Knowledge

Bitangents of a quartic

Source 📝

39: 31: 274:. The four ovals can be grouped into six different pairs of ovals; for each pair of ovals there are four bitangents touching both ovals in the pair, two that separate the two ovals, and two that do not. Additionally, each oval bounds a nonconvex region of the plane and has one bitangent spanning the nonconvex portion of its boundary. 459:
as the coordinates of a line in the same finite projective plane; the condition that the sum is odd is equivalent to requiring that the point and the line do not touch each other, and there are 28 different pairs of a point and a line that do not touch.
463:
The points and lines of the Fano plane that are disjoint from a non-incident point-line pair form a triangle, and the bitangents of a quartic have been considered as being in correspondence with the 28 triangles of the Fano plane. The
254: 353: 434: 81:) As Plücker showed, the number of real bitangents of any quartic must be 28, 16, or a number less than 9. Another quartic with 28 real bitangents can be formed by the 937: 270:
Like the examples of Plücker and of Blum and Guinand, the Trott curve has four separated ovals, the maximum number for a curve of degree four, and hence is an
472:, in which the triangles of the Fano plane are represented by 6-cycles. The 28 6-cycles of the Heawood graph in turn correspond to the 28 vertices of the 135: 295: 650: 892: 816: 1001: 758: 715: 368: 34:
The Trott curve and seven of its bitangents. The others are symmetric with respect to 90° rotations through the origin.
490:
The 27 lines on the cubic and the 28 bitangents on a quartic, together with the 120 tritangent planes of a canonic
271: 59: 996: 448: 767: 122: 286:
to a quartic curve has 28 real ordinary double points, dual to the 28 bitangents of the primal curve.
907:
Theorie der algebraischen Curven: gegrundet auf eine neue Behandlungsweise der analytischen Geometrie
503: 484: 772: 656: 82: 51: 863: 843: 802: 793: 631: 613: 516: 495: 93:
gave a different construction of a quartic with twenty-eight bitangents, formed by projecting a
931: 902: 888: 812: 480: 74: 289:
The 28 bitangents of a quartic may also be placed in correspondence with symbols of the form
915: 880: 853: 777: 724: 623: 98: 966: 826: 789: 685: 97:; twenty-seven of the bitangents to Shioda's curve are real while the twenty-eighth is the 962: 822: 785: 499: 491: 260: 67: 671: 681: 38: 479:
The 28 bitangents of a quartic also correspond to pairs of the 56 lines on a degree-2
30: 990: 749:, Andrew Russell Forsyth, ed., The University Press, 1896, vol. 11, pp. 221–223. 736: 473: 469: 94: 867: 797: 858: 249:{\displaystyle \displaystyle 144(x^{4}+y^{4})-225(x^{2}+y^{2})+350x^{2}y^{2}+81=0.} 62:, but it is possible to define quartic curves for which all 28 of these lines have 58:
lines, lines that are tangent to the curve in two places. These lines exist in the
677: 635: 884: 811:, MSRI Publications, vol. 35, Cambridge University Press, pp. 115–131, 947: 753: 63: 47: 973:
Trott, Michael (1997), "Applying GroebnerBasis to Three Problems in Geometry",
875:
McKay, John; Sebbar, Abdellah (2007). "Replicable Functions: An Introduction".
465: 452: 283: 126: 348:{\displaystyle {\begin{bmatrix}a&b&c\\d&e&f\\\end{bmatrix}}} 264: 55: 728: 17: 834:
Manivel, L. (2006), "Configurations of lines and models of Lie algebras",
443:, but only 28 of these choices produce an odd sum. One may also interpret 73:
An explicit quartic with twenty-eight real bitangents was first given by
781: 672:
Lecture 2: Symplectization, Complexification and Mathematical Trinities
86: 713:
Blum, R.; Guinand, A. P. (1964). "A quartic with 28 real bitangents".
627: 604:
Dejter, Italo J. (2011), "From the Coxeter graph to the Klein graph",
848: 618: 37: 29: 27:
28 lines which touch a general quartic plane curve in two places
669:
Arnold 1997, p. 13 – Arnold, Vladimir, 1997, Toronto Lectures,
113:, another curve with 28 real bitangents, is the set of points ( 918:(1876), "Zur Theorie der Abel'schen Funktionen für den Fall 89:
with fixed axis lengths, tangent to two non-parallel lines.
506:, and can be related to many further objects, including E 259:
These points form a nonsingular quartic curve that has
429:{\displaystyle ad+be+cf=1\ (\operatorname {mod} \ 2).} 304: 371: 298: 139: 138: 877:
Frontiers in Number Theory, Physics, and Geometry II
955:Commentarii Mathematici Universitatis Sancti Pauli 747:The collected mathematical papers of Arthur Cayley 428: 347: 248: 66:as their coordinates and therefore belong to the 948:"Weierstrass transformations and cubic surfaces" 756:(1982), "From the history of a simple group", 8: 697: 548: 936:: CS1 maint: location missing publisher ( 739:(1879), "On the bitangents of a quartic", 857: 847: 771: 617: 370: 299: 297: 227: 217: 198: 185: 163: 150: 137: 676:June 1997 (last updated August, 1998). 591: 572: 528: 78: 42:The Trott curve with all 28 bitangents. 929: 576: 90: 975:Mathematica in Education and Research 587: 585: 560: 263:three and that has twenty-eight real 7: 536: 25: 649:le Bruyn, Lieven (17 June 2008), 278:Connections to other structures 859:10.1016/j.jalgebra.2006.04.029 759:The Mathematical Intelligencer 716:Canadian Mathematical Bulletin 420: 405: 362:are all zero or one and where 204: 178: 169: 143: 1: 885:10.1007/978-3-540-30308-4_10 741:Salmon's Higher Plane Curves 926:, Leipzig, pp. 456–472 46:In the theory of algebraic 1018: 807:Levy, Silvio, ed. (1999), 549:Blum & Guinand (1964) 502:, specifically a form of 468:of the Fano plane is the 439:There are 64 choices for 101:in the projective plane. 946:Shioda, Tetsuji (1995), 60:complex projective plane 1002:Real algebraic geometry 909:, Berlin: Adolph Marcus 698:McKay & Sebbar 2007 606:Journal of Graph Theory 449:homogeneous coordinates 729:10.4153/cmb-1964-038-6 430: 349: 250: 43: 35: 942:. As cited by Cayley. 485:theta characteristics 431: 350: 251: 41: 33: 879:. pp. 373–386. 504:McKay correspondence 494:of genus 4, form a " 483:, and to the 28 odd 369: 296: 136: 52:quartic plane curve 836:Journal of Algebra 782:10.1007/BF03023483 743:, pp. 387–389 652:Arnold's trinities 514:, as discussed at 498:" in the sense of 451:of a point of the 426: 345: 339: 246: 245: 44: 36: 922: = 3", 916:Riemann, G. F. B. 894:978-3-540-30307-7 809:The Eightfold Way 628:10.1002/jgt.20597 481:del Pezzo surface 416: 404: 121:) satisfying the 16:(Redirected from 1009: 982: 969: 952: 941: 935: 927: 910: 898: 870: 861: 851: 829: 800: 775: 744: 732: 701: 694: 688: 667: 661: 660: 655:, archived from 646: 640: 638: 621: 601: 595: 589: 580: 570: 564: 558: 552: 546: 540: 533: 458: 446: 442: 441:a, b, c, d, e, f 435: 433: 432: 427: 414: 402: 361: 360:a, b, c, d, e, f 354: 352: 351: 346: 344: 343: 255: 253: 252: 247: 232: 231: 222: 221: 203: 202: 190: 189: 168: 167: 155: 154: 99:line at infinity 21: 1017: 1016: 1012: 1011: 1010: 1008: 1007: 1006: 987: 986: 972: 950: 945: 928: 914: 901: 895: 874: 833: 819: 806: 773:10.1.1.163.2944 752: 735: 712: 709: 704: 695: 691: 668: 664: 648: 647: 643: 603: 602: 598: 590: 583: 571: 567: 559: 555: 547: 543: 534: 530: 526: 513: 509: 500:Vladimir Arnold 456: 444: 440: 367: 366: 359: 338: 337: 332: 327: 321: 320: 315: 310: 300: 294: 293: 280: 223: 213: 194: 181: 159: 146: 134: 133: 107: 68:Euclidean plane 28: 23: 22: 15: 12: 11: 5: 1015: 1013: 1005: 1004: 999: 997:Quartic curves 989: 988: 985: 984: 970: 961:(1): 109–128, 943: 912: 899: 893: 872: 842:(1): 457–486, 831: 817: 750: 737:Cayley, Arthur 733: 723:(3): 399–404. 708: 705: 703: 702: 689: 662: 641: 596: 592:Manivel (2006) 581: 573:Riemann (1876) 565: 553: 541: 527: 525: 522: 511: 507: 437: 436: 425: 422: 419: 413: 410: 407: 401: 398: 395: 392: 389: 386: 383: 380: 377: 374: 356: 355: 342: 336: 333: 331: 328: 326: 323: 322: 319: 316: 314: 311: 309: 306: 305: 303: 279: 276: 257: 256: 244: 241: 238: 235: 230: 226: 220: 216: 212: 209: 206: 201: 197: 193: 188: 184: 180: 177: 174: 171: 166: 162: 158: 153: 149: 145: 142: 106: 103: 85:of centers of 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1014: 1003: 1000: 998: 995: 994: 992: 980: 976: 971: 968: 964: 960: 956: 949: 944: 939: 933: 925: 921: 917: 913: 908: 904: 900: 896: 890: 886: 882: 878: 873: 869: 865: 860: 855: 850: 845: 841: 837: 832: 828: 824: 820: 818:0-521-66066-1 814: 810: 804: 799: 795: 791: 787: 783: 779: 774: 769: 765: 761: 760: 755: 751: 748: 742: 738: 734: 730: 726: 722: 718: 717: 711: 710: 706: 699: 693: 690: 687: 683: 679: 675: 673: 666: 663: 659:on 2011-04-11 658: 654: 653: 645: 642: 637: 633: 629: 625: 620: 615: 611: 607: 600: 597: 593: 588: 586: 582: 578: 577:Cayley (1879) 574: 569: 566: 562: 557: 554: 550: 545: 542: 538: 532: 529: 523: 521: 520: 518: 505: 501: 497: 493: 488: 486: 482: 477: 475: 474:Coxeter graph 471: 470:Heawood graph 467: 461: 454: 450: 423: 417: 411: 408: 399: 396: 393: 390: 387: 384: 381: 378: 375: 372: 365: 364: 363: 340: 334: 329: 324: 317: 312: 307: 301: 292: 291: 290: 287: 285: 277: 275: 273: 268: 266: 262: 242: 239: 236: 233: 228: 224: 218: 214: 210: 207: 199: 195: 191: 186: 182: 175: 172: 164: 160: 156: 151: 147: 140: 132: 131: 130: 128: 124: 120: 116: 112: 104: 102: 100: 96: 95:cubic surface 92: 91:Shioda (1995) 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 40: 32: 19: 978: 974: 958: 954: 923: 919: 906: 876: 849:math/0507118 839: 835: 808: 766:(2): 59–67, 763: 757: 754:Gray, Jeremy 746: 740: 720: 714: 692: 670: 665: 657:the original 651: 644: 609: 605: 599: 568: 561:Trott (1997) 556: 544: 531: 515: 492:sextic curve 489: 478: 462: 438: 357: 288: 281: 269: 258: 118: 114: 110: 108: 72: 64:real numbers 50:, a general 48:plane curves 45: 903:Plücker, J. 537:Gray (1982) 111:Trott curve 18:Trott curve 991:Categories 981:(1): 15–28 924:Ges. Werke 707:References 682:PostScript 466:Levi graph 453:Fano plane 284:dual curve 265:bitangents 127:polynomial 803:Reprinted 768:CiteSeerX 619:1002.1960 535:See e.g. 517:trinities 412:⁡ 173:− 129:equation 56:bitangent 932:citation 905:(1839), 868:17374533 798:14602496 700:, p. 11) 87:ellipses 967:1336422 827:1722415 790:0672918 612:: 1–9, 496:trinity 457:d, e, f 447:as the 445:a, b, c 272:M-curve 105:Example 77: ( 75:Plücker 54:has 28 965:  891:  866:  825:  815:  796:  788:  770:  636:754481 634:  415:  403:  358:where 123:degree 951:(PDF) 864:S2CID 844:arXiv 794:S2CID 745:. In 632:S2CID 614:arXiv 524:Notes 510:and E 261:genus 125:four 83:locus 938:link 889:ISBN 813:ISBN 455:and 282:The 109:The 79:1839 881:doi 854:doi 840:304 805:in 778:doi 725:doi 686:PDF 678:TeX 624:doi 409:mod 211:350 176:225 141:144 993:: 977:, 963:MR 959:44 957:, 953:, 934:}} 930:{{ 887:. 862:, 852:, 838:, 823:MR 821:, 801:. 792:, 786:MR 784:, 776:, 762:, 719:. 684:, 680:, 630:, 622:, 610:70 608:, 584:^ 575:; 487:. 476:. 267:. 243:0. 237:81 70:. 983:. 979:6 940:) 920:p 911:. 897:. 883:: 871:. 856:: 846:: 830:. 780:: 764:4 731:. 727:: 721:7 696:( 674:, 639:. 626:: 616:: 594:. 579:. 563:. 551:. 539:. 519:. 512:8 508:7 424:. 421:) 418:2 406:( 400:1 397:= 394:f 391:c 388:+ 385:e 382:b 379:+ 376:d 373:a 341:] 335:f 330:e 325:d 318:c 313:b 308:a 302:[ 240:= 234:+ 229:2 225:y 219:2 215:x 208:+ 205:) 200:2 196:y 192:+ 187:2 183:x 179:( 170:) 165:4 161:y 157:+ 152:4 148:x 144:( 119:y 117:, 115:x 20:)

Index

Trott curve


plane curves
quartic plane curve
bitangent
complex projective plane
real numbers
Euclidean plane
Plücker
1839
locus
ellipses
Shioda (1995)
cubic surface
line at infinity
degree
polynomial
genus
bitangents
M-curve
dual curve
homogeneous coordinates
Fano plane
Levi graph
Heawood graph
Coxeter graph
del Pezzo surface
theta characteristics
sextic curve

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.