: 347: 344: 341: 338: 318: 315: 312: 289:torsion tensor 264: 244: 224: 221: 201: 198: 195: 192: 189: 186: 183: 180: 177: 157: 135: 131: 127: 122: 118: 113: 110: 105: 101: 93: 89: 84: 61: 56: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8886: 8875: 8872: 8870: 8867: 8865: 8862: 8860: 8857: 8856: 8854: 8839: 8836: 8834: 8831: 8829: 8826: 8824: 8821: 8819: 8816: 8814: 8811: 8809: 8806: 8804: 8801: 8799: 8796: 8794: 8791: 8789: 8786: 8784: 8781: 8779: 8776: 8775: 8773: 8771: 8767: 8757: 8754: 8752: 8749: 8747: 8744: 8742: 8739: 8737: 8734: 8732: 8729: 8727: 8724: 8722: 8719: 8717: 8714: 8713: 8711: 8707: 8701: 8698: 8696: 8693: 8691: 8688: 8686: 8683: 8681: 8678: 8676: 8675:Metric tensor 8673: 8671: 8668: 8666: 8663: 8662: 8660: 8656: 8653: 8649: 8643: 8640: 8638: 8635: 8633: 8630: 8628: 8625: 8623: 8620: 8618: 8615: 8613: 8610: 8608: 8605: 8603: 8600: 8598: 8595: 8593: 8590: 8588: 8587:Exterior form 8585: 8583: 8580: 8578: 8575: 8573: 8570: 8568: 8565: 8563: 8560: 8558: 8555: 8553: 8550: 8549: 8547: 8541: 8534: 8531: 8529: 8526: 8524: 8521: 8519: 8516: 8514: 8511: 8509: 8506: 8504: 8501: 8499: 8496: 8494: 8491: 8489: 8486: 8484: 8481: 8480: 8478: 8476: 8472: 8466: 8463: 8461: 8460:Tensor bundle 8458: 8456: 8453: 8451: 8448: 8446: 8443: 8441: 8438: 8436: 8433: 8431: 8428: 8426: 8423: 8421: 8418: 8417: 8415: 8409: 8403: 8400: 8398: 8395: 8393: 8390: 8388: 8385: 8383: 8380: 8378: 8375: 8373: 8370: 8368: 8365: 8363: 8360: 8359: 8357: 8353: 8343: 8340: 8338: 8335: 8333: 8330: 8328: 8325: 8323: 8320: 8319: 8317: 8312: 8309: 8307: 8304: 8303: 8300: 8294: 8291: 8289: 8286: 8284: 8281: 8279: 8276: 8274: 8271: 8269: 8266: 8264: 8261: 8259: 8256: 8255: 8253: 8251: 8247: 8244: 8240: 8236: 8235: 8229: 8225: 8218: 8213: 8211: 8206: 8204: 8199: 8198: 8195: 8183: 8180: 8178: 8175: 8173: 8170: 8168: 8165: 8164: 8162: 8160: 8156: 8150: 8147: 8145: 8142: 8140: 8137: 8135: 8132: 8130: 8127: 8126: 8124: 8122: 8118: 8112: 8109: 8107: 8104: 8102: 8099: 8097: 8094: 8092: 8091:Darboux frame 8089: 8087: 8084: 8082: 8079: 8077: 8074: 8073: 8071: 8069: 8063: 8057: 8054: 8052: 8049: 8047: 8044: 8042: 8039: 8037: 8034: 8032: 8029: 8027: 8024: 8023: 8021: 8019: 8013: 8009: 8005: 7997: 7992: 7990: 7985: 7983: 7978: 7977: 7974: 7967: 7963: 7962:Bill Thurston 7960: 7959: 7955: 7950: 7948:0-914098-71-3 7944: 7940: 7936: 7932: 7929: 7925: 7921: 7917: 7913: 7909: 7905: 7901: 7897: 7894: 7890: 7886: 7882: 7879: 7875: 7871: 7867: 7864: 7860: 7855: 7850: 7846: 7842: 7838: 7835: 7833:0-471-15733-3 7829: 7825: 7824: 7818: 7814: 7810: 7806: 7802: 7798: 7794: 7790: 7786: 7782: 7778: 7774: 7770: 7766: 7762: 7758: 7753: 7750:on 2006-12-29 7746: 7742: 7738: 7731: 7726: 7723: 7719: 7715: 7711: 7707: 7703: 7699: 7695: 7690: 7686: 7681: 7677: 7673: 7669: 7665: 7661: 7657: 7652: 7648: 7644: 7640: 7636: 7632: 7629: 7625: 7621: 7617: 7616: 7612: 7602: 7599: 7595: 7589: 7586: 7582: 7577: 7574: 7570: 7564: 7561: 7556: 7552: 7551: 7546: 7540: 7537: 7533: 7527: 7524: 7520: 7515: 7512: 7508: 7502: 7499: 7495: 7490: 7487: 7483: 7478: 7475: 7471: 7466: 7463: 7459: 7454: 7451: 7447: 7442: 7439: 7435: 7430: 7427: 7423: 7418: 7415: 7411: 7406: 7403: 7396: 7392: 7389: 7387: 7384: 7382: 7379: 7377: 7374: 7372: 7369: 7367: 7364: 7363: 7359: 7357: 7355: 7351: 7347: 7339: 7334: 7333: 7332: 7323: 7319: 7315: 7310: 7294: 7287: 7284: 7281: 7274: 7271: 7267: 7261: 7258: 7255: 7249: 7245: 7238: 7235: 7229: 7223: 7220: 7217: 7211: 7204: 7203: 7202: 7184: 7177: 7174: 7171: 7162: 7156: 7153: 7150: 7140: 7133: 7130: 7124: 7118: 7115: 7112: 7106: 7099: 7084: 7077: 7074: 7071: 7062: 7056: 7053: 7050: 7040: 7033: 7030: 7024: 7018: 7015: 7012: 7006: 6999: 6998: 6997: 6995: 6991: 6987: 6980: 6976: 6972: 6968: 6964: 6960: 6935: 6928: 6924: 6916: 6907: 6899: 6891: 6885: 6882: 6879: 6866: 6865: 6864: 6861: 6857: 6852: 6848: 6840: 6839: 6838: 6836: 6831: 6814: 6805: 6802: 6789: 6784: 6780: 6776: 6773:for all time 6757: 6754: 6748: 6739: 6736: 6725: 6716: 6713: 6698: 6697: 6696: 6694: 6690: 6686: 6682: 6678: 6675:Suppose that 6670: 6668: 6652: 6649: 6645: 6624: 6619: 6615: 6611: 6606: 6602: 6598: 6593: 6589: 6585: 6580: 6576: 6572: 6567: 6564: 6560: 6556: 6536: 6533: 6528: 6524: 6520: 6500: 6495: 6491: 6487: 6482: 6477: 6469: 6464: 6456: 6452: 6449: 6446: 6441: 6436: 6428: 6408: 6403: 6395: 6390: 6387: 6384: 6380: 6376: 6373: 6368: 6365: 6361: 6341: 6336: 6333: 6325: 6320: 6317: 6314: 6310: 6303: 6300: 6294: 6289: 6285: 6276: 6258: 6255: 6252: 6248: 6225: 6221: 6217: 6214: 6209: 6182: 6177: 6152: 6143: 6141: 6137: 6129: 6127: 6125: 6121: 6117: 6109: 6107: 6105: 6102:comprise the 6086: 6074: 6048: 6036: 6013: 6010: 6007: 6004: 6001: 5998: 5995: 5987: 5965: 5954: 5949: 5947: 5931: 5928: 5925: 5882: 5879: 5876: 5850: 5845: 5841: 5835: 5827: 5824: 5821: 5818: 5798: 5793: 5789: 5785: 5782: 5779: 5776: 5769:, with sides 5756: 5753: 5750: 5741: 5739: 5720: 5708: 5702: 5696: 5684: 5658: 5646: 5640: 5634: 5622: 5593: 5570: 5565: 5561: 5555: 5551: 5547: 5542: 5538: 5534: 5511: 5503: 5499: 5495: 5490: 5486: 5465: 5460: 5456: 5429: 5406: 5383: 5375: 5371: 5350: 5345: 5341: 5318: 5314: 5293: 5271: 5267: 5246: 5226: 5206: 5203: 5197: 5191: 5188: 5182: 5176: 5156: 5153: 5150: 5130: 5121: 5118: 5115: 5109: 5106: 5094: 5092: 5090: 5074: 5069: 5065: 5060: 5057: 5054: 5051: 5046: 5042: 5037: 5034: 5031: 5028: 5023: 5019: 5014: 4992: 4988: 4967: 4958: 4942: 4938: 4933: 4930: 4927: 4924: 4919: 4915: 4910: 4907: 4904: 4901: 4898: 4878: 4875: 4872: 4866: 4863: 4857: 4854: 4851: 4845: 4842: 4815: 4810: 4806: 4799: 4796: 4790: 4787: 4778: 4773: 4769: 4762: 4759: 4753: 4750: 4741: 4731: 4727: 4723: 4718: 4714: 4710: 4707: 4702: 4698: 4694: 4689: 4685: 4681: 4678: 4673: 4669: 4662: 4659: 4653: 4648: 4644: 4637: 4634: 4628: 4625: 4618: 4614: 4605: 4597: 4594: 4588: 4585: 4559: 4555: 4551: 4545: 4539: 4517: 4513: 4506: 4500: 4497: 4492: 4488: 4481: 4475: 4472: 4466: 4460: 4438: 4434: 4411: 4407: 4386: 4381: 4377: 4373: 4368: 4364: 4360: 4355: 4351: 4343: 4339: 4325: 4324:cross product 4307: 4303: 4299: 4294: 4290: 4286: 4281: 4277: 4254: 4244: 4241: 4234: 4226: 4224: 4222: 4218: 4214: 4210: 4206: 4202: 4198: 4194: 4190: 4171: 4168: 4165: 4159: 4151: 4147: 4128: 4125: 4122: 4116: 4107: 4106:tangent space 4103: 4099: 4094: 4091: 4085: 4083: 4075: 4073: 4069: 4062: 4058: 4034: 4030: 4025: 4018: 4010: 4007: 4003: 3999: 3993: 3985: 3982: 3978: 3973: 3966: 3962: 3958: 3955: 3953: 3945: 3942: 3939: 3933: 3926: 3922: 3915: 3907: 3904: 3900: 3895: 3890: 3885: 3878: 3870: 3867: 3863: 3859: 3853: 3845: 3842: 3838: 3833: 3826: 3822: 3818: 3815: 3813: 3808: 3802: 3799: 3796: 3790: 3779: 3778: 3777: 3775: 3768: 3749: 3746: 3740: 3733: 3719: 3716: 3710: 3704: 3697: 3696: 3695: 3693: 3674: 3671: 3668: 3665: 3662: 3659: 3656: 3653: 3650: 3647: 3637: 3636: 3635: 3633: 3629: 3625: 3617: 3599: 3596: 3592: 3587: 3583: 3580: 3576: 3572: 3569: 3566: 3562: 3558: 3554: 3550: 3547: 3543: 3539: 3536: 3533: 3529: 3524: 3520: 3515: 3506: 3501: 3486: 3485: 3484: 3481: 3464: 3459: 3455: 3452: 3449: 3445: 3440: 3436: 3431: 3422: 3418: 3414: 3410: 3407: 3401: 3398: 3395: 3389: 3385: 3381: 3377: 3366: 3362: 3358: 3354: 3350: 3347: 3344: 3340: 3336: 3332: 3317: 3316: 3315: 3312: 3311: 3310: 3293: 3290: 3284: 3281: 3278: 3272: 3269: 3266: 3260: 3257: 3254: 3248: 3245: 3242: 3236: 3233: 3230: 3224: 3221: 3217: 3213: 3209: 3205: 3202: 3199: 3195: 3191: 3187: 3172: 3171: 3170: 3168: 3164: 3160: 3156: 3128: 3123: 3106: 3103: 3095: 3092: 3089: 3078: 3075: 3070: 3060: 3052: 3049: 3044: 3034: 3026: 3023: 3017: 3014: 3011: 3005: 2998: 2997: 2996: 2994: 2990: 2986: 2980: 2976: 2972: 2966: 2958: 2956: 2954: 2950: 2931: 2925: 2921: 2915: 2909: 2906: 2903: 2899: 2894: 2891: 2888: 2883: 2879: 2871: 2870: 2869: 2867: 2848: 2839: 2833: 2827: 2824: 2812: 2802: 2793: 2789: 2779: 2778: 2777: 2775: 2771: 2752: 2746: 2743: 2740: 2734: 2728: 2725: 2719: 2713: 2706: 2705: 2704: 2700: 2696: 2690: 2686: 2682: 2677: 2673: 2668: 2664: 2660: 2657:The trace of 2641: 2637: 2633: 2623: 2620: 2608: 2602: 2595: 2591: 2588: 2585: 2582: 2575: 2574: 2573: 2570: 2568: 2564: 2542: 2537: 2533: 2527: 2518: 2514: 2507: 2504: 2501: 2497: 2492: 2487: 2483: 2477: 2468: 2464: 2457: 2454: 2451: 2447: 2442: 2437: 2434: 2425: 2421: 2417: 2412: 2409: 2400: 2396: 2388: 2387: 2386: 2369: 2364: 2361: 2352: 2348: 2344: 2339: 2335: 2327: 2326: 2325: 2323: 2319: 2315: 2311: 2303: 2301: 2299: 2295: 2291: 2272: 2269: 2266: 2263: 2253: 2252: 2251: 2233: 2229: 2219: 2216: 2204: 2198: 2191: 2182: 2172: 2171: 2170: 2167: 2163: 2159: 2153: 2149: 2145: 2140: 2119: 2114: 2104: 2097: 2092: 2087: 2084: 2080: 2076: 2069: 2064: 2043: 2042: 2041: 2038: 2034: 2013: 2006: 2002: 1994: 1984: 1979: 1956: 1955: 1954: 1951: 1933: 1928: 1922: 1912: 1907: 1896: 1892: 1887: 1873: 1858: 1853: 1839: 1823: 1817: 1813: 1809: 1804: 1801: 1794: 1790: 1780: 1779: 1778: 1761: 1756: 1752: 1748: 1743: 1739: 1733: 1730: 1723: 1719: 1713: 1708: 1704: 1700: 1695: 1688: 1684: 1678: 1673: 1669: 1665: 1662: 1657: 1645: 1644: 1643: 1641: 1636: 1626: 1622: 1616: 1612: 1607: 1603: 1599: 1595: 1576: 1571: 1564: 1560: 1552: 1542: 1537: 1527: 1520: 1519: 1518: 1513: 1509: 1502: 1496: 1492: 1486: 1478: 1476: 1474: 1470: 1466: 1444: 1439: 1436: 1432: 1428: 1420: 1415: 1411: 1403: 1402: 1401: 1399: 1398:equivariantly 1393: 1389: 1384: 1380: 1375: 1373: 1369: 1365: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1315: 1314: 1313: 1310: 1304: 1300: 1296: 1270: 1262: 1258: 1249: 1246: 1242: 1238: 1232: 1226: 1219: 1218: 1217: 1214: 1207: 1203: 1197: 1190: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1138: 1134: 1130: 1126: 1122: 1118: 1110: 1108: 1106: 1085: 1082: 1070: 1062: 1059: 1054: 1051: 1042: 1038: 1017: 1014: 1009: 1006: 997: 993: 984: 980: 962: 959: 952: 922: 919: 916: 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 879: 874: 871: 862: 858: 854: 849: 846: 837: 829: 824: 821: 812: 804: 799: 796: 787: 783: 775: 774: 773: 768: 764: 761: 751: 747: 743: 736: 732: 728: 723: 716: 712: 705: 700: 682: 679: 670: 666: 653: 651: 649: 645: 641: 637: 634: 630: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 568: 565: 562: 556: 553: 548: 540: 537: 532: 524: 518: 515: 512: 506: 499: 498: 497: 495: 491: 488: 487:vector fields 484: 480: 476: 472: 468: 464: 460: 456: 452: 444: 442: 440: 436: 432: 428: 424: 420: 416: 412: 408: 404: 399: 397: 393: 377: 374: 371: 348: 345: 342: 336: 316: 313: 310: 302: 298: 294: 290: 286: 278: 277:Frenet-Serret 262: 242: 222: 219: 199: 196: 193: 190: 187: 184: 181: 178: 175: 155: 133: 129: 125: 120: 116: 111: 108: 103: 99: 91: 87: 59: 43: 37: 33: 19: 8838:Hermann Weyl 8694: 8642:Vector space 8627:Pseudotensor 8592:Fiber bundle 8545:abstractions 8440:Mixed tensor 8425:Tensor field 8232: 8171: 7938: 7911: 7907: 7900:Sciama, D.W. 7888: 7873: 7844: 7821: 7796: 7792: 7764: 7760: 7745:the original 7736: 7697: 7693: 7675: 7671: 7646: 7642: 7623: 7620:Bishop, R.L. 7601: 7593: 7588: 7576: 7563: 7548: 7539: 7526: 7514: 7501: 7489: 7477: 7465: 7453: 7441: 7429: 7417: 7405: 7349: 7343: 7329: 7321: 7317: 7313: 7200: 6993: 6989: 6985: 6978: 6974: 6966: 6962: 6958: 6956: 6859: 6855: 6850: 6846: 6844: 6832: 6787: 6782: 6778: 6774: 6772: 6692: 6688: 6684: 6680: 6676: 6674: 6144: 6140:vortex lines 6133: 6113: 5985: 5953:moving frame 5950: 5742: 5098: 4959: 4230: 4216: 4196: 4192: 4149: 4145: 4101: 4097: 4095: 4086: 4079: 4067: 4060: 4056: 4054:where again 4053: 3773: 3766: 3764: 3691: 3689: 3631: 3627: 3621: 3482: 3313: 3308: 3166: 3162: 3158: 3126: 3124: 3121: 2992: 2988: 2984: 2978: 2974: 2970: 2962: 2951:denotes the 2948: 2946: 2865: 2863: 2773: 2769: 2767: 2698: 2694: 2688: 2684: 2680: 2675: 2671: 2666: 2662: 2658: 2656: 2571: 2559: 2557: 2384: 2324:is given by 2321: 2307: 2289: 2287: 2249: 2165: 2161: 2157: 2151: 2147: 2143: 2141: 2134: 2036: 2032: 2030: 1952: 1949: 1776: 1631: 1624: 1620: 1614: 1610: 1605: 1601: 1591: 1511: 1507: 1500: 1494: 1488: 1472: 1464: 1462: 1391: 1387: 1382: 1376: 1367: 1363: 1361: 1308: 1302: 1298: 1294: 1291: 1212: 1205: 1201: 1195: 1188: 1183: 1175: 1171: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1128: 1124: 1121:frame bundle 1117:torsion form 1116: 1114: 937: 766: 762: 756: 749: 745: 741: 734: 730: 726: 714: 710: 703: 657: 639: 635: 628: 624: 620: 616: 612: 608: 604: 600: 596: 593:Leibniz rule 586: 493: 489: 478: 474: 470: 466: 450: 448: 423:G-structures 406: 400: 301:bilinear map 288: 282: 235:, curvature 8778:Élie Cartan 8726:Spin tensor 8700:Weyl tensor 8658:Mathematics 8622:Multivector 8413:definitions 8311:Engineering 8250:Mathematics 8177:Cocurvature 8068:of surfaces 8006:defined in 7737:BIOMAT-2006 7649:: 325–412, 6863:, then let 6513:imply that 5419:is a curve 5363:induced by 5095:Development 3153:denote the 2310:irreducible 1594:solder form 589:Lie bracket 485:defined on 8853:Categories 8607:Linear map 8475:Operations 7935:Spivak, M. 7914:(1): 463, 7664:Cartan, É. 7635:Cartan, É. 7613:References 6965:away from 5306:, and let 4426:along the 3776:, one has 3155:cyclic sum 2314:trace-free 1618:, so that 1598:dual basis 1483:See also: 648:connection 631:) for any 465:) ∇. The 445:Definition 8746:EM tensor 8582:Dimension 8533:Transpose 8026:Curvature 8018:of curves 8004:curvature 7854:0911.0334 7722:120127682 7555:EMS Press 7545:"Torsion" 7268:− 7166:Δ 7163:− 7145:Δ 7066:Δ 7045:Δ 6969:. By the 6939:~ 6921:∇ 6917:− 6911:~ 6896:∇ 6874:Δ 6806:˙ 6803:γ 6740:˙ 6737:γ 6717:˙ 6714:γ 6707:∇ 6612:∧ 6603:θ 6599:− 6586:∧ 6577:θ 6492:θ 6488:∧ 6474:Ω 6461:Θ 6433:Ω 6400:Θ 6396:∧ 6381:η 6377:− 6330:Ω 6326:∧ 6311:η 6249:η 6222:θ 6206:Θ 6174:Ω 6078:~ 6075:γ 6040:~ 6037:γ 5969:~ 5966:γ 5906:Θ 5871:Θ 5832:Λ 5828:∈ 5822:∧ 5786:∈ 5754:∈ 5712:~ 5709:γ 5688:~ 5685:γ 5650:~ 5647:γ 5626:~ 5623:γ 5597:~ 5594:γ 5562:θ 5556:∗ 5552:γ 5433:~ 5430:γ 5407:γ 5372:θ 5294:γ 5268:θ 5227:γ 5192:γ 5177:γ 5154:∈ 5128:→ 5107:γ 5058:⁡ 5052:− 5035:⁡ 4931:⁡ 4925:− 4908:⁡ 4876:− 4867:˙ 4846:˙ 4791:˙ 4760:− 4754:˙ 4724:× 4695:× 4663:˙ 4638:˙ 4610:∇ 4598:˙ 4374:× 4335:∇ 4221:curvature 4187:. It is 4090:curvature 4008:− 4004:π 3983:− 3979:π 3970:Θ 3905:− 3868:− 3864:π 3843:− 3839:π 3830:Ω 3744:Ω 3720:θ 3717:∧ 3714:Ω 3708:Θ 3675:ω 3672:∧ 3669:ω 3663:ω 3654:ω 3645:Ω 3512:∇ 3428:∇ 3083:∇ 3079:− 3067:∇ 3057:∇ 3053:− 3041:∇ 3031:∇ 2916:ι 2907:− 2895:− 2828:⁡ 2768:Then (tr 2744:∧ 2732:↦ 2603:⋀ 2592:⁡ 2586:∈ 2515:δ 2505:− 2493:− 2465:δ 2455:− 2312:parts: a 2270:θ 2261:Θ 2250:given by 2199:⋀ 2183:∈ 2180:Θ 2111:Θ 2085:− 2058:~ 2055:Θ 1973:~ 1893:− 1863:∇ 1859:− 1829:∇ 1814:θ 1753:θ 1749:∧ 1740:θ 1705:θ 1701:∧ 1685:ω 1670:θ 1654:Θ 1561:ω 1448:Θ 1445:⋅ 1437:− 1426:Θ 1421:∗ 1344:θ 1341:∧ 1338:ω 1332:θ 1323:Θ 1297: : F 1263:∗ 1259:π 1247:− 1227:θ 1166:with the 1067:Γ 994:γ 983:holonomic 949:Γ 914:… 859:γ 855:− 834:Γ 830:− 809:Γ 770: := 644:tensorial 557:− 545:∇ 541:− 529:∇ 403:geodesics 390:. It is 263:τ 223:π 176:τ 156:τ 126:× 112:τ 83:∇ 8612:Manifold 8597:Geodesic 8355:Notation 8182:Holonomy 7937:(1999), 7902:(1964), 7887:(1950), 7872:(1954), 7843:(2009), 7678:: 1–25, 7666:(1924), 7637:(1923), 7360:See also 7275:′ 6988:). Let 6929:′ 6687:. Then 6104:holonomy 5898:, where 5703:≠ 5169:, where 4059: : 2868:is then 2296:. (See 2040:), then 1366:, where 1204: : 1131:. This 977:are the 722:sections 148:, where 8874:Tensors 8709:Physics 8543:Related 8306:Physics 8224:Tensors 7964:(2011) 7916:Bibcode 7859:Bibcode 7801:Bibcode 7769:Bibcode 7702:Bibcode 7557:, 2001 5984:. The 4227:Example 3626:is the 2977:→ End(T 2565:is the 2292:is the 1609:of the 1506:, ..., 1370:is the 1030:. So 709:, ..., 475:torsion 457:on the 8637:Vector 8632:Spinor 8617:Matrix 8411:Tensor 7945:  7830:  7816:, 212. 7784:, 393. 7720:  6691:is an 6277:, and 6240:. Let 5986:linear 3165:, and 2991:, and 2947:where 2558:where 2288:where 2137:(1, 2) 1463:where 1292:where 638:. So 479:tensor 471:Cartan 293:tensor 287:, the 8557:Basis 8242:Scope 7849:arXiv 7748:(PDF) 7733:(PDF) 7718:S2CID 7397:Notes 7324:) = 0 7201:Then 6124:helix 4832:Thus 4201:screw 3157:over 2693:Hom(T 2691:) of 2661:, tr 2160:) ≈ T 2156:End(T 1638:(the 1390:∈ GL( 1216:) by 938:Here 699:basis 461:(aka 433:. In 396:screw 291:is a 7943:ISBN 7828:ISBN 6992:and 6977:and 6961:and 6849:and 6549:and 6142:. 4195:and 4148:and 4100:and 3769:of F 3622:The 3125:The 2963:The 2703:via 1630:) = 1592:The 1142:, a 1115:The 619:) = 607:) = 492:and 449:Let 425:and 182:0.01 34:and 7924:doi 7809:doi 7777:doi 7710:doi 7680:doi 7651:doi 6790:= 0 6134:In 6114:In 6064:to 5448:in 5055:sin 5032:cos 4928:sin 4905:cos 4084:. 4063:→ T 2995:by 2973:× T 2818:def 2697:, T 2674:∈ T 2589:Hom 2187:Hom 2164:⊗ T 2150:on 1604:∈ T 1471:on 1208:→ T 1191:∈ F 1170:on 720:of 642:is 496:by 283:In 200:1.0 194:0.5 188:0.1 8855:: 7922:, 7912:36 7910:, 7906:, 7891:, 7876:, 7857:, 7847:, 7807:, 7795:, 7775:, 7765:48 7763:, 7759:, 7739:, 7735:, 7716:, 7708:, 7698:88 7696:, 7676:41 7674:, 7670:, 7647:40 7645:, 7641:, 7626:, 7553:, 7547:, 7356:. 7320:, 6858:∈ 6830:. 6792:, 6667:. 5740:. 5091:. 4957:. 4326:: 3750:0. 3628:gl 3222::= 3161:, 2987:, 2955:. 2922:tr 2825:tr 2790:tr 2772:)( 2679:, 2569:. 1475:. 1400:: 1364:Dθ 1309:π∗ 1301:→ 1172:gl 1152:gl 1144:gl 805::= 759:ij 744:= 739:, 729:= 627:, 621:fT 617:fY 615:, 603:, 601:fX 595:, 525::= 477:) 441:. 279:). 8216:e 8209:t 8202:v 7995:e 7988:t 7981:v 7926:: 7918:: 7861:: 7851:: 7811:: 7803:: 7797:2 7779:: 7771:: 7712:: 7704:: 7682:: 7653:: 7583:. 7340:. 7326:. 7322:Y 7318:X 7316:( 7314:S 7295:) 7291:) 7288:Y 7285:, 7282:X 7279:( 7272:T 7265:) 7262:Y 7259:, 7256:X 7253:( 7250:T 7246:( 7239:2 7236:1 7230:= 7227:) 7224:Y 7221:, 7218:X 7215:( 7212:A 7185:) 7181:) 7178:X 7175:, 7172:Y 7169:( 7160:) 7157:Y 7154:, 7151:X 7148:( 7141:( 7134:2 7131:1 7125:= 7122:) 7119:Y 7116:, 7113:X 7110:( 7107:A 7085:) 7081:) 7078:X 7075:, 7072:Y 7069:( 7063:+ 7060:) 7057:Y 7054:, 7051:X 7048:( 7041:( 7034:2 7031:1 7025:= 7022:) 7019:Y 7016:, 7013:X 7010:( 7007:S 6994:A 6990:S 6986:M 6982:′ 6979:Y 6975:X 6967:p 6963:Y 6959:X 6936:Y 6925:X 6908:Y 6900:X 6892:= 6889:) 6886:Y 6883:, 6880:X 6877:( 6860:M 6856:p 6851:Y 6847:X 6818:) 6815:0 6812:( 6788:t 6783:t 6779:γ 6775:t 6758:0 6755:= 6752:) 6749:t 6746:( 6729:) 6726:t 6723:( 6689:γ 6685:M 6681:t 6679:( 6677:γ 6653:b 6650:a 6646:s 6625:. 6620:a 6616:t 6607:b 6594:b 6590:t 6581:a 6573:= 6568:b 6565:a 6561:s 6557:D 6537:0 6534:= 6529:a 6525:t 6521:D 6501:. 6496:b 6483:a 6478:b 6470:= 6465:a 6457:D 6453:, 6450:0 6447:= 6442:a 6437:b 6429:D 6409:. 6404:c 6391:c 6388:b 6385:a 6374:= 6369:b 6366:a 6362:s 6342:, 6337:c 6334:b 6321:c 6318:b 6315:a 6304:2 6301:1 6295:= 6290:a 6286:t 6259:c 6256:b 6253:a 6226:a 6218:D 6215:= 6210:a 6183:b 6178:a 6153:D 6090:) 6087:1 6084:( 6052:) 6049:0 6046:( 6014:1 6011:= 6008:t 6005:, 6002:0 5999:= 5996:t 5932:w 5929:, 5926:v 5886:) 5883:w 5880:, 5877:v 5874:( 5851:M 5846:p 5842:T 5836:2 5825:w 5819:v 5799:M 5794:p 5790:T 5783:w 5780:, 5777:v 5757:M 5751:p 5724:) 5721:1 5718:( 5700:) 5697:0 5694:( 5662:) 5659:1 5656:( 5641:= 5638:) 5635:0 5632:( 5571:. 5566:i 5548:= 5543:i 5539:x 5535:d 5515:) 5512:t 5509:( 5504:i 5500:x 5496:= 5491:i 5487:x 5466:M 5461:p 5457:T 5387:) 5384:p 5381:( 5376:i 5351:M 5346:p 5342:T 5319:i 5315:x 5272:i 5247:p 5207:p 5204:= 5201:) 5198:1 5195:( 5189:= 5186:) 5183:0 5180:( 5157:M 5151:p 5131:M 5125:] 5122:1 5119:, 5116:0 5113:[ 5110:: 5075:. 5070:3 5066:e 5061:x 5047:2 5043:e 5038:x 5029:+ 5024:1 5020:e 5015:x 4993:1 4989:e 4968:X 4943:3 4939:e 4934:x 4920:2 4916:e 4911:x 4902:= 4899:X 4879:a 4873:= 4864:b 4858:, 4855:b 4852:= 4843:a 4816:. 4811:3 4807:e 4803:) 4800:a 4797:+ 4788:b 4782:( 4779:+ 4774:2 4770:e 4766:) 4763:b 4751:a 4745:( 4742:= 4732:3 4728:e 4719:1 4715:e 4711:b 4708:+ 4703:2 4699:e 4690:1 4686:e 4682:a 4679:+ 4674:3 4670:e 4660:b 4654:+ 4649:2 4645:e 4635:a 4629:= 4626:X 4619:1 4615:e 4606:= 4595:X 4589:= 4586:0 4560:2 4556:e 4552:= 4549:) 4546:0 4543:( 4540:X 4518:3 4514:e 4510:) 4507:x 4504:( 4501:b 4498:+ 4493:2 4489:e 4485:) 4482:x 4479:( 4476:a 4473:= 4470:) 4467:x 4464:( 4461:X 4439:1 4435:e 4412:2 4408:e 4387:. 4382:j 4378:e 4369:i 4365:e 4361:= 4356:j 4352:e 4344:i 4340:e 4308:3 4304:e 4300:, 4295:2 4291:e 4287:, 4282:1 4278:e 4255:3 4250:R 4245:= 4242:M 4197:w 4193:v 4175:) 4172:w 4169:, 4166:v 4163:( 4160:T 4150:w 4146:v 4132:) 4129:w 4126:, 4123:v 4120:( 4117:T 4102:w 4098:v 4068:M 4065:x 4061:R 4057:u 4035:, 4031:) 4026:) 4022:) 4019:Y 4016:( 4011:1 4000:, 3997:) 3994:X 3991:( 3986:1 3974:( 3967:2 3963:( 3959:u 3956:= 3949:) 3946:Y 3943:, 3940:X 3937:( 3934:T 3927:, 3923:) 3919:) 3916:Z 3913:( 3908:1 3901:u 3896:( 3891:) 3886:) 3882:) 3879:Y 3876:( 3871:1 3860:, 3857:) 3854:X 3851:( 3846:1 3834:( 3827:2 3823:( 3819:u 3816:= 3809:Z 3806:) 3803:Y 3800:, 3797:X 3794:( 3791:R 3774:M 3771:x 3767:u 3747:= 3741:D 3711:= 3705:D 3692:D 3666:+ 3660:d 3657:= 3651:D 3648:= 3632:n 3630:( 3600:0 3597:= 3593:) 3588:) 3584:Z 3581:, 3577:) 3573:Y 3570:, 3567:X 3563:( 3559:T 3555:( 3551:R 3548:+ 3544:) 3540:Z 3537:, 3534:Y 3530:( 3525:) 3521:R 3516:X 3507:( 3502:( 3496:S 3465:) 3460:) 3456:Z 3453:, 3450:Y 3446:( 3441:) 3437:T 3432:X 3423:( 3419:+ 3415:) 3411:Z 3408:, 3405:) 3402:Y 3399:, 3396:X 3393:( 3390:T 3386:( 3382:T 3378:( 3372:S 3367:= 3363:) 3359:Z 3355:) 3351:Y 3348:, 3345:X 3341:( 3337:R 3333:( 3327:S 3294:. 3291:Y 3288:) 3285:X 3282:, 3279:Z 3276:( 3273:R 3270:+ 3267:X 3264:) 3261:Z 3258:, 3255:Y 3252:( 3249:R 3246:+ 3243:Z 3240:) 3237:Y 3234:, 3231:X 3228:( 3225:R 3218:) 3214:Z 3210:) 3206:Y 3203:, 3200:X 3196:( 3192:R 3188:( 3182:S 3167:Z 3163:Y 3159:X 3139:S 3107:. 3104:Z 3099:] 3096:Y 3093:, 3090:X 3087:[ 3076:Z 3071:X 3061:Y 3050:Z 3045:Y 3035:X 3027:= 3024:Z 3021:) 3018:Y 3015:, 3012:X 3009:( 3006:R 2993:Z 2989:Y 2985:X 2981:) 2979:M 2975:M 2971:M 2969:T 2949:ι 2932:, 2929:) 2926:T 2919:( 2910:1 2904:n 2900:1 2892:T 2889:= 2884:0 2880:T 2866:T 2849:. 2846:) 2843:) 2840:X 2837:( 2834:T 2831:( 2813:= 2806:) 2803:X 2800:( 2797:) 2794:T 2787:( 2774:X 2770:T 2753:. 2750:) 2747:Y 2741:X 2738:( 2735:T 2729:Y 2726:: 2723:) 2720:X 2717:( 2714:T 2701:) 2699:M 2695:M 2689:X 2687:( 2685:T 2681:T 2676:M 2672:X 2667:M 2663:T 2659:T 2642:. 2638:) 2634:M 2629:T 2624:, 2621:M 2616:T 2609:2 2596:( 2583:T 2562:j 2560:δ 2543:, 2538:j 2534:a 2528:k 2519:i 2508:1 2502:n 2498:1 2488:k 2484:a 2478:j 2469:i 2458:1 2452:n 2448:1 2443:+ 2438:k 2435:j 2426:i 2422:T 2418:= 2413:k 2410:j 2401:i 2397:B 2370:, 2365:k 2362:i 2353:k 2349:T 2345:= 2340:i 2336:a 2322:T 2290:D 2273:, 2267:D 2264:= 2234:) 2230:M 2225:T 2220:, 2217:M 2212:T 2205:2 2192:( 2166:M 2162:M 2158:M 2152:M 2148:θ 2144:M 2120:. 2115:j 2105:j 2098:i 2093:) 2088:1 2081:g 2077:( 2070:= 2065:i 2037:i 2033:g 2014:i 2007:j 2003:g 1995:j 1990:e 1985:= 1980:i 1969:e 1934:) 1929:] 1923:j 1918:e 1913:, 1908:i 1903:e 1897:[ 1888:i 1883:e 1874:j 1869:e 1854:j 1849:e 1840:i 1835:e 1824:( 1818:k 1810:= 1805:j 1802:i 1795:k 1791:T 1762:. 1757:j 1744:i 1734:j 1731:i 1724:k 1720:T 1714:= 1709:j 1696:j 1689:k 1679:+ 1674:k 1666:d 1663:= 1658:k 1634:j 1632:δ 1628:j 1625:e 1623:( 1621:θ 1615:i 1611:e 1606:M 1602:θ 1577:. 1572:i 1565:j 1553:j 1548:e 1543:= 1538:i 1533:e 1528:D 1515:) 1512:n 1508:e 1504:1 1501:e 1499:( 1495:M 1473:R 1465:g 1440:1 1433:g 1429:= 1416:g 1412:R 1394:) 1392:n 1388:g 1383:R 1368:D 1347:. 1335:+ 1329:d 1326:= 1303:M 1299:M 1295:π 1277:) 1274:) 1271:X 1268:( 1255:( 1250:1 1243:u 1239:= 1236:) 1233:X 1230:( 1213:M 1210:x 1206:R 1202:u 1196:M 1193:x 1189:u 1184:R 1176:n 1174:( 1164:M 1160:n 1156:n 1154:( 1148:n 1146:( 1140:ω 1129:M 1125:M 1123:F 1089:] 1086:j 1083:i 1080:[ 1071:k 1063:2 1060:= 1055:j 1052:i 1043:k 1039:T 1018:0 1015:= 1010:j 1007:i 998:k 963:j 960:i 953:k 923:. 920:n 917:, 911:, 908:2 905:, 902:1 899:= 896:k 893:, 890:j 887:, 884:i 880:, 875:j 872:i 863:k 850:i 847:j 838:k 825:j 822:i 813:k 800:j 797:i 788:k 784:T 767:k 763:e 757:γ 750:j 746:e 742:Y 735:i 731:e 727:X 718:) 715:n 711:e 707:1 704:e 702:( 683:b 680:a 671:c 667:T 640:T 636:f 629:Y 625:X 623:( 613:X 611:( 609:T 605:Y 599:( 597:T 572:] 569:Y 566:, 563:X 560:[ 554:X 549:Y 538:Y 533:X 522:) 519:Y 516:, 513:X 510:( 507:T 494:Y 490:X 473:( 451:M 378:Y 375:, 372:X 352:) 349:Y 346:, 343:X 340:( 337:T 317:Y 314:, 311:X 243:1 220:2 197:, 191:, 185:, 179:= 134:j 130:e 121:i 117:e 109:= 104:j 100:e 92:i 88:e 60:3 55:R 38:. 20:)

Index

Torsion (differential geometry)
Torsion (disambiguation)
Torsion field (disambiguation)

Frenet-Serret
differential geometry
tensor
affine connection
bilinear map
skew symmetric
screw
geodesics
Levi-Civita connection
Finsler geometry
contorsion tensor
G-structures
Cartan's equivalence method
projective connection
relativity theory
Einstein–Cartan theory
affine connection
tangent bundle
covariant derivative
vector-valued 2-form
vector fields
Lie bracket
Leibniz rule
smooth function
tensorial
connection

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.