Knowledge (XXG)

Untouchable number

Source 📝

56: 2686: 2593: 67:
The number 5 is untouchable, as it is not the sum of the proper divisors of any positive integer: 5 = 1 + 4 is the only way to write 5 as the sum of distinct positive integers including 1, but if 4 divides a number, 2 does also, so 1 + 4 cannot be the sum of all of any
229:+ 1 is not an untouchable number. It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 7 is an untouchable number, and 695: 350: 309: 268: 582: 617: 59:
If we draw an arrow pointing from each positive integer to the sum of all its proper divisors, there will be no arrow pointing to untouchable numbers like 2 and 5.
197:
The number 5 is believed to be the only odd untouchable number, but this has not been proven. It would follow from a slightly stronger version of the
2629: 169: 688: 191: 71:
The number 6 is not untouchable, as it is equal to the sum of the proper divisors of 6 itself: 1 + 2 + 3 = 6.
1495: 681: 1490: 1505: 1485: 2675: 652: 525:
The stronger version is obtained by adding to the Goldbach conjecture the further requirement that the two primes be distinct—see
2872: 2685: 2198: 1778: 1500: 2284: 2622: 1600: 3037: 1950: 1269: 1062: 2826: 1985: 1955: 1630: 1620: 2126: 1540: 1274: 1254: 64:
The number 4 is not untouchable, as it is equal to the sum of the proper divisors of 9: 1 + 3 = 4.
1816: 1980: 3047: 2862: 2075: 1698: 1455: 1264: 1246: 1140: 1130: 1120: 1960: 3042: 2847: 2203: 1748: 1369: 1155: 1150: 1145: 1135: 1112: 352:, so only 5 can be an odd untouchable number. Thus it appears that besides 2 and 5, all untouchable numbers are 2615: 1188: 669:
sequence A070015 (Least m such that sum of aliquot parts of m equals n or 0 if no such number exists)
1445: 3001: 2867: 2791: 2314: 2279: 2065: 1975: 1849: 1824: 1733: 1723: 1335: 1317: 1237: 2852: 2811: 2574: 1844: 1718: 1349: 1125: 905: 832: 55: 44: 2781: 2650: 1829: 1683: 1610: 765: 2538: 2178: 2955: 2857: 2471: 2365: 2329: 2070: 1793: 1773: 1590: 1259: 1047: 1019: 162:, 292, 304, 306, 322, 324, 326, 336, 342, 372, 406, 408, 426, 430, 448, 472, 474, 498, ... (sequence 628:
Yong-Gao Chen and Qing-Qing Zhao, Nonaliquot numbers, Publ. Math. Debrecen 78:2 (2011), pp. 439-442.
314: 273: 232: 3016: 3011: 2806: 2801: 2786: 2725: 2193: 2057: 2052: 2020: 1783: 1758: 1753: 1728: 1658: 1654: 1585: 1475: 1307: 1103: 1072: 198: 2592: 552: 404: + 1. Also, no untouchable number is three more than a prime number, except 5, since if 2940: 2935: 2816: 2796: 2596: 2350: 2345: 2259: 2233: 2131: 2110: 1763: 1713: 1635: 1605: 1545: 1312: 1292: 1223: 936: 509: 493: 1480: 587: 2976: 2916: 2490: 2435: 2289: 2264: 2238: 2015: 1693: 1688: 1615: 1595: 1580: 1302: 1284: 1203: 1193: 1178: 956: 941: 648: 3006: 2981: 2901: 2887: 2821: 2705: 2665: 2526: 2319: 1905: 1877: 1867: 1859: 1743: 1708: 1703: 1670: 1364: 1327: 1218: 1213: 1208: 1198: 1170: 1057: 1009: 1004: 961: 900: 485: 441: 353: 505: 360:
is untouchable, since, at the very least, it can be expressed as the sum of its own proper
2991: 2986: 2911: 2905: 2842: 2740: 2730: 2660: 2502: 2391: 2324: 2250: 2173: 2147: 1965: 1678: 1535: 1470: 1440: 1430: 1425: 1091: 999: 946: 790: 730: 644: 501: 429: 373: 369: 365: 68:
number's proper divisors (since the list of factors would have to contain both 4 and 2).
2996: 2950: 2776: 2760: 2750: 2720: 2507: 2375: 2360: 2224: 2188: 2163: 2039: 2010: 1995: 1872: 1768: 1738: 1465: 1420: 1297: 895: 890: 885: 857: 842: 755: 740: 718: 705: 636: 529: 357: 36: 2607: 3031: 2945: 2745: 2735: 2715: 2430: 2414: 2355: 2309: 2005: 1990: 1900: 1625: 1183: 1052: 1014: 971: 852: 837: 827: 785: 775: 750: 513: 425: 2960: 2877: 2755: 2700: 2670: 2466: 2455: 2370: 2208: 2183: 2100: 2000: 1970: 1945: 1929: 1834: 1801: 1550: 1524: 1435: 1374: 951: 847: 780: 760: 735: 456: 451: 389: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 2425: 2300: 2105: 1569: 1460: 1415: 1410: 1160: 1067: 966: 795: 770: 745: 95: 91: 87: 40: 20: 2562: 2543: 1839: 1450: 446: 83: 79: 673: 2710: 2168: 2095: 2087: 1892: 1806: 924: 534: 39:
of any positive integer. That is, these numbers are not in the image of the
32: 2269: 424:
There are infinitely many untouchable numbers, a fact that was proven by
497: 2655: 2274: 1933: 489: 361: 180: 28: 476:
Sesiano, J. (1991), "Two problems of number theory in Islamic times",
2926: 54: 665: 47:(circa 1000 AD), who observed that both 2 and 5 are untouchable. 2611: 2560: 2524: 2488: 2452: 2412: 2037: 1926: 1652: 1567: 1522: 1399: 1089: 1036: 988: 922: 874: 812: 716: 677: 668: 164: 385:= 2 − 1 is equal to the sum of the proper divisors of 2. 408:
is an odd prime then the sum of the proper divisors of 2
590: 555: 356:(since except 2, all even numbers are composite). No 317: 276: 235: 225:
can be written as a sum of two distinct primes, then
2969: 2925: 2886: 2835: 2769: 2693: 2643: 2384: 2338: 2298: 2249: 2223: 2156: 2140: 2119: 2086: 2051: 1891: 1858: 1815: 1792: 1669: 1357: 1348: 1326: 1283: 1245: 1236: 1169: 1111: 1102: 188:
Are there any odd untouchable numbers other than 5?
611: 576: 344: 303: 262: 396:is prime, then the sum of the proper divisors of 16:Number that cannot be written as an aliquot sum 528:Adams-Watters, Frank & Weisstein, Eric W. 2623: 689: 8: 43:function. Their study goes back at least to 2630: 2616: 2608: 2557: 2521: 2485: 2449: 2409: 2083: 2048: 2034: 1923: 1666: 1649: 1564: 1519: 1396: 1354: 1242: 1108: 1099: 1086: 1033: 990:Possessing a specific set of other numbers 985: 919: 871: 809: 713: 696: 682: 674: 201:, since the sum of the proper divisors of 589: 554: 388:No untouchable number is one more than a 316: 275: 234: 468: 192:(more unsolved problems in mathematics) 428:. According to Chen & Zhao, their 75:The first few untouchable numbers are 619:. Elemente der Math. 28 (1973), 83-86 478:Archive for History of Exact Sciences 7: 2638:Divisibility-based sets of integers 549:P. Erdos, Über die Zahlen der Form 372:are untouchable. Also, none of the 641:Unsolved Problems in Number Theory 14: 2676:Fundamental theorem of arithmetic 2684: 2591: 2199:Perfect digit-to-digit invariant 31:that cannot be expressed as the 183:Unsolved problem in mathematics 606: 600: 565: 559: 345:{\displaystyle 7=\sigma (8)-8} 333: 327: 304:{\displaystyle 3=\sigma (4)-4} 292: 286: 263:{\displaystyle 1=\sigma (2)-2} 251: 245: 1: 1038:Expressible via specific sums 577:{\displaystyle \sigma (n)-n} 2127:Multiplicative digital root 3064: 612:{\displaystyle n-\phi (n)} 2873:Superior highly composite 2682: 2587: 2570: 2556: 2534: 2520: 2498: 2484: 2462: 2448: 2421: 2408: 2204:Perfect digital invariant 2047: 2033: 1941: 1922: 1779:Superior highly composite 1665: 1648: 1576: 1563: 1531: 1518: 1406: 1395: 1098: 1085: 1043: 1032: 995: 984: 932: 918: 881: 870: 823: 808: 726: 712: 432:is at least d > 0.06. 364:. Similarly, none of the 2770:Constrained divisor sums 1817:Euler's totient function 1601:Euler–Jacobi pseudoprime 876:Other polynomial numbers 213:distinct primes) is 1 + 1631:Somer–Lucas pseudoprime 1621:Lucas–Carmichael number 1456:Lazy caterer's sequence 376:are untouchable, since 1506:Wedderburn–Etherington 906:Lucky numbers of Euler 613: 578: 346: 305: 264: 60: 45:Abu Mansur al-Baghdadi 2651:Integer factorization 1794:Prime omega functions 1611:Frobenius pseudoprime 1401:Combinatorial numbers 1270:Centered dodecahedral 1063:Primary pseudoperfect 614: 579: 347: 306: 265: 58: 2253:-composition related 2053:Arithmetic functions 1655:Arithmetic functions 1591:Elliptic pseudoprime 1275:Centered icosahedral 1255:Centered tetrahedral 588: 553: 530:"Untouchable Number" 315: 274: 233: 221:. Thus, if a number 3038:Arithmetic dynamics 2863:Colossally abundant 2694:Factorization forms 2179:Kaprekar's constant 1699:Colossally abundant 1586:Catalan pseudoprime 1486:Schröder–Hipparchus 1265:Centered octahedral 1141:Centered heptagonal 1131:Centered pentagonal 1121:Centered triangular 721:and related numbers 199:Goldbach conjecture 2848:Primitive abundant 2836:With many divisors 2597:Mathematics portal 2539:Aronson's sequence 2285:Smarandache–Wellin 2042:-dependent numbers 1749:Primitive abundant 1636:Strong pseudoprime 1626:Perrin pseudoprime 1606:Fermat pseudoprime 1546:Wolstenholme prime 1370:Squared triangular 1156:Centered decagonal 1151:Centered nonagonal 1146:Centered octagonal 1136:Centered hexagonal 609: 574: 490:10.1007/BF00348408 342: 301: 260: 61: 25:untouchable number 3048:Integer sequences 3025: 3024: 2605: 2604: 2583: 2582: 2552: 2551: 2516: 2515: 2480: 2479: 2444: 2443: 2404: 2403: 2400: 2399: 2219: 2218: 2029: 2028: 1918: 1917: 1914: 1913: 1860:Aliquot sequences 1671:Divisor functions 1644: 1643: 1616:Lucas pseudoprime 1596:Euler pseudoprime 1581:Carmichael number 1559: 1558: 1514: 1513: 1391: 1390: 1387: 1386: 1383: 1382: 1344: 1343: 1232: 1231: 1189:Square triangular 1081: 1080: 1028: 1027: 980: 979: 914: 913: 866: 865: 804: 803: 354:composite numbers 3055: 3043:Divisor function 3002:Harmonic divisor 2888:Aliquot sequence 2868:Highly composite 2792:Multiply perfect 2688: 2666:Divisor function 2632: 2625: 2618: 2609: 2595: 2558: 2527:Natural language 2522: 2486: 2454:Generated via a 2450: 2410: 2315:Digit-reassembly 2280:Self-descriptive 2084: 2049: 2035: 1986:Lucas–Carmichael 1976:Harmonic divisor 1924: 1850:Sparsely totient 1825:Highly cototient 1734:Multiply perfect 1724:Highly composite 1667: 1650: 1565: 1520: 1501:Telephone number 1397: 1355: 1336:Square pyramidal 1318:Stella octangula 1243: 1109: 1100: 1092:Figurate numbers 1087: 1034: 986: 920: 872: 810: 714: 698: 691: 684: 675: 667: 629: 626: 620: 618: 616: 615: 610: 583: 581: 580: 575: 547: 541: 540: 539: 523: 517: 516: 473: 442:Aliquot sequence 416: + 3. 374:Mersenne numbers 370:sociable numbers 366:amicable numbers 351: 349: 348: 343: 310: 308: 307: 302: 269: 267: 266: 261: 184: 167: 3063: 3062: 3058: 3057: 3056: 3054: 3053: 3052: 3028: 3027: 3026: 3021: 2965: 2921: 2882: 2853:Highly abundant 2831: 2812:Unitary perfect 2765: 2689: 2680: 2661:Unitary divisor 2639: 2636: 2606: 2601: 2579: 2575:Strobogrammatic 2566: 2548: 2530: 2512: 2494: 2476: 2458: 2440: 2417: 2396: 2380: 2339:Divisor-related 2334: 2294: 2245: 2215: 2152: 2136: 2115: 2082: 2055: 2043: 2025: 1937: 1936:related numbers 1910: 1887: 1854: 1845:Perfect totient 1811: 1788: 1719:Highly abundant 1661: 1640: 1572: 1555: 1527: 1510: 1496:Stirling second 1402: 1379: 1340: 1322: 1279: 1228: 1165: 1126:Centered square 1094: 1077: 1039: 1024: 991: 976: 928: 927:defined numbers 910: 877: 862: 833:Double Mersenne 819: 800: 722: 708: 706:natural numbers 702: 662: 645:Springer Verlag 633: 632: 627: 623: 586: 585: 551: 550: 548: 544: 527: 526: 524: 520: 475: 474: 470: 465: 438: 430:natural density 422: 384: 313: 312: 272: 271: 231: 230: 195: 194: 189: 186: 182: 179: 163: 53: 37:proper divisors 17: 12: 11: 5: 3061: 3059: 3051: 3050: 3045: 3040: 3030: 3029: 3023: 3022: 3020: 3019: 3014: 3009: 3004: 2999: 2994: 2989: 2984: 2979: 2973: 2971: 2967: 2966: 2964: 2963: 2958: 2953: 2948: 2943: 2938: 2932: 2930: 2923: 2922: 2920: 2919: 2914: 2909: 2899: 2893: 2891: 2884: 2883: 2881: 2880: 2875: 2870: 2865: 2860: 2855: 2850: 2845: 2839: 2837: 2833: 2832: 2830: 2829: 2824: 2819: 2814: 2809: 2804: 2799: 2794: 2789: 2784: 2782:Almost perfect 2779: 2773: 2771: 2767: 2766: 2764: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2697: 2695: 2691: 2690: 2683: 2681: 2679: 2678: 2673: 2668: 2663: 2658: 2653: 2647: 2645: 2641: 2640: 2637: 2635: 2634: 2627: 2620: 2612: 2603: 2602: 2600: 2599: 2588: 2585: 2584: 2581: 2580: 2578: 2577: 2571: 2568: 2567: 2561: 2554: 2553: 2550: 2549: 2547: 2546: 2541: 2535: 2532: 2531: 2525: 2518: 2517: 2514: 2513: 2511: 2510: 2508:Sorting number 2505: 2503:Pancake number 2499: 2496: 2495: 2489: 2482: 2481: 2478: 2477: 2475: 2474: 2469: 2463: 2460: 2459: 2453: 2446: 2445: 2442: 2441: 2439: 2438: 2433: 2428: 2422: 2419: 2418: 2415:Binary numbers 2413: 2406: 2405: 2402: 2401: 2398: 2397: 2395: 2394: 2388: 2386: 2382: 2381: 2379: 2378: 2373: 2368: 2363: 2358: 2353: 2348: 2342: 2340: 2336: 2335: 2333: 2332: 2327: 2322: 2317: 2312: 2306: 2304: 2296: 2295: 2293: 2292: 2287: 2282: 2277: 2272: 2267: 2262: 2256: 2254: 2247: 2246: 2244: 2243: 2242: 2241: 2230: 2228: 2225:P-adic numbers 2221: 2220: 2217: 2216: 2214: 2213: 2212: 2211: 2201: 2196: 2191: 2186: 2181: 2176: 2171: 2166: 2160: 2158: 2154: 2153: 2151: 2150: 2144: 2142: 2141:Coding-related 2138: 2137: 2135: 2134: 2129: 2123: 2121: 2117: 2116: 2114: 2113: 2108: 2103: 2098: 2092: 2090: 2081: 2080: 2079: 2078: 2076:Multiplicative 2073: 2062: 2060: 2045: 2044: 2040:Numeral system 2038: 2031: 2030: 2027: 2026: 2024: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1942: 1939: 1938: 1927: 1920: 1919: 1916: 1915: 1912: 1911: 1909: 1908: 1903: 1897: 1895: 1889: 1888: 1886: 1885: 1880: 1875: 1870: 1864: 1862: 1856: 1855: 1853: 1852: 1847: 1842: 1837: 1832: 1830:Highly totient 1827: 1821: 1819: 1813: 1812: 1810: 1809: 1804: 1798: 1796: 1790: 1789: 1787: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1686: 1684:Almost perfect 1681: 1675: 1673: 1663: 1662: 1653: 1646: 1645: 1642: 1641: 1639: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1588: 1583: 1577: 1574: 1573: 1568: 1561: 1560: 1557: 1556: 1554: 1553: 1548: 1543: 1538: 1532: 1529: 1528: 1523: 1516: 1515: 1512: 1511: 1509: 1508: 1503: 1498: 1493: 1491:Stirling first 1488: 1483: 1478: 1473: 1468: 1463: 1458: 1453: 1448: 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1407: 1404: 1403: 1400: 1393: 1392: 1389: 1388: 1385: 1384: 1381: 1380: 1378: 1377: 1372: 1367: 1361: 1359: 1352: 1346: 1345: 1342: 1341: 1339: 1338: 1332: 1330: 1324: 1323: 1321: 1320: 1315: 1310: 1305: 1300: 1295: 1289: 1287: 1281: 1280: 1278: 1277: 1272: 1267: 1262: 1257: 1251: 1249: 1240: 1234: 1233: 1230: 1229: 1227: 1226: 1221: 1216: 1211: 1206: 1201: 1196: 1191: 1186: 1181: 1175: 1173: 1167: 1166: 1164: 1163: 1158: 1153: 1148: 1143: 1138: 1133: 1128: 1123: 1117: 1115: 1106: 1096: 1095: 1090: 1083: 1082: 1079: 1078: 1076: 1075: 1070: 1065: 1060: 1055: 1050: 1044: 1041: 1040: 1037: 1030: 1029: 1026: 1025: 1023: 1022: 1017: 1012: 1007: 1002: 996: 993: 992: 989: 982: 981: 978: 977: 975: 974: 969: 964: 959: 954: 949: 944: 939: 933: 930: 929: 923: 916: 915: 912: 911: 909: 908: 903: 898: 893: 888: 882: 879: 878: 875: 868: 867: 864: 863: 861: 860: 855: 850: 845: 840: 835: 830: 824: 821: 820: 813: 806: 805: 802: 801: 799: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 727: 724: 723: 717: 710: 709: 703: 701: 700: 693: 686: 678: 672: 671: 661: 660:External links 658: 657: 656: 655:; section B10. 637:Richard K. Guy 631: 630: 621: 608: 605: 602: 599: 596: 593: 573: 570: 567: 564: 561: 558: 542: 518: 484:(3): 235–238, 467: 466: 464: 461: 460: 459: 454: 449: 444: 437: 434: 421: 418: 380: 358:perfect number 341: 338: 335: 332: 329: 326: 323: 320: 300: 297: 294: 291: 288: 285: 282: 279: 259: 256: 253: 250: 247: 244: 241: 238: 190: 187: 181: 178: 175: 174: 173: 73: 72: 69: 65: 52: 49: 27:is a positive 15: 13: 10: 9: 6: 4: 3: 2: 3060: 3049: 3046: 3044: 3041: 3039: 3036: 3035: 3033: 3018: 3015: 3013: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2974: 2972: 2968: 2962: 2959: 2957: 2956:Polydivisible 2954: 2952: 2949: 2947: 2944: 2942: 2939: 2937: 2934: 2933: 2931: 2928: 2924: 2918: 2915: 2913: 2910: 2907: 2903: 2900: 2898: 2895: 2894: 2892: 2889: 2885: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2859: 2858:Superabundant 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2840: 2838: 2834: 2828: 2827:ErdƑs–Nicolas 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2774: 2772: 2768: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2736:Perfect power 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2698: 2696: 2692: 2687: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2648: 2646: 2642: 2633: 2628: 2626: 2621: 2619: 2614: 2613: 2610: 2598: 2594: 2590: 2589: 2586: 2576: 2573: 2572: 2569: 2564: 2559: 2555: 2545: 2542: 2540: 2537: 2536: 2533: 2528: 2523: 2519: 2509: 2506: 2504: 2501: 2500: 2497: 2492: 2487: 2483: 2473: 2470: 2468: 2465: 2464: 2461: 2457: 2451: 2447: 2437: 2434: 2432: 2429: 2427: 2424: 2423: 2420: 2416: 2411: 2407: 2393: 2390: 2389: 2387: 2383: 2377: 2374: 2372: 2369: 2367: 2366:Polydivisible 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2343: 2341: 2337: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2307: 2305: 2302: 2297: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2257: 2255: 2252: 2248: 2240: 2237: 2236: 2235: 2232: 2231: 2229: 2226: 2222: 2210: 2207: 2206: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2161: 2159: 2155: 2149: 2146: 2145: 2143: 2139: 2133: 2130: 2128: 2125: 2124: 2122: 2120:Digit product 2118: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2093: 2091: 2089: 2085: 2077: 2074: 2072: 2069: 2068: 2067: 2064: 2063: 2061: 2059: 2054: 2050: 2046: 2041: 2036: 2032: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1956:ErdƑs–Nicolas 1954: 1952: 1949: 1947: 1944: 1943: 1940: 1935: 1931: 1925: 1921: 1907: 1904: 1902: 1899: 1898: 1896: 1894: 1890: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1865: 1863: 1861: 1857: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1822: 1820: 1818: 1814: 1808: 1805: 1803: 1800: 1799: 1797: 1795: 1791: 1785: 1782: 1780: 1777: 1775: 1774:Superabundant 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1676: 1674: 1672: 1668: 1664: 1660: 1656: 1651: 1647: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1578: 1575: 1571: 1566: 1562: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1533: 1530: 1526: 1521: 1517: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1408: 1405: 1398: 1394: 1376: 1373: 1371: 1368: 1366: 1363: 1362: 1360: 1356: 1353: 1351: 1350:4-dimensional 1347: 1337: 1334: 1333: 1331: 1329: 1325: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1290: 1288: 1286: 1282: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1260:Centered cube 1258: 1256: 1253: 1252: 1250: 1248: 1244: 1241: 1239: 1238:3-dimensional 1235: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1176: 1174: 1172: 1168: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1118: 1116: 1114: 1110: 1107: 1105: 1104:2-dimensional 1101: 1097: 1093: 1088: 1084: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1048:Nonhypotenuse 1046: 1045: 1042: 1035: 1031: 1021: 1018: 1016: 1013: 1011: 1008: 1006: 1003: 1001: 998: 997: 994: 987: 983: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 948: 945: 943: 940: 938: 935: 934: 931: 926: 921: 917: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 883: 880: 873: 869: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 825: 822: 817: 811: 807: 797: 794: 792: 789: 787: 786:Perfect power 784: 782: 779: 777: 776:Seventh power 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 728: 725: 720: 715: 711: 707: 699: 694: 692: 687: 685: 680: 679: 676: 670: 664: 663: 659: 654: 653:0-387-20860-7 650: 646: 642: 638: 635: 634: 625: 622: 603: 597: 594: 591: 571: 568: 562: 556: 546: 543: 537: 536: 531: 522: 519: 515: 511: 507: 503: 499: 495: 491: 487: 483: 479: 472: 469: 462: 458: 455: 453: 450: 448: 445: 443: 440: 439: 435: 433: 431: 427: 419: 417: 415: 411: 407: 403: 399: 395: 391: 386: 383: 379: 375: 371: 367: 363: 359: 355: 339: 336: 330: 324: 321: 318: 298: 295: 289: 283: 280: 277: 257: 254: 248: 242: 239: 236: 228: 224: 220: 216: 212: 208: 204: 200: 193: 176: 171: 166: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 78: 77: 76: 70: 66: 63: 62: 57: 50: 48: 46: 42: 38: 34: 30: 26: 22: 3017:Superperfect 3012:Refactorable 2896: 2807:Superperfect 2802:Hyperperfect 2787:Quasiperfect 2671:Prime factor 2330:Transposable 2194:Narcissistic 2101:Digital root 2021:Super-Poulet 1981:Jordan–PĂłlya 1930:prime factor 1882: 1835:Noncototient 1802:Almost prime 1784:Superperfect 1759:Refactorable 1754:Quasiperfect 1729:Hyperperfect 1570:Pseudoprimes 1541:Wall–Sun–Sun 1476:Ordered Bell 1446:Fuss–Catalan 1358:non-centered 1308:Dodecahedral 1285:non-centered 1171:non-centered 1073:Wolstenholme 818:× 2 ± 1 815: 814:Of the form 781:Eighth power 761:Fourth power 640: 624: 545: 533: 521: 481: 477: 471: 457:Weird number 452:Noncototient 423: 413: 409: 405: 401: 397: 393: 390:prime number 387: 381: 377: 226: 222: 218: 214: 210: 206: 202: 196: 74: 24: 18: 2941:Extravagant 2936:Equidigital 2897:Untouchable 2817:Semiperfect 2797:Hemiperfect 2726:Square-free 2351:Extravagant 2346:Equidigital 2301:permutation 2260:Palindromic 2234:Automorphic 2132:Sum-product 2111:Sum-product 2066:Persistence 1961:ErdƑs–Woods 1883:Untouchable 1764:Semiperfect 1714:Hemiperfect 1375:Tesseractic 1313:Icosahedral 1293:Tetrahedral 1224:Dodecagonal 925:Recursively 796:Prime power 771:Sixth power 766:Fifth power 746:Power of 10 704:Classes of 392:, since if 41:aliquot sum 35:of all the 21:mathematics 3032:Categories 2977:Arithmetic 2970:Other sets 2929:-dependent 2563:Graphemics 2436:Pernicious 2290:Undulating 2265:Pandigital 2239:Trimorphic 1840:Nontotient 1689:Arithmetic 1303:Octahedral 1204:Heptagonal 1194:Pentagonal 1179:Triangular 1020:SierpiƄski 942:Jacobsthal 741:Power of 3 736:Power of 2 643:(3rd ed), 463:References 447:Nontotient 426:Paul ErdƑs 420:Infinitude 177:Properties 3007:Descartes 2982:Deficient 2917:Betrothed 2822:Practical 2711:Semiprime 2706:Composite 2320:Parasitic 2169:Factorion 2096:Digit sum 2088:Digit sum 1906:Fortunate 1893:Primorial 1807:Semiprime 1744:Practical 1709:Descartes 1704:Deficient 1694:Betrothed 1536:Wieferich 1365:Pentatope 1328:pyramidal 1219:Decagonal 1214:Nonagonal 1209:Octagonal 1199:Hexagonal 1058:Practical 1005:Congruent 937:Fibonacci 901:Loeschian 598:ϕ 595:− 569:− 557:σ 535:MathWorld 514:115235810 337:− 325:σ 296:− 284:σ 255:− 243:σ 2992:Solitary 2987:Friendly 2912:Sociable 2902:Amicable 2890:-related 2843:Abundant 2741:Achilles 2731:Powerful 2644:Overview 2392:Friedman 2325:Primeval 2270:Repdigit 2227:-related 2174:Kaprekar 2148:Meertens 2071:Additive 2058:dynamics 1966:Friendly 1878:Sociable 1868:Amicable 1679:Abundant 1659:dynamics 1481:Schröder 1471:Narayana 1441:Eulerian 1431:Delannoy 1426:Dedekind 1247:centered 1113:centered 1000:Amenable 957:Narayana 947:Leonardo 843:Mersenne 791:Powerful 731:Achilles 498:41133889 436:See also 412:is  400:is  362:divisors 51:Examples 2997:Sublime 2951:Harshad 2777:Perfect 2761:Unusual 2751:Regular 2721:Sphenic 2656:Divisor 2565:related 2529:related 2493:related 2491:Sorting 2376:Vampire 2361:Harshad 2303:related 2275:Repunit 2189:Lychrel 2164:Dudeney 2016:StĂžrmer 2011:Sphenic 1996:Regular 1934:divisor 1873:Perfect 1769:Sublime 1739:Perfect 1466:Motzkin 1421:Catalan 962:Padovan 896:Leyland 891:Idoneal 886:Hilbert 858:Woodall 647:, 2004 506:1107382 168:in the 165:A005114 29:integer 2946:Frugal 2906:Triple 2746:Smooth 2716:Pronic 2431:Odious 2356:Frugal 2310:Cyclic 2299:Digit- 2006:Smooth 1991:Pronic 1951:Cyclic 1928:Other 1901:Euclid 1551:Wilson 1525:Primes 1184:Square 1053:Polite 1015:Riesel 1010:Knödel 972:Perrin 853:Thabit 838:Fermat 828:Cullen 751:Square 719:Powers 651:  512:  504:  496:  205:(with 2961:Smith 2878:Weird 2756:Rough 2701:Prime 2472:Prime 2467:Lucky 2456:sieve 2385:Other 2371:Smith 2251:Digit 2209:Happy 2184:Keith 2157:Other 2001:Rough 1971:Giuga 1436:Euler 1298:Cubic 952:Lucas 848:Proth 510:S2CID 494:JSTOR 23:, an 2927:Base 2426:Evil 2106:Self 2056:and 1946:Blum 1657:and 1461:Lobb 1416:Cake 1411:Bell 1161:Star 1068:Ulam 967:Pell 756:Cube 666:OEIS 649:ISBN 584:und 170:OEIS 2544:Ban 1932:or 1451:Lah 486:doi 368:or 160:290 156:288 152:276 148:268 144:262 140:248 136:246 132:238 128:216 124:210 120:206 116:188 112:162 108:146 104:124 100:120 33:sum 19:In 3034:: 639:, 532:. 508:, 502:MR 500:, 492:, 482:41 480:, 311:, 270:, 217:+ 209:, 203:pq 172:). 158:, 154:, 150:, 146:, 142:, 138:, 134:, 130:, 126:, 122:, 118:, 114:, 110:, 106:, 102:, 98:, 96:96 94:, 92:88 90:, 88:52 86:, 82:, 2908:) 2904:( 2631:e 2624:t 2617:v 816:a 697:e 690:t 683:v 607:) 604:n 601:( 592:n 572:n 566:) 563:n 560:( 538:. 488:: 414:p 410:p 406:p 402:p 398:p 394:p 382:n 378:M 340:8 334:) 331:8 328:( 322:= 319:7 299:4 293:) 290:4 287:( 281:= 278:3 258:2 252:) 249:2 246:( 240:= 237:1 227:n 223:n 219:q 215:p 211:q 207:p 185:: 84:5 80:2

Index

mathematics
integer
sum
proper divisors
aliquot sum
Abu Mansur al-Baghdadi

2
5
52
88
96
120
124
146
162
188
206
210
216
238
246
248
262
268
276
288
290
A005114
OEIS

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑