Knowledge (XXG)

Translational symmetry

Source 📝

1177: 31: 320: 1159:
2 (more symmetry of the pattern on the tile does not change that, because of the arrangement of the tiles). The rectangle is a more convenient unit to consider as fundamental domain (or set of two of them) than a parallelogram consisting of part of a tile and part of another one.
1142:
Alternatively, e.g. a rectangle may define the whole object, even if the translation vectors are not perpendicular, if it has two sides parallel to one translation vector, while the other translation vector starting at one side of the rectangle ends at the opposite side.
1163:
In 2D there may be translational symmetry in one direction for vectors of any length. One line, not in the same direction, fully defines the whole object. Similarly, in 3D there may be translational symmetry in one or two directions for vectors of any length. One plane
1146:
For example, consider a tiling with equal rectangular tiles with an asymmetric pattern on them, all oriented the same, in rows, with for each row a shift of a fraction, not one half, of a tile, always the same, then we have only translational symmetry,
965:, in 2D an infinite strip, and in 3D a slab, such that the vector starting at one side ends at the other side. Note that the strip and slab need not be perpendicular to the vector, hence can be narrower or thinner than the length of the vector. 274: 75: 292:
Translational symmetry of an object means that a particular translation does not change the object. For a given object, the translations for which this applies form a group, the
976:. In particular, the multiplicity may be equal to the dimension. This implies that the object is infinite in all directions. In this case, the set of all translations forms a 208: 125: 737: 785: 1131:
can be represented by complex numbers. For two given lattice points, equivalence of choices of a third point to generate a lattice shape is represented by the
790: 780: 775: 595: 1247: 859: 742: 1111:
themselves are integer linear combinations of the other two vectors. If not, not all translations are possible with the other pair. Each pair
890: 219: 1123:. One parallelogram fully defines the whole object. Without further symmetry, this parallelogram is a fundamental domain. The vectors 752: 281:
are translationally invariant under a spatial translation if they do not distinguish different points in space. According to
747: 727: 1296: 692: 600: 37: 1176: 1306: 732: 1165: 883: 367: 286: 907:, the set of points with the same properties due to the translational symmetry form the infinite discrete set 903:
Translational invariance implies that, at least in one direction, the object is infinite: for any given point
148: 1155:(the same applies without shift). With rotational symmetry of order two of the pattern on the tile we have 687: 650: 618: 605: 171: 152: 1232: 1214: 968:
In spaces with dimension higher than 1, there may be multiple translational symmetries. For each set of
719: 387: 347: 337: 282: 164: 1252: 1199: 1016:
of the symmetry: any pattern on or in it is possible, and this defines the whole object. See also
876: 864: 705: 535: 1013: 636: 626: 186: 80: 296:
of the object, or, if the object has more kinds of symmetry, a subgroup of the symmetry group.
1301: 1237: 1192: 815: 700: 663: 553: 1257: 1227: 1210: 1206: 835: 515: 507: 499: 491: 483: 462: 452: 442: 432: 416: 397: 357: 128: 1242: 1148: 1136: 1017: 977: 820: 573: 558: 329: 278: 216:
doesn't change if the argument function is translated. More precisely it must hold that
1267: 1185: 1005: 993: 985: 981: 840: 825: 658: 563: 293: 1290: 1132: 1120: 548: 377: 17: 30: 1262: 1195:
with subsequent computation of absolute values is a translation-invariant operator.
984:
one is transformed into the other by a matrix of integer coefficients of which the
962: 845: 830: 631: 613: 543: 997: 989: 671: 587: 311: 140: 1000:
of the matrix formed by a set of translation vectors is the hypervolume of the
951: 810: 676: 568: 307: 1180:
The less-than-relation on the real numbers is invariant under translation.
285:, space translational symmetry of a physical system is equivalent to the 160: 156: 972:
independent translation vectors, the symmetry group is isomorphic with
767: 136: 1119:
defines a parallelogram, all with the same area, the magnitude of the
319: 980:. Different bases of translation vectors generate the same lattice 1202:
to the polynomial degree is a translation-invariant functional.
1188:
all have translational symmetries, and sometimes other kinds.
1168:) or line, respectively, fully defines the whole object. 1283:. Prometheus Books. Especially chpt. 12. Nontechnical. 1268:
List of cycles § Mathematics of waves and cycles
222: 189: 83: 40: 1279:
Stenger, Victor J. (2000) and MahouShiroUSA (2007).
269:{\displaystyle \forall \delta \ Af=A(T_{\delta }f).} 27:
Invariance of operations under geometric translation
268: 202: 119: 70:{\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} } 69: 738:Representation theory of semisimple Lie algebras 961:has an independent direction. This is in 1D a 884: 8: 1012:of the lattice). This parallelepiped is a 891: 877: 776:Particle physics and representation theory 421: 318: 303: 251: 221: 194: 188: 82: 63: 62: 53: 49: 48: 39: 1248:Translation operator (quantum mechanics) 1175: 29: 743:Representations of classical Lie groups 475: 424: 306: 183:with respect to a translation operator 34:For translational invariant functions 1045:, etc. In general in 2D, we can take 7: 596:Lie group–Lie algebra correspondence 151:of a system of equations under any 1008:the set subtends (also called the 223: 131:is an example for such a function. 25: 940:. Fundamental domains are e.g. 1103:is 1 or −1. This ensures that 791:Galilean group representations 786:PoincarĂ© group representations 260: 244: 114: 102: 93: 87: 59: 1: 781:Lorentz group representations 748:Theorem of the highest weight 210:if the result after applying 203:{\displaystyle T_{\delta }} 179:on functions is said to be 120:{\displaystyle f(A)=f(A+t)} 1323: 733:Lie algebra representation 159:). Discrete translational 287:momentum conservation law 181:translationally invariant 728:Lie group representation 1023:E.g. in 2D, instead of 753:Borel–Weil–Bott theorem 1213:translation-invariant 1181: 651:Semisimple Lie algebra 606:Adjoint representation 270: 204: 145:translational symmetry 132: 121: 71: 1179: 720:Representation theory 271: 205: 122: 72: 33: 18:Translation invariant 220: 187: 81: 38: 1297:Classical mechanics 1253:Rotational symmetry 1200:polynomial function 1198:The mapping from a 865:Table of Lie groups 706:Compact Lie algebra 163:is invariant under 1182: 1014:fundamental region 637:Affine Lie algebra 627:Simple Lie algebra 368:Special orthogonal 266: 200: 133: 117: 67: 1307:Conservation laws 1238:Periodic function 1193:Fourier transform 1031:we can also take 901: 900: 701:Split Lie algebra 664:Cartan subalgebra 526: 525: 417:Simple Lie groups 283:Noether's theorem 231: 16:(Redirected from 1314: 1281:Timeless Reality 1258:Lorentz symmetry 1228:Glide reflection 1207:Lebesgue measure 1149:wallpaper group 1102: 1076: 1060: 1044: 949: 939: 893: 886: 879: 836:Claude Chevalley 693:Complexification 536:Other Lie groups 422: 330:Classical groups 322: 304: 275: 273: 272: 267: 256: 255: 229: 215: 209: 207: 206: 201: 199: 198: 178: 170:Analogously, an 129:Lebesgue measure 126: 124: 123: 118: 76: 74: 73: 68: 66: 58: 57: 52: 21: 1322: 1321: 1317: 1316: 1315: 1313: 1312: 1311: 1287: 1286: 1276: 1243:Lattice (group) 1224: 1186:Frieze patterns 1174: 1137:lattice (group) 1094: 1062: 1046: 1036: 1018:lattice (group) 941: 908: 897: 852: 851: 850: 821:Wilhelm Killing 805: 797: 796: 795: 770: 759: 758: 757: 722: 712: 711: 710: 697: 681: 659:Dynkin diagrams 653: 643: 642: 641: 623: 601:Exponential map 590: 580: 579: 578: 559:Conformal group 538: 528: 527: 519: 511: 503: 495: 487: 468: 458: 448: 438: 419: 409: 408: 407: 388:Special unitary 332: 302: 279:Laws of physics 247: 218: 217: 211: 190: 185: 184: 174: 79: 78: 47: 36: 35: 28: 23: 22: 15: 12: 11: 5: 1320: 1318: 1310: 1309: 1304: 1299: 1289: 1288: 1285: 1284: 1275: 1272: 1271: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1223: 1220: 1219: 1218: 1203: 1196: 1189: 1173: 1170: 1006:parallelepiped 994:absolute value 986:absolute value 982:if and only if 899: 898: 896: 895: 888: 881: 873: 870: 869: 868: 867: 862: 854: 853: 849: 848: 843: 841:Harish-Chandra 838: 833: 828: 823: 818: 816:Henri PoincarĂ© 813: 807: 806: 803: 802: 799: 798: 794: 793: 788: 783: 778: 772: 771: 766:Lie groups in 765: 764: 761: 760: 756: 755: 750: 745: 740: 735: 730: 724: 723: 718: 717: 714: 713: 709: 708: 703: 698: 696: 695: 690: 684: 682: 680: 679: 674: 668: 666: 661: 655: 654: 649: 648: 645: 644: 640: 639: 634: 629: 624: 622: 621: 616: 610: 608: 603: 598: 592: 591: 586: 585: 582: 581: 577: 576: 571: 566: 564:Diffeomorphism 561: 556: 551: 546: 540: 539: 534: 533: 530: 529: 524: 523: 522: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 478: 477: 473: 472: 471: 470: 464: 460: 454: 450: 444: 440: 434: 427: 426: 420: 415: 414: 411: 410: 406: 405: 395: 385: 375: 365: 355: 348:Special linear 345: 338:General linear 334: 333: 328: 327: 324: 323: 315: 314: 301: 298: 294:symmetry group 265: 262: 259: 254: 250: 246: 243: 240: 237: 234: 228: 225: 197: 193: 116: 113: 110: 107: 104: 101: 98: 95: 92: 89: 86: 65: 61: 56: 51: 46: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1319: 1308: 1305: 1303: 1300: 1298: 1295: 1294: 1292: 1282: 1278: 1277: 1273: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1225: 1221: 1216: 1212: 1208: 1204: 1201: 1197: 1194: 1190: 1187: 1184: 1183: 1178: 1171: 1169: 1167: 1166:cross-section 1161: 1158: 1154: 1152: 1144: 1140: 1138: 1134: 1133:modular group 1130: 1126: 1122: 1121:cross product 1118: 1114: 1110: 1106: 1101: 1097: 1092: 1088: 1084: 1080: 1077:for integers 1075: 1072: 1068: 1065: 1059: 1056: 1052: 1049: 1043: 1039: 1034: 1030: 1026: 1021: 1019: 1015: 1011: 1007: 1004:-dimensional 1003: 999: 995: 991: 987: 983: 979: 975: 971: 966: 964: 960: 956: 953: 948: 944: 938: 935: 931: 927: 923: 919: 916: 912: 906: 894: 889: 887: 882: 880: 875: 874: 872: 871: 866: 863: 861: 858: 857: 856: 855: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 808: 801: 800: 792: 789: 787: 784: 782: 779: 777: 774: 773: 769: 763: 762: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 725: 721: 716: 715: 707: 704: 702: 699: 694: 691: 689: 686: 685: 683: 678: 675: 673: 670: 669: 667: 665: 662: 660: 657: 656: 652: 647: 646: 638: 635: 633: 630: 628: 625: 620: 617: 615: 612: 611: 609: 607: 604: 602: 599: 597: 594: 593: 589: 584: 583: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 541: 537: 532: 531: 520: 514: 512: 506: 504: 498: 496: 490: 488: 482: 481: 480: 479: 474: 469: 467: 461: 459: 457: 451: 449: 447: 441: 439: 437: 431: 430: 429: 428: 423: 418: 413: 412: 403: 399: 396: 393: 389: 386: 383: 379: 376: 373: 369: 366: 363: 359: 356: 353: 349: 346: 343: 339: 336: 335: 331: 326: 325: 321: 317: 316: 313: 309: 305: 299: 297: 295: 290: 288: 284: 280: 276: 263: 257: 252: 248: 241: 238: 235: 232: 226: 214: 195: 191: 182: 177: 173: 168: 167:translation. 166: 162: 158: 154: 150: 146: 143:, continuous 142: 138: 130: 111: 108: 105: 99: 96: 90: 84: 54: 44: 41: 32: 19: 1280: 1263:Tessellation 1233:Displacement 1162: 1156: 1150: 1145: 1141: 1128: 1124: 1116: 1112: 1108: 1104: 1099: 1095: 1090: 1086: 1082: 1078: 1073: 1070: 1066: 1063: 1057: 1054: 1050: 1047: 1041: 1037: 1032: 1028: 1024: 1022: 1009: 1001: 973: 969: 967: 963:line segment 958: 954: 946: 942: 936: 933: 929: 925: 921: 917: 914: 910: 904: 902: 846:Armand Borel 831:Hermann Weyl 632:Loop algebra 614:Killing form 588:Lie algebras 465: 455: 445: 435: 401: 391: 381: 371: 361: 351: 341: 312:Lie algebras 291: 277: 212: 180: 175: 169: 144: 134: 1093:such that 998:determinant 990:determinant 826:Élie Cartan 672:Root system 476:Exceptional 153:translation 141:mathematics 1291:Categories 1274:References 992:is 1. The 957:for which 952:hyperplane 811:Sophus Lie 804:Scientists 677:Weyl group 398:Symplectic 358:Orthogonal 308:Lie groups 149:invariance 688:Real form 574:Euclidean 425:Classical 253:δ 227:δ 224:∀ 196:δ 155:(without 60:→ 1302:Symmetry 1222:See also 1211:complete 1172:Examples 1010:covolume 950:for any 860:Glossary 554:PoincarĂ© 300:Geometry 172:operator 165:discrete 161:symmetry 157:rotation 1215:measure 996:of the 988:of the 978:lattice 768:physics 549:Lorentz 378:Unitary 147:is the 137:physics 1135:, see 1089:, and 544:Circle 230:  127:. The 77:it is 1209:is a 619:Index 1205:The 1191:The 1127:and 1107:and 1061:and 1035:and 1027:and 928:} = 569:Loop 310:and 139:and 1020:. 945:+ 400:Sp( 390:SU( 370:SO( 350:SL( 340:GL( 135:In 1293:: 1139:. 1115:, 1100:qr 1098:− 1096:ps 1085:, 1081:, 1069:+ 1053:+ 1040:− 932:+ 924:∈ 920:| 913:+ 380:U( 360:O( 289:. 1217:. 1164:( 1157:p 1153:1 1151:p 1129:b 1125:a 1117:b 1113:a 1109:b 1105:a 1091:s 1087:r 1083:q 1079:p 1074:b 1071:s 1067:a 1064:r 1058:b 1055:q 1051:a 1048:p 1042:b 1038:a 1033:a 1029:b 1025:a 1002:n 974:Z 970:k 959:a 955:H 947:a 943:H 937:a 934:Z 930:p 926:Z 922:n 918:a 915:n 911:p 909:{ 905:p 892:e 885:t 878:v 518:8 516:E 510:7 508:E 502:6 500:E 494:4 492:F 486:2 484:G 466:n 463:D 456:n 453:C 446:n 443:B 436:n 433:A 404:) 402:n 394:) 392:n 384:) 382:n 374:) 372:n 364:) 362:n 354:) 352:n 344:) 342:n 264:. 261:) 258:f 249:T 245:( 242:A 239:= 236:f 233:A 213:A 192:T 176:A 115:) 112:t 109:+ 106:A 103:( 100:f 97:= 94:) 91:A 88:( 85:f 64:R 55:2 50:R 45:: 42:f 20:)

Index

Translation invariant

Lebesgue measure
physics
mathematics
invariance
translation
rotation
symmetry
discrete
operator
Laws of physics
Noether's theorem
momentum conservation law
symmetry group
Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑