Knowledge

Serial module

Source 📝

1542:, which not only forces the right and left ideals to be linearly ordered, but also requires that there be only finitely many ideals in the chains of left and right ideals. Because of this historical precedent, some authors include the Artinian condition or finite composition length condition in their definitions of uniserial modules and rings. 1482:
This result, due to Facchini, has been extended to infinite direct sums of uniserial modules by Příhoda in 2006. This extension involves the so-called quasismall uniserial modules. These modules were defined by Nguyen Viet Dung and Facchini, and their existence was proved by Puninski. The weak form
710:
This section will deal mainly with Noetherian serial rings and their subclass, Artinian serial rings. In general, rings are first broken down into indecomposable rings. Once the structure of these rings are known, the decomposable rings are direct products of the indecomposable ones. Also, for
861:
to the upper triangular matrices over a division ring (note the similarity to the structure of Noetherian serial rings in the preceding paragraph). A complete description of structure in the case of a circle quiver is beyond the scope of this article, but can be found in
566:
module over a serial ring is a direct sum of cyclic uniserial submodules (and hence is serial). If additionally the ring is assumed to be Noetherian, the finitely presented and finitely generated modules coincide, and so all finitely generated modules are serial.
856:
Artinian serial ring structure is classified in cases depending on the quiver structure. It turns out that the quiver structure for a basic, indecomposable, Artinian serial ring is always a circle or a line. In the case of the line quiver, the ring is
791:
In 1975, Kirichenko and Warfield independently and simultaneously published analyses of the structure of Noetherian, non-Artinian serial rings. The results were the same however the methods they used were very different from each other. The study of
1483:
of the Krull-Schmidt Theorem holds not only for uniserial modules, but also for several other classes of modules (biuniform modules, cyclically presented modules over serial rings, kernels of morphisms between indecomposable
441:
Since rings with unity always have a maximal right ideal, a right uniserial ring is necessarily local. As noted before, a finitely generated right ideal can be generated by a single element, and so right uniserial rings are
574:. Being uniserial is preserved for quotients of rings and modules, but never for products. A direct summand of a serial module is not necessarily serial, as was proved by Puninski, but direct summands of 1640:
of the module. In a module with finite composition length, this has the effect of forcing the composition factors to be isomorphic, hence the "homogeneous" adjective. It turns out that a serial ring
1257: 1211: 775: 225: 505: 164: 124: 1630: 186:
if it is a right serial module over itself. Left uniserial and left serial rings are defined in a similar way, and are in general distinct from their right-sided counterparts.
1114: 1088: 999: 973: 804:
defined on serial rings were important tools. The core result states that a right Noetherian, non-Artinian, basic, indecomposable serial ring can be described as a type of
665: 1469: 1394: 1059: 944: 1295: 254: 1315: 559:
is an Artinian principal ideal ring. Nakayama showed that Artinian serial rings have this property on their modules, and that the converse is not true
305:
Following the common ring theoretic convention, if a left/right dependent condition is given without mention of a side (for example, uniserial, serial,
1553:
to refer to an Artinian serial ring. Nakayama showed that all modules over such rings are serial. Artinian serial rings are sometimes called
1538:
was used to mean "Artinian principal ideal ring" even as recently as the 1970s. Köthe's paper also required a uniserial ring to have a unique
1823: 278:
A partial alphabetical list of important contributors to the theory of serial rings includes the mathematicians Keizo Asano, I. S. Cohen,
1534:(literally "one-series") during investigations of rings over which all modules are direct sums of cyclic submodules. For this reason, 1907: 1889: 1868: 1841: 1805: 1546: 313:) then it is assumed the condition holds on both the left and right. Unless otherwise specified, each ring in this article is a 299: 2025:
Příhoda, Pavel (2004), "Weak Krull-Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension",
562:
The most general result, perhaps, on the modules of a serial ring is attributed to Drozd and Warfield: it states that every
2089:
Puninski, Gennadi (2001b), "Some model theory over a nearly simple uniserial domain and decompositions of serial modules",
866:). To paraphrase the result as it appears there: A basic Artinian serial ring whose quiver is a circle is a homomorphic 2111:
Puninski, Gennadi (2001c), "Some model theory over an exceptional uniserial ring and decompositions of serial modules",
2047:
Příhoda, Pavel (2006), "A version of the weak Krull-Schmidt theorem for infinite direct sums of uniserial modules",
1216: 1170: 730: 563: 195: 675: 515: 453: 582: 616: 2162: 1967:
Köthe, Gottfried (1935), "Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring. (German)",
129: 89: 65: 1575: 1120: 1002: 373:
and thus is directly indecomposable. It is also easy to see that every finitely generated submodule of
346: 171: 2167: 1508: 871: 842: 809: 801: 538: 46: 1093: 1067: 978: 952: 867: 682: 608:
is a uniserial ring, and all Artinian principal ideal rings are serial rings, as is illustrated by
342: 639: 362: 2014: 1877: 1539: 1260: 50: 1564:
for a serial module with the additional property that for any two finitely generated submodules
1527: 570:
Being right serial is preserved under direct products of rings and modules, and preserved under
295: 1399: 1324: 1012: 897: 1903: 1885: 1864: 1837: 1819: 1801: 712: 598: 389: 354: 1280: 2140: 2120: 2098: 2076: 2056: 2034: 2004: 1996: 1976: 1954: 1932: 1637: 1554: 1484: 858: 816: 546: 542: 531: 291: 233: 35: 1300: 793: 692: 609: 314: 1504: 699: 605: 604:
Many examples of serial rings can be gleaned from the structure sections above. Every
553: 403: 370: 283: 2103: 2156: 2145: 1520: 620: 594: 571: 421: 318: 306: 287: 190: 2039: 947: 782: 689: 672: 668: 1959: 1795: 2131:
Warfield, Robert B. Jr. (1975), "Serial rings and finitely presented modules.",
1275: 1062: 805: 788:. This is why the results are phrased in terms of indecomposable, basic rings. 261: 61: 2124: 2081: 2060: 2009: 1523:
has "chain" as its namesake, but it is in general not related to chain rings.
797: 634: 407: 310: 17: 1937: 1923:
Eisenbud, David; Griffith, Phillip (1971), "The structure of serial rings",
279: 57: 28: 1834:
Endomorphism rings and direct sum decompositions in some classes of modules
1644:
is a finite direct sum of homogeneously serial right ideals if and only if
1863:, Mathematical Surveys and Monographs, 65. American Mathematical Society, 1861:
Rings and things and a fine array of twentieth century associative algebra
1854:, Grundlehren der Mathematischen Wissenschaften, No. 191. Springer-Verlag 182:
if it is uniserial as a right module over itself, and likewise called a
2018: 1980: 824: 271:
has been used differently from the above definition: for clarification
228: 2000: 1945:
Facchini, Alberto (1996), "Krull-Schmidt fails for serial modules",
1656:
matrix ring over a local serial ring. Such rings are also known as
272: 2067:
Puninski, G. T. (2002), "Artinian and Noetherian serial rings.",
541:(which are a special case of serial rings) are direct sums of 1005:
notion can be defined: the modules are said to have the same
534:, which is a stronger condition than being a semilocal ring. 1777: 1681: 1987:
Nakayama, Tadasi (1941), "On Frobeniusean algebras. II.",
711:
semiperfect rings such as serial rings, the basic ring is
1511:. By the same token, uniserial modules have been called 1818:, Research Notes in Mathematics, vol. 44, Pitman, 27:"Chain ring" redirects here. For the bicycle part, see 727:
is known, the theory of Morita equivalence gives that
1578: 1402: 1327: 1303: 1283: 1219: 1173: 1096: 1070: 1015: 981: 955: 900: 733: 642: 578:
direct sums of uniserial modules are serial modules.
456: 256:. This ring is always serial, and is uniserial when 236: 198: 132: 92: 325:
Properties of uniserial and serial rings and modules
526:is a local, uniserial module. This indicates that 1705: 1624: 1463: 1388: 1309: 1289: 1251: 1205: 1108: 1082: 1053: 993: 967: 938: 870:of a "blow-up" of a basic, indecomposable, serial 769: 659: 499: 248: 219: 158: 118: 1507:, which are by definition commutative, uniserial 1495:Right uniserial rings can also be referred to as 428:is assumed to be Artinian or Noetherian, then End 68:. This means simply that for any two submodules 1557:, and they have a well-developed module theory. 545:. Later, Cohen and Kaplansky determined that a 1880:; Gubareni, Nadiya; Kirichenko, V. V. (2004), 1252:{\displaystyle V_{1}\oplus \dots \oplus V_{t}} 1206:{\displaystyle U_{1}\oplus \dots \oplus U_{n}} 849:on and above the diagonal, and entries from J( 1491:Notes on alternate, similar and related terms 1163:non-zero uniserial right modules over a ring 377:can be generated by a single element, and so 8: 1682:Hazewinkel, Gubareni & Kirichenko (2004) 770:{\displaystyle R\cong \mathrm {End} _{B}(P)} 302:, P. Příhoda, G. Puninski, and R. Warfield. 1676:References for each author can be found in 2113:Journal of the London Mathematical Society 1814:Chatters, A. W.; Hajarnavis, C.R. (1980), 1794:Frank W. Anderson; Kent R. Fuller (1992), 1778:Hazewinkel, Gubareni & Kirichenko 2004 537:Köthe showed that the modules of Artinian 220:{\displaystyle \mathbb {Z} /n\mathbb {Z} } 2144: 2102: 2080: 2038: 2008: 1958: 1936: 1677: 1605: 1582: 1577: 1455: 1436: 1420: 1410: 1401: 1380: 1361: 1345: 1335: 1326: 1302: 1282: 1243: 1224: 1218: 1197: 1178: 1172: 1095: 1069: 1045: 1026: 1014: 980: 954: 930: 911: 899: 752: 741: 732: 644: 643: 641: 500:{\displaystyle R=\oplus _{i=1}^{n}e_{i}R} 488: 478: 467: 455: 235: 213: 212: 204: 200: 199: 197: 150: 137: 131: 110: 97: 91: 1753: 1741: 863: 1693: 1669: 1765: 1729: 1717: 823:) is nonzero. This matrix ring is a 597:is trivially uniserial, and likewise 7: 1882:Algebras, rings and modules. Vol. 1. 1530:and Keizo Asano introduced the term 329:It is immediate that in a uniserial 159:{\displaystyle N_{2}\subseteq N_{1}} 119:{\displaystyle N_{1}\subseteq N_{2}} 878:A decomposition uniqueness property 1625:{\displaystyle A/J(A)\cong B/J(B)} 1487:, couniformly presented modules.) 748: 745: 742: 585:holds in Noetherian serial rings. 552:has this property for its modules 189:An easy motivating example is the 25: 1658:primary decomposable serial rings 719:is a serial ring with basic ring 615:More exotic examples include the 450:necessarily factors in the form 1797:Rings and Categories of Modules 1503:. This latter term alludes to 1119:The following weak form of the 715:to the original ring. Thus if 2040:10.1016/j.jalgebra.2004.06.027 1902:, Kluwer Academic Publishers, 1884:, Kluwer Academic Publishers, 1800:, Springer, pp. 347–349, 1706:Chatters & Hajarnavis 1980 1619: 1613: 1596: 1590: 1452: 1446: 1440: 1429: 1417: 1403: 1377: 1371: 1365: 1354: 1342: 1328: 1109:{\displaystyle V\rightarrow U} 1100: 1083:{\displaystyle U\rightarrow V} 1074: 1042: 1035: 1023: 1016: 994:{\displaystyle V\rightarrow U} 985: 968:{\displaystyle U\rightarrow V} 959: 927: 920: 908: 901: 764: 758: 654: 648: 174:of uniserial modules. A ring 1: 2104:10.1016/s0022-4049(00)00140-7 1960:10.1090/s0002-9947-96-01740-0 808:over a Noetherian, uniserial 2146:10.1016/0021-8693(75)90074-5 660:{\displaystyle \mathbb {F} } 1898:Puninski, Gennadi (2001a), 1816:Rings with chain conditions 1562:homogeneously serial module 1545:Expanding on Köthe's work, 781:is some finitely generated 446:rings. A right serial ring 2184: 1832:Facchini, Alberto (1998), 1551:generalized uniserial ring 890:are said to have the same 581:It has been verified that 298:, H. Kuppisch, I. Murase, 26: 2125:10.1112/s0024610701002344 2061:10.1080/00927870500455049 1852:Algebra. II. Ring theory. 1464:{\displaystyle _{e}=_{e}} 1389:{\displaystyle _{m}=_{m}} 1054:{\displaystyle _{e}=_{e}} 939:{\displaystyle _{m}=_{m}} 617:upper triangular matrices 406:which is very close to a 341:and 0 are simultaneously 2069:J. Math. Sci. (New York) 1648:is isomorphic to a full 1266:-modules if and only if 337:, all submodules except 166:. A module is called a 2082:10.1023/A:1014906008243 1947:Trans. Amer. Math. Soc. 1938:10.2140/pjm.1971.36.109 1560:Warfield used the term 1290:{\displaystyle \sigma } 1167:. Then the direct sums 723:, and the structure of 1626: 1465: 1390: 1311: 1291: 1253: 1207: 1110: 1084: 1055: 995: 969: 940: 771: 661: 501: 250: 249:{\displaystyle n>1} 221: 160: 120: 2091:J. Pure Appl. Algebra 1989:Annals of Mathematics 1836:, Birkhäuser Verlag, 1627: 1515:, and serial modules 1501:right valuation rings 1466: 1391: 1312: 1310:{\displaystyle \tau } 1292: 1254: 1208: 1121:Krull-Schmidt theorem 1111: 1085: 1061:, if there exists an 1056: 996: 970: 941: 772: 662: 583:Jacobson's conjecture 539:principal ideal rings 502: 410:in the sense that End 388:It is known that the 317:, and each module is 251: 222: 161: 121: 1859:Faith, Carl (1999), 1850:Faith, Carl (1976), 1576: 1400: 1325: 1301: 1281: 1274:and there exist two 1217: 1171: 1094: 1068: 1013: 979: 953: 946:, if there exists a 898: 872:quasi-Frobenius ring 731: 640: 601:are serial modules. 454: 422:maximal right ideals 290:, Phillip Griffith, 234: 196: 180:right uniserial ring 130: 90: 1878:Hazewinkel, Michiel 1519:. The notion of a 1090:and an epimorphism 975:and a monomorphism 483: 2010:10338.dmlcz/140501 1981:10.1007/bf01201343 1622: 1540:composition series 1461: 1386: 1307: 1287: 1249: 1203: 1106: 1080: 1051: 991: 965: 936: 845:with entries from 841:, and consists of 767: 657: 599:semisimple modules 572:quotients of rings 564:finitely presented 516:idempotent element 497: 463: 369:is also clearly a 294:, V.V Kirichenko, 246: 217: 156: 116: 1991:, Second Series, 1953:(11): 4561–4575, 1825:978-0-273-08446-4 1555:Nakayama algebras 1517:semichain modules 1497:right chain rings 1485:injective modules 713:Morita equivalent 543:cyclic submodules 438:is a local ring. 390:endomorphism ring 355:maximal submodule 184:right serial ring 16:(Redirected from 2175: 2149: 2148: 2127: 2107: 2106: 2085: 2084: 2063: 2055:(4): 1479–1487, 2043: 2042: 2021: 2012: 1983: 1963: 1962: 1941: 1940: 1925:Pacific J. Math. 1912: 1894: 1873: 1855: 1846: 1828: 1810: 1781: 1775: 1769: 1763: 1757: 1751: 1745: 1739: 1733: 1727: 1721: 1715: 1709: 1703: 1697: 1691: 1685: 1678:Puninski (2001a) 1674: 1638:Jacobson radical 1636:(−) denotes the 1631: 1629: 1628: 1623: 1609: 1586: 1547:Tadashi Nakayama 1470: 1468: 1467: 1462: 1460: 1459: 1450: 1449: 1425: 1424: 1415: 1414: 1395: 1393: 1392: 1387: 1385: 1384: 1375: 1374: 1350: 1349: 1340: 1339: 1316: 1314: 1313: 1308: 1296: 1294: 1293: 1288: 1258: 1256: 1255: 1250: 1248: 1247: 1229: 1228: 1212: 1210: 1209: 1204: 1202: 1201: 1183: 1182: 1115: 1113: 1112: 1107: 1089: 1087: 1086: 1081: 1060: 1058: 1057: 1052: 1050: 1049: 1031: 1030: 1000: 998: 997: 992: 974: 972: 971: 966: 945: 943: 942: 937: 935: 934: 916: 915: 817:Jacobson radical 776: 774: 773: 768: 757: 756: 751: 666: 664: 663: 658: 647: 610:semisimple rings 547:commutative ring 532:semiperfect ring 506: 504: 503: 498: 493: 492: 482: 477: 420:has at most two 255: 253: 252: 247: 226: 224: 223: 218: 216: 208: 203: 165: 163: 162: 157: 155: 154: 142: 141: 125: 123: 122: 117: 115: 114: 102: 101: 40:uniserial module 36:abstract algebra 21: 2183: 2182: 2178: 2177: 2176: 2174: 2173: 2172: 2153: 2152: 2130: 2110: 2088: 2066: 2046: 2024: 2001:10.2307/1968984 1986: 1966: 1944: 1922: 1919: 1917:Primary Sources 1910: 1897: 1892: 1876: 1871: 1858: 1849: 1844: 1831: 1826: 1813: 1808: 1793: 1790: 1785: 1784: 1776: 1772: 1764: 1760: 1752: 1748: 1740: 1736: 1728: 1724: 1716: 1712: 1704: 1700: 1692: 1688: 1675: 1671: 1666: 1652: ×  1574: 1573: 1528:Gottfried Köthe 1505:valuation rings 1493: 1451: 1432: 1416: 1406: 1398: 1397: 1376: 1357: 1341: 1331: 1323: 1322: 1299: 1298: 1279: 1278: 1239: 1220: 1215: 1214: 1193: 1174: 1169: 1168: 1154: 1145: 1138: 1129: 1092: 1091: 1066: 1065: 1041: 1022: 1011: 1010: 977: 976: 951: 950: 926: 907: 896: 895: 880: 832: 740: 729: 728: 708: 638: 637: 628: 591: 523: 512: 484: 452: 451: 433: 415: 397: 327: 315:ring with unity 286:, A. Facchini, 232: 231: 194: 193: 146: 133: 128: 127: 106: 93: 88: 87: 81: 74: 62:totally ordered 32: 23: 22: 15: 12: 11: 5: 2181: 2179: 2171: 2170: 2165: 2155: 2154: 2151: 2150: 2139:(2): 187–222, 2128: 2119:(2): 311–326, 2108: 2097:(3): 319–337, 2086: 2064: 2044: 2022: 1984: 1964: 1942: 1918: 1915: 1914: 1913: 1908: 1895: 1890: 1874: 1869: 1856: 1847: 1842: 1829: 1824: 1811: 1806: 1789: 1786: 1783: 1782: 1770: 1758: 1746: 1734: 1722: 1710: 1698: 1686: 1668: 1667: 1665: 1662: 1621: 1618: 1615: 1612: 1608: 1604: 1601: 1598: 1595: 1592: 1589: 1585: 1581: 1549:used the term 1526:In the 1930s, 1492: 1489: 1458: 1454: 1448: 1445: 1442: 1439: 1435: 1431: 1428: 1423: 1419: 1413: 1409: 1405: 1383: 1379: 1373: 1370: 1367: 1364: 1360: 1356: 1353: 1348: 1344: 1338: 1334: 1330: 1317:of 1, 2, ..., 1306: 1286: 1246: 1242: 1238: 1235: 1232: 1227: 1223: 1200: 1196: 1192: 1189: 1186: 1181: 1177: 1150: 1143: 1134: 1127: 1105: 1102: 1099: 1079: 1076: 1073: 1048: 1044: 1040: 1037: 1034: 1029: 1025: 1021: 1018: 990: 987: 984: 964: 961: 958: 933: 929: 925: 922: 919: 914: 910: 906: 903: 892:monogeny class 879: 876: 828: 796:, Noetherian, 766: 763: 760: 755: 750: 747: 744: 739: 736: 707: 704: 700:Sylow subgroup 676:characteristic 656: 653: 650: 646: 624: 606:valuation ring 590: 587: 554:if and only if 521: 510: 496: 491: 487: 481: 476: 473: 470: 466: 462: 459: 429: 411: 404:semilocal ring 393: 371:uniform module 326: 323: 245: 242: 239: 215: 211: 207: 202: 153: 149: 145: 140: 136: 113: 109: 105: 100: 96: 79: 72: 24: 18:Uniserial ring 14: 13: 10: 9: 6: 4: 3: 2: 2180: 2169: 2166: 2164: 2163:Module theory 2161: 2160: 2158: 2147: 2142: 2138: 2134: 2129: 2126: 2122: 2118: 2114: 2109: 2105: 2100: 2096: 2092: 2087: 2083: 2078: 2075:: 2330–2347, 2074: 2070: 2065: 2062: 2058: 2054: 2050: 2049:Comm. Algebra 2045: 2041: 2036: 2032: 2028: 2023: 2020: 2016: 2011: 2006: 2002: 1998: 1994: 1990: 1985: 1982: 1978: 1974: 1970: 1965: 1961: 1956: 1952: 1948: 1943: 1939: 1934: 1930: 1926: 1921: 1920: 1916: 1911: 1909:0-7923-7187-9 1905: 1901: 1896: 1893: 1891:1-4020-2690-0 1887: 1883: 1879: 1875: 1872: 1870:0-8218-0993-8 1866: 1862: 1857: 1853: 1848: 1845: 1843:3-7643-5908-0 1839: 1835: 1830: 1827: 1821: 1817: 1812: 1809: 1807:0-387-97845-3 1803: 1799: 1798: 1792: 1791: 1787: 1779: 1774: 1771: 1767: 1762: 1759: 1755: 1754:Warfield 1975 1750: 1747: 1743: 1742:Nakayama 1941 1738: 1735: 1731: 1726: 1723: 1719: 1714: 1711: 1707: 1702: 1699: 1695: 1690: 1687: 1683: 1679: 1673: 1670: 1663: 1661: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1616: 1610: 1606: 1602: 1599: 1593: 1587: 1583: 1579: 1571: 1567: 1563: 1558: 1556: 1552: 1548: 1543: 1541: 1537: 1533: 1529: 1524: 1522: 1521:catenary ring 1518: 1514: 1513:chain modules 1510: 1506: 1502: 1498: 1490: 1488: 1486: 1480: 1478: 1475:= 1, 2, ..., 1474: 1456: 1443: 1437: 1433: 1426: 1421: 1411: 1407: 1381: 1368: 1362: 1358: 1351: 1346: 1336: 1332: 1320: 1304: 1284: 1277: 1273: 1269: 1265: 1262: 1244: 1240: 1236: 1233: 1230: 1225: 1221: 1198: 1194: 1190: 1187: 1184: 1179: 1175: 1166: 1162: 1158: 1153: 1149: 1142: 1137: 1133: 1126: 1122: 1117: 1103: 1097: 1077: 1071: 1064: 1046: 1038: 1032: 1027: 1019: 1008: 1007:epigeny class 1004: 988: 982: 962: 956: 949: 931: 923: 917: 912: 904: 893: 889: 885: 877: 875: 873: 869: 865: 864:Puninski 2002 860: 854: 852: 848: 844: 840: 836: 831: 826: 822: 818: 814: 811: 807: 803: 800:, as well as 799: 795: 789: 787: 784: 780: 761: 753: 737: 734: 726: 722: 718: 714: 705: 703: 701: 697: 694: 691: 687: 684: 680: 677: 674: 670: 651: 636: 632: 627: 622: 621:division ring 618: 613: 611: 607: 602: 600: 596: 595:simple module 588: 586: 584: 579: 577: 573: 568: 565: 560: 558: 555: 551: 548: 544: 540: 535: 533: 529: 525: 517: 513: 494: 489: 485: 479: 474: 471: 468: 464: 460: 457: 449: 445: 439: 437: 432: 427: 423: 419: 414: 409: 405: 401: 396: 391: 386: 384: 383:Bézout module 380: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 324: 322: 320: 316: 312: 308: 303: 301: 297: 293: 289: 285: 282:, Yu. Drozd, 281: 276: 274: 270: 265: 263: 259: 243: 240: 237: 230: 209: 205: 192: 191:quotient ring 187: 185: 181: 177: 173: 169: 168:serial module 151: 147: 143: 138: 134: 111: 107: 103: 98: 94: 85: 78: 71: 67: 63: 59: 55: 52: 48: 44: 41: 37: 30: 19: 2136: 2132: 2116: 2112: 2094: 2090: 2072: 2068: 2052: 2048: 2030: 2026: 1992: 1988: 1972: 1968: 1950: 1946: 1928: 1924: 1900:Serial rings 1899: 1881: 1860: 1851: 1833: 1815: 1796: 1773: 1761: 1749: 1737: 1725: 1713: 1701: 1694:Příhoda 2004 1689: 1672: 1657: 1653: 1649: 1645: 1641: 1633: 1569: 1565: 1561: 1559: 1550: 1544: 1535: 1531: 1525: 1516: 1512: 1500: 1496: 1494: 1481: 1476: 1472: 1318: 1276:permutations 1271: 1267: 1263: 1164: 1160: 1156: 1151: 1147: 1140: 1135: 1131: 1124: 1118: 1006: 948:monomorphism 891: 887: 883: 882:Two modules 881: 855: 850: 846: 838: 834: 829: 820: 812: 790: 785: 783:progenerator 778: 724: 720: 716: 709: 695: 685: 678: 669:finite field 630: 625: 614: 603: 592: 580: 575: 569: 561: 556: 549: 536: 527: 519: 508: 447: 444:right Bézout 443: 440: 435: 430: 425: 417: 412: 399: 394: 387: 382: 378: 374: 366: 363:local module 358: 350: 338: 334: 330: 328: 304: 292:I. Kaplansky 277: 268: 266: 257: 188: 183: 179: 178:is called a 175: 167: 83: 76: 69: 53: 42: 39: 33: 2168:Ring theory 2033:: 332–341, 1995:(1): 1–21, 1931:: 109–121, 1123:holds. Let 1063:epimorphism 837:) for some 806:matrix ring 798:prime rings 507:where each 347:superfluous 300:T. Nakayama 288:A.W. Goldie 284:D. Eisenbud 262:prime power 170:if it is a 2157:Categories 2133:J. Algebra 2027:J. Algebra 1766:Faith 1976 1730:Köthe 1935 1718:Faith 1999 1471:for every 1321:such that 1261:isomorphic 1009:, denoted 894:, denoted 859:isomorphic 794:hereditary 635:group ring 633:, and the 530:is also a 408:local ring 311:Noetherian 172:direct sum 58:submodules 1975:: 31–44, 1788:Textbooks 1600:≅ 1536:uniserial 1532:Einreihig 1438:τ 1363:σ 1305:τ 1285:σ 1237:⊕ 1234:⋯ 1231:⊕ 1191:⊕ 1188:⋯ 1185:⊕ 1101:→ 1075:→ 986:→ 960:→ 853:) below. 738:≅ 706:Structure 688:having a 667:for some 465:⊕ 343:essential 280:P.M. Cohn 273:see below 269:uniserial 267:The term 144:⊆ 104:⊆ 86:, either 66:inclusion 29:Chainring 1969:Math. Z. 843:matrices 815:, whose 589:Examples 333:-module 307:Artinian 296:G. Köthe 227:for any 56:, whose 2019:1968984 1509:domains 1146:, ..., 1130:, ..., 825:subring 802:quivers 629:  619:over a 434:  416:  398:  357:, then 229:integer 49:over a 2017:  1906:  1888:  1867:  1840:  1822:  1804:  1632:where 1001:. The 810:domain 777:where 693:normal 690:cyclic 576:finite 514:is an 424:. If 353:has a 349:. If 319:unital 47:module 2015:JSTOR 1664:Notes 868:image 683:group 673:prime 402:is a 381:is a 361:is a 260:is a 45:is a 1904:ISBN 1886:ISBN 1865:ISBN 1838:ISBN 1820:ISBN 1802:ISBN 1680:and 1568:and 1396:and 1297:and 1259:are 1213:and 1003:dual 886:and 827:of M 681:and 593:Any 518:and 345:and 241:> 75:and 60:are 51:ring 38:, a 2141:doi 2121:doi 2099:doi 2095:163 2077:doi 2073:110 2057:doi 2035:doi 2031:281 2005:hdl 1997:doi 1977:doi 1955:doi 1951:348 1933:doi 1499:or 1155:be 671:of 392:End 365:. 126:or 82:of 64:by 34:In 2159:: 2137:37 2135:, 2117:64 2115:, 2093:, 2071:, 2053:34 2051:, 2029:, 2013:, 2003:, 1993:42 1973:39 1971:, 1949:, 1929:36 1927:, 1660:. 1572:, 1479:. 1270:= 1159:+ 1139:, 1116:. 874:. 819:J( 702:. 612:. 385:. 321:. 309:, 275:. 264:. 2143:: 2123:: 2101:: 2079:: 2059:: 2037:: 2007:: 1999:: 1979:: 1957:: 1935:: 1780:. 1768:. 1756:. 1744:. 1732:. 1720:. 1708:. 1696:. 1684:. 1654:n 1650:n 1646:R 1642:R 1634:J 1620:) 1617:B 1614:( 1611:J 1607:/ 1603:B 1597:) 1594:A 1591:( 1588:J 1584:/ 1580:A 1570:B 1566:A 1477:n 1473:i 1457:e 1453:] 1447:) 1444:i 1441:( 1434:V 1430:[ 1427:= 1422:e 1418:] 1412:i 1408:U 1404:[ 1382:m 1378:] 1372:) 1369:i 1366:( 1359:V 1355:[ 1352:= 1347:m 1343:] 1337:i 1333:U 1329:[ 1319:n 1272:t 1268:n 1264:R 1245:t 1241:V 1226:1 1222:V 1199:n 1195:U 1180:1 1176:U 1165:R 1161:t 1157:n 1152:t 1148:V 1144:1 1141:V 1136:n 1132:U 1128:1 1125:U 1104:U 1098:V 1078:V 1072:U 1047:e 1043:] 1039:V 1036:[ 1033:= 1028:e 1024:] 1020:U 1017:[ 989:U 983:V 963:V 957:U 932:m 928:] 924:V 921:[ 918:= 913:m 909:] 905:U 902:[ 888:V 884:U 862:( 851:V 847:V 839:n 835:V 833:( 830:n 821:V 813:V 786:B 779:P 765:) 762:P 759:( 754:B 749:d 746:n 743:E 735:R 725:B 721:B 717:R 698:- 696:p 686:G 679:p 655:] 652:G 649:[ 645:F 631:D 626:n 623:T 557:R 550:R 528:R 524:R 522:i 520:e 511:i 509:e 495:R 490:i 486:e 480:n 475:1 472:= 469:i 461:= 458:R 448:R 436:M 431:R 426:M 418:M 413:R 400:M 395:R 379:M 375:M 367:M 359:M 351:M 339:M 335:M 331:R 258:n 244:1 238:n 214:Z 210:n 206:/ 201:Z 176:R 152:1 148:N 139:2 135:N 112:2 108:N 99:1 95:N 84:M 80:2 77:N 73:1 70:N 54:R 43:M 31:. 20:)

Index

Uniserial ring
Chainring
abstract algebra
module
ring
submodules
totally ordered
inclusion
direct sum
quotient ring
integer
prime power
see below
P.M. Cohn
D. Eisenbud
A.W. Goldie
I. Kaplansky
G. Köthe
T. Nakayama
Artinian
Noetherian
ring with unity
unital
essential
superfluous
maximal submodule
local module
uniform module
endomorphism ring
semilocal ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.