Knowledge (XXG)

Truncated dodecadodecahedron

Source đź“ť

641: 693: 190: 788: 212: 29: 358: 636:{\displaystyle {\begin{array}{lcr}{\Bigl (}1,&1,&3{\Bigr )},\\{\Bigl (}{\frac {1}{\varphi }},&{\frac {1}{\varphi ^{2}}},&2\varphi {\Bigr )},\\{\Bigl (}\varphi ,&{\frac {2}{\varphi }},&\varphi ^{2}{\Bigr )},\\{\Bigl (}\varphi ^{2},&{\frac {1}{\varphi ^{2}}},&2{\Bigr )},\\{\Bigl (}{\sqrt {5}},&1,&{\sqrt {5}}{\Bigr )}.\end{array}}} 715: 284:
would produce rectangular faces rather than squares, and the pentagram faces of the dodecadodecahedron would turn into truncated pentagrams rather than decagrams. However, it is the quasitruncation of the dodecadodecahedron, as defined by
669:
on five elements, in such a way that the three neighbors of each vertex are the three permutations formed from it by swapping the first two elements or circularly shifting (in either direction) the last four elements.
349: 1121: 304:
for the vertices of a truncated dodecadodecahedron are all the triples of numbers obtained by circular shifts and sign changes from the following points (where
1114: 1221: 1038: 999: 665:
operation on the last four elements. That is, the 120 vertices of the polyhedron may be placed in one-to-one correspondence with the 5!
165: 645:
Each of these five points has eight possible sign patterns and three possible circular shifts, giving a total of 120 different points.
1107: 1339: 1324: 1309: 1226: 915:. See especially the description as a quasitruncation on p. 411 and the photograph of a model of its skeleton in Fig. 114, Plate IV. 744: 661:
on five elements, as generated by two group members: one that swaps the first two elements of a five-tuple, and one that performs a
132: 972:(2009), "The topology of bendless three-dimensional orthogonal graph drawing", in Tollis, Ioannis G.; Patrignani, Marizio (eds.), 1354: 1329: 1314: 797: 273:), 180 edges, and 120 vertices. The central region of the polyhedron is connected to the exterior via 20 small triangular holes. 178: 114: 104: 84: 1349: 1344: 94: 1304: 863: 158: 99: 1138: 109: 89: 1334: 307: 1271: 1261: 1191: 1161: 1151: 233: 1276: 1266: 1216: 1435: 1399: 1389: 1286: 1281: 1022: 867: 1404: 1394: 824: 146: 1414: 1409: 1196: 1211: 1206: 812: 763: 293:. Coxeter et al. credit its discovery to a paper published in 1881 by Austrian mathematician Johann Pitsch. 39: 1319: 692: 189: 976:, Lecture Notes in Computer Science, vol. 5417, Heraklion, Crete: Springer-Verlag, pp. 78–89, 301: 876:
Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences
883: 722: 46: 1085: 787: 199: 1246: 270: 1256: 1251: 1186: 1156: 1066: 977: 899: 758: 281: 151: 241: 211: 28: 1374: 1166: 1082: 1063: 1034: 995: 1384: 1379: 1026: 1014: 987: 926: 891: 801: 1048: 911: 1130: 1044: 907: 871: 808: 773: 703: 658: 76: 887: 1238: 969: 662: 122: 363: 1429: 845: 666: 654: 352: 924:
Wenninger writes "quasitruncated dodecahedron", but this appears to be a mistake.
991: 804: 1030: 1090: 1071: 1099: 895: 221: 714: 266: 903: 262: 982: 785: 209: 1103: 959:, the truncated dodecadodecahedron appears as no. XII on p.86. 956: 286: 945:
Pitsch, Johann (1881), "Über halbreguläre Sternpolyeder",
318: 361: 310: 344:{\displaystyle \varphi ={\tfrac {1+{\sqrt {5}}}{2}}} 18: 1363: 1295: 1235: 1175: 1137: 635: 343: 621: 587: 573: 526: 512: 472: 458: 408: 394: 368: 933:, Cambridge University Press, pp. 152–153 792:3D model of a medial disdyakis triacontahedron 1115: 8: 957:Coxeter, Longuet-Higgins & Miller (1954) 287:Coxeter, Longuet-Higgins & Miller (1954) 289:. For this reason, it is also known as the 280:is somewhat misleading: truncation of the 1122: 1108: 1100: 929:(1971), "98 Quasitruncated dodecahedron", 216:3D model of a truncated dodecadodecahedron 981: 653:The truncated dodecadodecahedron forms a 620: 619: 612: 592: 586: 585: 572: 571: 555: 546: 535: 525: 524: 511: 510: 504: 485: 471: 470: 457: 456: 437: 428: 413: 407: 406: 393: 392: 367: 366: 362: 360: 327: 317: 309: 682: 836: 1222:nonconvex great rhombicosidodecahedron 7: 1086:"Medial disdyakis triacontahedron" 947:Zeitschrift fĂĽr das Realschulwesen 846:"59: truncated dodecadodecahedron" 230:stellatruncated dodecadodecahedron 14: 1340:great stellapentakis dodecahedron 1325:medial pentagonal hexecontahedron 1310:small stellapentakis dodecahedron 1227:great truncated icosidodecahedron 686:Medial disdyakis triacontahedron 291:quasitruncated dodecadodecahedron 1355:great pentagonal hexecontahedron 1330:medial disdyakis triacontahedron 1315:medial deltoidal hexecontahedron 798:medial disdyakis triacontahedron 713: 691: 679:Medial disdyakis triacontahedron 188: 179:Medial disdyakis triacontahedron 112: 107: 102: 97: 92: 87: 82: 27: 1350:great disdyakis triacontahedron 1345:great deltoidal hexecontahedron 1305:medial rhombic triacontahedron 1067:"Truncated dodecadodecahedron" 815:truncated dodecadodecahedron. 1: 1335:great rhombic triacontahedron 874:(1954), "Uniform polyhedra", 22:Truncated dodecadodecahedron 1272:great dodecahemidodecahedron 1262:small dodecahemidodecahedron 1202:truncated dodecadodecahedron 1192:truncated great dodecahedron 1162:great stellated dodecahedron 1152:small stellated dodecahedron 779:Truncated dodecadodecahedron 278:truncated dodecadodecahedron 234:nonconvex uniform polyhedron 226:truncated dodecadodecahedron 1277:great icosihemidodecahedron 1267:small icosihemidodecahedron 1217:truncated great icosahedron 992:10.1007/978-3-642-00219-9_9 1452: 1400:great dodecahemidodecacron 1390:small dodecahemidodecacron 1287:small dodecahemicosahedron 1282:great dodecahemicosahedron 1023:Cambridge University Press 1405:great icosihemidodecacron 1395:small icosihemidodecacron 825:List of uniform polyhedra 690: 685: 26: 21: 1415:small dodecahemicosacron 1410:great dodecahemicosacron 1197:rhombidodecadodecahedron 1131:Star-polyhedra navigator 1031:10.1017/CBO9780511569371 16:Polyhedron with 54 faces 1212:great icosidodecahedron 1207:snub dodecadodecahedron 40:Uniform star polyhedron 1366:uniform polyhedra with 1320:small rhombidodecacron 896:10.1098/rsta.1954.0003 868:Longuet-Higgins, M. S. 793: 637: 345: 217: 71:30{4}+12{10}+12{10/3} 791: 638: 346: 302:Cartesian coordinates 297:Cartesian coordinates 215: 63:= 120 (χ = −6) 1368:infinite stellations 1176:Uniform truncations 927:Wenninger, Magnus J. 739:= 54 (χ = −6) 359: 308: 261:It has 54 faces (30 1296:Duals of nonconvex 1247:tetrahemihexahedron 888:1954RSPTA.246..401C 1364:Duals of nonconvex 1257:octahemioctahedron 1252:cubohemioctahedron 1236:Nonconvex uniform 1187:dodecadodecahedron 1178:of Kepler-Poinsot 1157:great dodecahedron 1145:regular polyhedra) 1083:Weisstein, Eric W. 1064:Weisstein, Eric W. 953:: 9–24, 72–89, 216 794: 633: 631: 341: 339: 282:dodecadodecahedron 218: 1436:Uniform polyhedra 1423: 1422: 1375:tetrahemihexacron 1298:uniform polyhedra 1167:great icosahedron 1040:978-0-521-54325-5 1015:Wenninger, Magnus 1001:978-3-642-00218-2 931:Polyhedron Models 864:Coxeter, H. S. M. 784: 783: 674:Related polyhedra 649:As a Cayley graph 617: 597: 561: 493: 443: 421: 338: 332: 208: 207: 1443: 1385:octahemioctacron 1380:hexahemioctacron 1124: 1117: 1110: 1101: 1096: 1095: 1077: 1076: 1051: 1006: 1004: 985: 966: 960: 954: 942: 936: 934: 922: 916: 914: 882:(916): 401–450, 872:Miller, J. C. P. 860: 854: 853: 841: 790: 759:Index references 717: 695: 683: 642: 640: 639: 634: 632: 625: 624: 618: 613: 598: 593: 591: 590: 577: 576: 562: 560: 559: 547: 540: 539: 530: 529: 516: 515: 509: 508: 494: 486: 476: 475: 462: 461: 444: 442: 441: 429: 422: 414: 412: 411: 398: 397: 372: 371: 350: 348: 347: 342: 340: 334: 333: 328: 319: 260: 258: 257: 253: 240:. It is given a 214: 192: 147:Index references 117: 116: 115: 111: 110: 106: 105: 101: 100: 96: 95: 91: 90: 86: 85: 31: 19: 1451: 1450: 1446: 1445: 1444: 1442: 1441: 1440: 1426: 1425: 1424: 1419: 1367: 1365: 1359: 1297: 1291: 1237: 1231: 1179: 1177: 1171: 1144: 1140: 1139:Kepler-Poinsot 1133: 1128: 1081: 1080: 1062: 1061: 1058: 1041: 1013: 1010: 1009: 1002: 970:Eppstein, David 968: 967: 963: 955:. According to 944: 943: 939: 925: 923: 919: 862: 861: 857: 844:Maeder, Roman. 843: 842: 838: 833: 821: 800:is a nonconvex 786: 774:dual polyhedron 768: 752: 735: 704:Star polyhedron 681: 676: 659:symmetric group 651: 630: 629: 610: 602: 582: 581: 566: 551: 544: 531: 521: 520: 500: 498: 483: 467: 466: 448: 433: 426: 403: 402: 387: 379: 357: 356: 320: 306: 305: 299: 255: 251: 250: 248: 244: 242:Schläfli symbol 239: 210: 193: 175:Dual polyhedron 170: 163: 156: 140: 127:2 5 5/3 | 113: 108: 103: 98: 93: 88: 83: 81: 77:Coxeter diagram 59: 17: 12: 11: 5: 1449: 1447: 1439: 1438: 1428: 1427: 1421: 1420: 1418: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1371: 1369: 1361: 1360: 1358: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1301: 1299: 1293: 1292: 1290: 1289: 1284: 1279: 1274: 1269: 1264: 1259: 1254: 1249: 1243: 1241: 1233: 1232: 1230: 1229: 1224: 1219: 1214: 1209: 1204: 1199: 1194: 1189: 1183: 1181: 1173: 1172: 1170: 1169: 1164: 1159: 1154: 1148: 1146: 1135: 1134: 1129: 1127: 1126: 1119: 1112: 1104: 1098: 1097: 1078: 1057: 1056:External links 1054: 1053: 1052: 1039: 1008: 1007: 1000: 961: 937: 917: 855: 835: 834: 832: 829: 828: 827: 820: 817: 782: 781: 776: 770: 769: 766: 761: 755: 754: 750: 747: 745:Symmetry group 741: 740: 725: 719: 718: 711: 707: 706: 701: 697: 696: 688: 687: 680: 677: 675: 672: 663:circular shift 650: 647: 628: 623: 616: 611: 609: 606: 603: 601: 596: 589: 584: 583: 580: 575: 570: 567: 565: 558: 554: 550: 545: 543: 538: 534: 528: 523: 522: 519: 514: 507: 503: 499: 497: 492: 489: 484: 482: 479: 474: 469: 468: 465: 460: 455: 452: 449: 447: 440: 436: 432: 427: 425: 420: 417: 410: 405: 404: 401: 396: 391: 388: 386: 383: 380: 378: 375: 370: 365: 364: 337: 331: 326: 323: 316: 313: 298: 295: 246: 237: 236:, indexed as U 206: 205: 202: 200:Bowers acronym 196: 195: 186: 182: 181: 176: 172: 171: 168: 161: 154: 149: 143: 142: 138: 135: 133:Symmetry group 129: 128: 125: 123:Wythoff symbol 119: 118: 79: 73: 72: 69: 68:Faces by sides 65: 64: 49: 43: 42: 37: 33: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1448: 1437: 1434: 1433: 1431: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1372: 1370: 1362: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1302: 1300: 1294: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1244: 1242: 1240: 1239:hemipolyhedra 1234: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1184: 1182: 1174: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1149: 1147: 1142: 1136: 1132: 1125: 1120: 1118: 1113: 1111: 1106: 1105: 1102: 1093: 1092: 1087: 1084: 1079: 1074: 1073: 1068: 1065: 1060: 1059: 1055: 1050: 1046: 1042: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1011: 1003: 997: 993: 989: 984: 979: 975: 974:Graph Drawing 971: 965: 962: 958: 952: 948: 941: 938: 932: 928: 921: 918: 913: 909: 905: 901: 897: 893: 889: 885: 881: 877: 873: 869: 865: 859: 856: 851: 847: 840: 837: 830: 826: 823: 822: 818: 816: 814: 810: 806: 803: 799: 789: 780: 777: 775: 772: 771: 765: 762: 760: 757: 756: 748: 746: 743: 742: 738: 733: 729: 726: 724: 721: 720: 716: 712: 709: 708: 705: 702: 699: 698: 694: 689: 684: 678: 673: 671: 668: 664: 660: 656: 648: 646: 643: 626: 614: 607: 604: 599: 594: 578: 568: 563: 556: 552: 548: 541: 536: 532: 517: 505: 501: 495: 490: 487: 480: 477: 463: 453: 450: 445: 438: 434: 430: 423: 418: 415: 399: 389: 384: 381: 376: 373: 354: 335: 329: 324: 321: 314: 311: 303: 296: 294: 292: 288: 283: 279: 274: 272: 268: 264: 243: 235: 231: 227: 223: 213: 203: 201: 198: 197: 191: 187: 185:Vertex figure 184: 183: 180: 177: 174: 173: 167: 160: 153: 150: 148: 145: 144: 136: 134: 131: 130: 126: 124: 121: 120: 80: 78: 75: 74: 70: 67: 66: 62: 57: 53: 50: 48: 45: 44: 41: 38: 35: 34: 30: 25: 20: 1201: 1089: 1070: 1018: 973: 964: 950: 946: 940: 930: 920: 879: 875: 858: 849: 839: 807:. It is the 795: 778: 736: 731: 727: 667:permutations 655:Cayley graph 652: 644: 353:golden ratio 300: 290: 277: 275: 229: 225: 219: 194:4.10/9.10/3 60: 55: 51: 1143:(nonconvex 1019:Dual Models 850:MathConsult 831:References 805:polyhedron 1180:polyhedra 1141:polyhedra 1091:MathWorld 1072:MathWorld 983:0709.4087 802:isohedral 753:, , *532 553:φ 533:φ 502:φ 491:φ 478:φ 454:φ 435:φ 419:φ 312:φ 276:The name 271:decagrams 269:, and 12 141:, , *532 1430:Category 1017:(1983), 819:See also 723:Elements 657:for the 267:decagons 222:geometry 204:Quitdid 47:Elements 1049:0730208 912:0062446 884:Bibcode 813:uniform 811:of the 730:= 120, 351:is the 263:squares 254:⁄ 232:) is a 1047:  1037:  998:  910:  902:  224:, the 54:= 54, 978:arXiv 904:91532 900:JSTOR 734:= 180 265:, 12 247:0,1,2 58:= 180 1035:ISBN 996:ISBN 809:dual 796:The 710:Face 700:Type 259:,5}. 228:(or 36:Type 1027:doi 988:doi 892:doi 880:246 355:): 220:In 1432:: 1088:. 1069:. 1045:MR 1043:, 1033:, 1025:, 1021:, 994:, 986:, 949:, 908:MR 906:, 898:, 890:, 878:, 870:; 866:; 848:. 767:59 764:DU 238:59 169:98 164:, 162:75 157:, 155:59 1123:e 1116:t 1109:v 1094:. 1075:. 1029:: 1005:. 990:: 980:: 951:6 935:. 894:: 886:: 852:. 751:h 749:I 737:V 732:E 728:F 627:. 622:) 615:5 608:, 605:1 600:, 595:5 588:( 579:, 574:) 569:2 564:, 557:2 549:1 542:, 537:2 527:( 518:, 513:) 506:2 496:, 488:2 481:, 473:( 464:, 459:) 451:2 446:, 439:2 431:1 424:, 416:1 409:( 400:, 395:) 390:3 385:, 382:1 377:, 374:1 369:( 336:2 330:5 325:+ 322:1 315:= 256:3 252:5 249:{ 245:t 166:W 159:C 152:U 139:h 137:I 61:V 56:E 52:F

Index


Uniform star polyhedron
Elements
Coxeter diagram
Wythoff symbol
Symmetry group
Index references
U
C
W
Medial disdyakis triacontahedron

Bowers acronym

geometry
nonconvex uniform polyhedron
Schläfli symbol
squares
decagons
decagrams
dodecadodecahedron
Coxeter, Longuet-Higgins & Miller (1954)
Cartesian coordinates
golden ratio
Cayley graph
symmetric group
circular shift
permutations

Star polyhedron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑