Knowledge

Tsergo Ri landslide

Source 📝

34:. During the collapse, a mass of rock of about 10–15 cubic kilometres (2.4–3.6 cu mi) detached from a previous mountain or ridge and descended with a speed of about 450 kilometres per hour (120 m/s); later, glaciers eroded almost the entire landslide mass. Previously weakened rocks may have contributed to the collapse, which was probably started by an 132:
Based on reconstructions of the pre-landslide topography, there may have been a 7,500–8,500 metres (24,600–27,900 ft) high trilateral mountain in the area, or a set of ridges. The landslide detached in a southwest-west-southwest direction, with the sliding mass breaking apart into blocks. Owing
66:. The small settlement of Kyangjin Kharka lies at the foot of the landslide deposit. With a volume of 10–15 cubic kilometres (2.4–3.6 cu mi), it is one of the largest known mass movements on Earth and perhaps the largest known landslide in crystalline bedrock. 168:
erosion and was largely removed in the process. About 3 cubic kilometres (0.72 cu mi) of debris is still present; it is found around Tsergo Ri mountain, which is formed by landslide debris and its location is in the central sector of the former landslide.
133:
to its fast speed of 450 kilometres per hour (120 m/s), rocks at the base of the slide melted. The landslide impacted other mountains and ridges, sometimes destroying them or triggering secondary collapses, and may have mixed with glacier ice.
694:
Dhakal, Susmita; Cui, Peng; Rijal, Chandra Prasad; Su, Li-jun; Zou, Qiang; Mavrouli, Olga; Wu, Chun-hao (August 2020). "Landslide characteristics and its impact on tourism for two roadside towns along the Kathmandu Kyirong Highway".
144:
and originally may have reached a thickness of 600–800 metres (2,000–2,600 ft). Deformed structures inside the collapse debris indicate that small-scale movements occurred within the landslide. The slide obstructed several
177:. The glaciers that had had their valleys cut by the landslide readvanced during the youngest phase of the Würm glaciation and partially restored the valleys. Landslides take place to this day in the area, including during the 94:
rocks (both of which can be formed by collapses) and which acted as a sliding plane for the Tsergo Ri collapse. Rocks formed by deformation, intrusions of granite, and layers of
1136:
Der Tsergo Ri Bergsturz im Nepal Himalaja - Erforschung der größten Kristallinmassenbewegung der Erde als Grundlage für rezente Gefahrenzonenkartierungen
890:"Two times lowering of lake water at around 48 and 38 ka, caused by possible earthquakes, recorded in the Paleo-Kathmandu lake, central Nepal Himalaya" 1134: 120:
took place at the same time and may have been caused by the same earthquake. The collapse occurred during a time of increased
108:
The Tsergo Ri region is one of the fastest uplifting parts of the Himalaya. The Tsergo Ri landslide was probably triggered by
1149:"Die Verwitterung einer Erzstruktur als Ursache für den Einsturz des ehemals 15. Achttausenders im Hohen Himalaya Nepals" 1201: 185:
peak and killed over 350 people in the Langtang valley. Slow mass movements into valleys and weather/monsoon-controlled
724:
Dortch, Jason M.; Owen, Lewis A.; Haneberg, William C.; Caffee, Marc W.; Dietsch, Craig; Kamp, Ulrich (1 June 2009).
209:
identified their actual origin in a giant landslide. The structure of the landslide body has been mapped using
136:
It was eventually halted by topography such as the flanks of Pangshungtramo mountain before it could become a
1165:"Das ERKUDOK © Institut im Stadtmuseum Gmunden – Eine geowissenschaftliche Forschungsstätte im Salzkammergut" 1039:"Timing of the Tsergo Ri landslide, Langtang Himal, determined by fission-track dating of pseudotachylyte" 1148: 808:"The Tsergo Ri landslide: an uncommon area of high morphological activity in the Langthang valley, Nepal" 1080:"Tsergo Ri (Langthang Himal, Nepal)–Rekonstruktion der "Paläogeographie" eines gigantischen Bergsturzes" 178: 888:
Sakai, Harutaka; Fujii, Rie; Sugimoto, Misa; Setoguchi, Ryoko; Paudel, Mukunda Raj (27 February 2016).
189:
also occur, and there is evidence that the debris from the Tsergo Ri landslide is especially unstable.
1038: 991: 848: 766: 725: 1050: 999: 952: 901: 860: 819: 778: 737: 218: 117: 202: 113: 31: 1079: 978: 927: 712: 1164: 158: 1179: 1121: 1066: 1025: 970: 919: 876: 835: 794: 753: 1111: 1099: 1058: 1015: 1007: 960: 909: 905: 868: 827: 786: 745: 704: 137: 726:"Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India" 182: 174: 87: 939:
Stumm, Dorothea; Joshi, Sharad Prasad; Gurung, Tika Ram; Silwal, Gunjan (6 August 2021).
1054: 1003: 956: 864: 823: 782: 741: 197:
Molten rocks formed during the collapse were initially referred to by native people as "
872: 807: 1195: 982: 940: 849:"Geoecology and mass movement in the Manaslu-Ganesh and Langtang-Jugal Himals, Nepal" 831: 716: 91: 931: 790: 749: 201:
bones", while early researchers interpreted the rocks as a product of the Himalayan
1062: 1037:
Takagi, Hideo; Arita, Kazunori; Danhara, Tohru; Iwano, Hideki (1 February 2007).
157:
The collapse took place about 51,000±13,000 years ago, between two phases of the
1011: 214: 102: 140:. The landslide debris consists of individual compact blocks on top of a basal 965: 914: 889: 708: 173:
and Dragpoche are in the area of the detachment, east of the seven-thousander
95: 35: 1183: 1125: 1116: 1070: 1029: 974: 923: 880: 839: 798: 757: 170: 79: 63: 47: 27: 941:"Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017" 588: 586: 416: 414: 59: 55: 1020: 186: 165: 146: 141: 121: 109: 83: 767:"Legacies of catastrophic rock slope failures in mountain landscapes" 105:
faults, may have been weak structures that facilitated the collapse.
75: 765:
Hewitt, Kenneth; Clague, John J.; Orwin, John F. (1 February 2008).
474: 472: 470: 62:
and about 60 kilometres (37 mi) north of the Nepalese capital
573: 571: 457: 455: 453: 210: 51: 24: 847:
Marston, R. A.; Miller, M. M.; Devkota, L. P. (1 December 1998).
257: 255: 253: 240: 238: 236: 234: 1100:"A Short Note on the Tsergo Ri Landslide, Langtang Himal, Nepal" 198: 98: 30:, which took place around 51,000±13,000 years ago, during the 217:
flows, and the most recent date estimates were obtained with
381: 393: 124:
strength, which may have played a role in the collapse.
1078:
Weidinger, Johannes T.; Schramm, Josef-Michael (1995).
604: 562: 592: 420: 297: 164:
After the collapse, landslide debris was subject to
992:"Thermochronological investigation of fault zones" 538: 478: 444: 345: 640: 628: 577: 550: 514: 502: 461: 357: 321: 309: 261: 244: 101:, which are unstable under mechanical load and 1142:. Geoforum Umhausen (in German). Vol. 2. 8: 221:on pseudotachylites formed by the collapse. 664: 285: 1098:Weidinger, J. T.; Schramm, J. M. (1995b). 1115: 1019: 964: 913: 652: 616: 526: 490: 432: 405: 369: 333: 273: 1172:Jahrbuch der Geologischen Bundesanstalt 230: 806:Ibetsberger, Horst J. (30 July 1996). 676: 128:Pre-landslide topography and landslide 7: 1163:Weidinger, JOHANNES T. (May 2004). 1104:Journal of Nepal Geological Society 112:activity, perhaps on the Himalayan 23:was a prehistoric landslide in the 298:Marston, Miller & Devkota 1998 14: 74:The collapse affected Himalayan 1043:Journal of Asian Earth Sciences 990:Tagami, Takahiro (4 May 2012). 791:10.1016/j.earscirev.2007.10.002 750:10.1016/j.quascirev.2008.05.002 539:Hewitt, Clague & Orwin 2008 181:when a landslide detached from 1087:Geol. Paläont. Mitt. Innsbruck 16:Prehistoric landslide in Nepal 1: 873:10.1016/S0169-555X(98)00055-5 479:Weidinger & Schramm 1995b 445:Weidinger & Schramm 1995b 346:Weidinger & Schramm 1995b 58:valley, perpendicular to the 1063:10.1016/j.jseaes.2005.12.002 832:10.1016/0040-1951(96)00077-7 629:Weidinger & Schramm 1995 578:Weidinger & Schramm 1995 551:Weidinger & Schramm 1995 515:Weidinger & Schramm 1995 503:Weidinger & Schramm 1995 462:Weidinger & Schramm 1995 358:Weidinger & Schramm 1995 322:Weidinger & Schramm 1995 310:Weidinger & Schramm 1995 262:Weidinger & Schramm 1995 245:Weidinger & Schramm 1995 116:; a water level drop in the 1012:10.1016/j.tecto.2012.01.032 697:Journal of Mountain Science 1218: 730:Quaternary Science Reviews 86:; they also include older 78:rocks, which also contain 966:10.5194/essd-13-3791-2021 945:Earth System Science Data 915:10.1186/s40623-016-0413-5 709:10.1007/s11629-019-5871-3 205:fault. In 1984 Heuberger 42:Geomorphology and geology 1147:Weidinger, J.T. (2003). 1133:Weidinger, J.T. (2001). 1117:10.3126/jngs.v11i0.32803 894:Earth, Planets and Space 1156:Mitt. Österr.Miner.Ges. 906:2016EP&S...68...31S 1178:(1). Vienna: 141–153. 771:Earth-Science Reviews 179:2015 Nepal earthquake 312:, pp. 232, 234. 219:fission track dating 153:Timing and aftermath 118:Paleo Kathmandu Lake 1202:Landslides in Nepal 1110:: 281–287–281–287. 1055:2007JAESc..29..466T 1004:2012Tectp.538...67T 957:2021ESSD...13.3791S 865:1998Geomo..26..139M 824:1996Tectp.260...85I 783:2008ESRv...87....1H 742:2009QSRv...28.1037D 324:, pp. 235–239. 203:Main Central Thrust 114:Main Central Thrust 32:Last Glacial Period 21:Tsergo Ri landslide 1158:(in German) (148). 998:. 538–540: 67–85. 641:Dhakal et al. 2020 631:, p. 240,242. 605:Takagi et al. 2007 563:Takagi et al. 2007 394:Dortch et al. 2009 70:Causes and trigger 736:(11): 1037–1054. 593:Stumm et al. 2021 421:Stumm et al. 2021 382:Sakai et al. 2016 1209: 1187: 1169: 1159: 1153: 1143: 1141: 1129: 1119: 1094: 1084: 1074: 1033: 1023: 986: 968: 951:(8): 3791–3818. 935: 917: 884: 843: 802: 761: 720: 703:(8): 1840–1859. 680: 674: 668: 665:Ibetsberger 1996 662: 656: 650: 644: 638: 632: 626: 620: 614: 608: 602: 596: 590: 581: 575: 566: 560: 554: 548: 542: 536: 530: 524: 518: 512: 506: 500: 494: 488: 482: 476: 465: 459: 448: 442: 436: 430: 424: 418: 409: 403: 397: 391: 385: 379: 373: 367: 361: 355: 349: 343: 337: 331: 325: 319: 313: 307: 301: 295: 289: 286:Ibetsberger 1996 283: 277: 271: 265: 259: 248: 242: 193:Research history 138:debris avalanche 46:The collapse of 1217: 1216: 1212: 1211: 1210: 1208: 1207: 1206: 1192: 1191: 1190: 1167: 1162: 1151: 1146: 1139: 1132: 1097: 1082: 1077: 1036: 989: 938: 887: 846: 805: 764: 723: 693: 689: 684: 683: 675: 671: 663: 659: 651: 647: 643:, p. 1844. 639: 635: 627: 623: 615: 611: 603: 599: 595:, p. 3794. 591: 584: 576: 569: 561: 557: 549: 545: 537: 533: 525: 521: 513: 509: 501: 497: 489: 485: 477: 468: 460: 451: 443: 439: 431: 427: 423:, p. 3793. 419: 412: 404: 400: 396:, p. 1050. 392: 388: 380: 376: 368: 364: 356: 352: 344: 340: 332: 328: 320: 316: 308: 304: 296: 292: 284: 280: 272: 268: 260: 251: 243: 232: 227: 195: 183:Langtang Lirung 175:Langtang Lirung 159:Würm glaciation 155: 130: 88:pseudotachylite 72: 44: 17: 12: 11: 5: 1215: 1213: 1205: 1204: 1194: 1193: 1189: 1188: 1160: 1144: 1130: 1095: 1075: 1049:(2): 466–472. 1034: 996:Tectonophysics 987: 936: 885: 859:(1): 139–150. 844: 812:Tectonophysics 803: 762: 721: 690: 688: 685: 682: 681: 669: 657: 653:Weidinger 2001 645: 633: 621: 619:, p. 145. 617:Weidinger 2004 609: 607:, p. 471. 597: 582: 580:, p. 240. 567: 565:, p. 467. 555: 553:, p. 234. 543: 531: 527:Weidinger 2001 519: 517:, p. 242. 507: 505:, p. 241. 495: 491:Weidinger 2001 483: 481:, p. 287. 466: 464:, p. 235. 449: 447:, p. 285. 437: 433:Weidinger 2001 425: 410: 408:, p. 312. 406:Weidinger 2003 398: 386: 374: 370:Weidinger 2001 362: 360:, p. 239. 350: 348:, p. 281. 338: 336:, p. 311. 334:Weidinger 2003 326: 314: 302: 300:, p. 146. 290: 278: 274:Weidinger 2001 266: 264:, p. 232. 249: 247:, p. 231. 229: 228: 226: 223: 213:emissions and 194: 191: 154: 151: 129: 126: 71: 68: 50:took place in 43: 40: 15: 13: 10: 9: 6: 4: 3: 2: 1214: 1203: 1200: 1199: 1197: 1185: 1181: 1177: 1174:(in German). 1173: 1166: 1161: 1157: 1150: 1145: 1138: 1137: 1131: 1127: 1123: 1118: 1113: 1109: 1105: 1101: 1096: 1092: 1089:(in German). 1088: 1081: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1035: 1031: 1027: 1022: 1017: 1013: 1009: 1005: 1001: 997: 993: 988: 984: 980: 976: 972: 967: 962: 958: 954: 950: 946: 942: 937: 933: 929: 925: 921: 916: 911: 907: 903: 899: 895: 891: 886: 882: 878: 874: 870: 866: 862: 858: 854: 853:Geomorphology 850: 845: 841: 837: 833: 829: 825: 821: 817: 813: 809: 804: 800: 796: 792: 788: 784: 780: 776: 772: 768: 763: 759: 755: 751: 747: 743: 739: 735: 731: 727: 722: 718: 714: 710: 706: 702: 698: 692: 691: 686: 679:, p. 79. 678: 673: 670: 667:, p. 92. 666: 661: 658: 655:, p. 53. 654: 649: 646: 642: 637: 634: 630: 625: 622: 618: 613: 610: 606: 601: 598: 594: 589: 587: 583: 579: 574: 572: 568: 564: 559: 556: 552: 547: 544: 541:, p. 11. 540: 535: 532: 529:, p. 46. 528: 523: 520: 516: 511: 508: 504: 499: 496: 493:, p. 40. 492: 487: 484: 480: 475: 473: 471: 467: 463: 458: 456: 454: 450: 446: 441: 438: 435:, p. 39. 434: 429: 426: 422: 417: 415: 411: 407: 402: 399: 395: 390: 387: 383: 378: 375: 372:, p. 38. 371: 366: 363: 359: 354: 351: 347: 342: 339: 335: 330: 327: 323: 318: 315: 311: 306: 303: 299: 294: 291: 288:, p. 86. 287: 282: 279: 276:, p. 36. 275: 270: 267: 263: 258: 256: 254: 250: 246: 241: 239: 237: 235: 231: 224: 222: 220: 216: 212: 208: 204: 200: 192: 190: 188: 184: 180: 176: 172: 167: 162: 160: 152: 150: 148: 143: 139: 134: 127: 125: 123: 119: 115: 111: 106: 104: 100: 97: 93: 92:ultramylonite 89: 85: 81: 77: 69: 67: 65: 61: 57: 53: 49: 41: 39: 37: 33: 29: 26: 22: 1175: 1171: 1155: 1135: 1107: 1103: 1090: 1086: 1046: 1042: 995: 948: 944: 897: 893: 856: 852: 818:(1): 85–93. 815: 811: 774: 770: 733: 729: 700: 696: 672: 660: 648: 636: 624: 612: 600: 558: 546: 534: 522: 510: 498: 486: 440: 428: 401: 389: 384:, p. 8. 377: 365: 353: 341: 329: 317: 305: 293: 281: 269: 206: 196: 163: 156: 135: 131: 107: 73: 45: 20: 18: 1021:2433/155980 777:(1): 1–38. 677:Tagami 2012 215:groundwater 103:neotectonic 1093:: 231–243. 225:References 96:pyrrhotite 80:migmatites 36:earthquake 1184:0016-7800 1126:2676-1378 1071:1367-9120 1030:0040-1951 983:238808683 975:1866-3508 924:1880-5981 900:(1): 31. 881:0169-555X 840:0040-1951 799:0012-8252 758:0277-3791 717:220656915 171:Yala Peak 149:valleys. 64:Kathmandu 48:Tsergo Ri 1196:Category 932:34169506 187:mudflows 84:granites 60:Himalaya 56:Langtang 28:Himalaya 25:Nepalese 1051:Bibcode 1000:Bibcode 953:Bibcode 902:Bibcode 861:Bibcode 820:Bibcode 779:Bibcode 738:Bibcode 687:Sources 166:glacial 147:glacial 142:breccia 122:monsoon 110:seismic 1182:  1124:  1069:  1028:  981:  973:  930:  922:  879:  838:  797:  756:  715:  207:et al. 76:gneiss 1168:(PDF) 1152:(PDF) 1140:(PDF) 1083:(PDF) 979:S2CID 928:S2CID 713:S2CID 211:radon 52:Nepal 1180:ISSN 1122:ISSN 1067:ISSN 1026:ISSN 971:ISSN 920:ISSN 877:ISSN 836:ISSN 795:ISSN 754:ISSN 90:and 82:and 19:The 1176:144 1112:doi 1059:doi 1016:hdl 1008:doi 961:doi 910:doi 869:doi 828:doi 816:260 787:doi 746:doi 705:doi 199:yak 99:ore 54:'s 1198:: 1170:. 1154:. 1120:. 1108:11 1106:. 1102:. 1091:20 1085:. 1065:. 1057:. 1047:29 1045:. 1041:. 1024:. 1014:. 1006:. 994:. 977:. 969:. 959:. 949:13 947:. 943:. 926:. 918:. 908:. 898:68 896:. 892:. 875:. 867:. 857:26 855:. 851:. 834:. 826:. 814:. 810:. 793:. 785:. 775:87 773:. 769:. 752:. 744:. 734:28 732:. 728:. 711:. 701:17 699:. 585:^ 570:^ 469:^ 452:^ 413:^ 252:^ 233:^ 161:. 38:. 1186:. 1128:. 1114:: 1073:. 1061:: 1053:: 1032:. 1018:: 1010:: 1002:: 985:. 963:: 955:: 934:. 912:: 904:: 883:. 871:: 863:: 842:. 830:: 822:: 801:. 789:: 781:: 760:. 748:: 740:: 719:. 707::

Index

Nepalese
Himalaya
Last Glacial Period
earthquake
Tsergo Ri
Nepal
Langtang
Himalaya
Kathmandu
gneiss
migmatites
granites
pseudotachylite
ultramylonite
pyrrhotite
ore
neotectonic
seismic
Main Central Thrust
Paleo Kathmandu Lake
monsoon
debris avalanche
breccia
glacial
Würm glaciation
glacial
Yala Peak
Langtang Lirung
2015 Nepal earthquake
Langtang Lirung

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.