Knowledge

User:Fropuff/Drafts/Tensor product

Source 📝

2591: 678: 1943: 1641: 2400: 2071: 1957:
from one vector space to another forms a vector space itself. One can therefore take the tensor product of linear transformations. Such a tensor product can be naturally interpreted as a linear transformation on a tensor product.
3085: 1361: 1758: 2271: 409: 318: 756: 2473: 1476: 2157: 487: 1200: 914: 186: 498: 1011: 1769: 2742: 2781: 2638: 1130: 2909: 2851: 1523: 2668: 1156: 2783:. So, the tensors of the linear functionals are bilinear functionals. This gives us a new way to look at the space of bilinear functionals, as a tensor product itself. 2698: 1082: 1049: 2282: 1223: 2465: 2445: 3190:
However, these kinds of notation are not universally present in all array languages. Some languages may require explicit treatment of indices (for example,
2917: 683:
Note that the symbol ⊗ is overloaded: it is used to denote the tensor product of two vectors as well as the tensor product of two vector spaces.
3157:
for( int i = 0; i < i_dim; i++) for( int j = 0; j < j_dim; j++) for( int k = 0; k < k_dim; k++) result = a*b;
1293: 1235: 1010: 1660: 2179: 1967: 324: 233: 2586:{\displaystyle U\otimes V={\begin{bmatrix}u_{11}V&u_{12}V&\cdots \\u_{21}V&u_{22}V\\\vdots &&\ddots \end{bmatrix}}} 704: 2427:
imposed upon it, in which each element of the first matrix is replaced by the second matrix, scaled by that element. For matrices
2169:
There are several special cases of this embedding which can be obtained by taking one or more of the spaces to be the ground field
3236: 1410: 2082: 673:{\displaystyle (v_{1}+v_{2})\otimes (w_{1}+w_{2})=v_{1}\otimes w_{1}+v_{1}\otimes w_{2}+v_{2}\otimes w_{1}+v_{2}\otimes w_{2}.} 415: 1161: 3246: 872: 144: 1938:{\displaystyle (X\otimes Y)^{i_{1}i_{2}\cdots i_{k+\ell }}=X^{i_{1}i_{2}\cdots i_{k}}Y^{i_{k+1}i_{k+2}\cdots i_{k+\ell }}.} 3226: 2700:. In other words, every bilinear functional is a functional on the tensor product, and vice versa. There is a natural 3241: 3161: 1158:. The dimension of the tensor product therefore is the product of dimensions of the original spaces; for instance 2707: 1763:
In terms of these coordinates the tensor product is just given by ordinary multiplication of components. That is,
3221: 3266: 3231: 3212:
select a.i as i, a.j as j, b.k as k, a.value * b.value as value from a outer join b
3165: 2671: 3262: 3256: 2163: 2747: 2604: 3173: 3131: 2166:
is zero. If all spaces in question are finite-dimensional, this map is a actually a linear isomorphism.
1954: 1095: 112: 2856: 2798: 1651: 1636:{\displaystyle e_{i_{1}i_{2}\cdots i_{k}}=e_{i_{1}}\otimes e_{i_{2}}\otimes \cdots \otimes e_{i_{k}}} 1255: 840: 66: 21: 1004: 200: 2647: 1135: 2677: 1054: 1021: 115:
in each argument. That is, fixing either the first or second argument results in a linear map.
2412: 2395:{\displaystyle V^{*}\otimes W^{*}\to (V\otimes W)^{*}\qquad (f\otimes g)(v\otimes w)=f(v)g(w)} 97: 1391: 779: 2424: 823:. The tensor product (of tensors) is the natural multiplication operator in this algebra. 1205: 2450: 2430: 815: 38: 3080:{\displaystyle (f\otimes g)(x_{1},...x_{k+m})=f(x_{1},...x_{k})g(x_{k+1},...x_{k+m})} 49:, denoted by the symbol ⊗, refers to a number of closely related operations in 1485:
tensor and a rank ℓ tensor their tensor product can be interpreted as a rank
27: 1272: 1251: 924: 766: 227:, subject only to the relations necessary for bilinearity. That is, one must have: 82: 17: 3107:
is the rank of the tensor. The tensor product is an operation which takes a rank-
2674:
on that space) corresponds naturally to the space of all bilinear functionals on
3181: 2792: 2701: 1404:
Associativity of the tensor product means that there is a canonical isomorphism
58: 50: 2641: 946: 806: 53:. The unifying concept is that the tensor product represents the most general 3127: 65:, tensor spaces, and tensor products forms a branch of mathematics called 78: 54: 1356:{\displaystyle T^{k}V=V^{\otimes k}=V\otimes V\otimes \cdots \otimes V.} 1262: 919:
The universality of this map means the following: for any vector space
77:
The tensor product can be thought of as the “most general”
1753:{\displaystyle X=X^{i_{1}i_{2}\cdots i_{k}}e_{i_{1}i_{2}\cdots i_{k}}} 3191: 1386: 775: 62: 2266:{\displaystyle V^{*}\otimes W\to L(V,W)\qquad (f\otimes w)(v)=f(v)w} 2066:{\displaystyle L(V,V')\otimes L(W,W')\to L(V\otimes W,V'\otimes W')} 404:{\displaystyle v\otimes (w_{1}+w_{2})=v\otimes w_{1}+v\otimes w_{2}} 313:{\displaystyle (v_{1}+v_{2})\otimes w=v_{1}\otimes w+v_{2}\otimes w} 3100: 1000: 3095:
Tensors in computer programming are almost always represented as
1377:(as a one-dimensional vector space over itself). The elements of 751:{\displaystyle V^{\otimes k}=V\otimes V\otimes \cdots \otimes V.} 118:
The tensor product on vectors is defined to be a bilinear map on
3198: 3197:
Another interesting example of the tensor product comes from
2423:, a term used to make clear that the result has a particular 1009: 1471:{\displaystyle T^{k}V\otimes T^{\ell }V\cong T^{k+\ell }V.} 2152:{\displaystyle (f\otimes g)(v\otimes w)=f(v)\otimes g(w).} 2162:
This map is a linear embedding, which is to say that its
482:{\displaystyle k(v\otimes w)=(kv)\otimes w=v\otimes (kw)} 1195:{\displaystyle \mathbb {R} ^{m}\otimes \mathbb {R} ^{n}} 909:{\displaystyle \otimes \colon V\times W\to V\otimes W.} 181:{\displaystyle \otimes \colon V\times W\to V\otimes W.} 2494: 2920: 2859: 2801: 2750: 2710: 2680: 2650: 2607: 2476: 2453: 2433: 2285: 2182: 2085: 1970: 1772: 1663: 1526: 1413: 1296: 1208: 1164: 1138: 1098: 1057: 1024: 875: 707: 501: 418: 327: 236: 147: 2419:With matrices this operation is usually called the 1961:Specifically, there exists is a natural linear map 3079: 2911:their tensor product is the multilinear function 2903: 2845: 2775: 2736: 2692: 2662: 2632: 2585: 2459: 2439: 2394: 2265: 2151: 2065: 1937: 1752: 1635: 1470: 1355: 1217: 1194: 1150: 1124: 1076: 1043: 908: 750: 672: 481: 403: 312: 180: 3164:may have this pattern built in. For example, in 1014:Universal property of the tensor product space 8: 2737:{\displaystyle V^{\star }\otimes W^{\star }} 1071: 1058: 1038: 1025: 2173:. Specifically, one has natural embeddings 492:Combining the first two properties we have 774:. The elements of such a space are called 3062: 3034: 3015: 2993: 2965: 2943: 2919: 2892: 2870: 2858: 2834: 2812: 2800: 2767: 2749: 2728: 2715: 2709: 2679: 2649: 2624: 2606: 2553: 2538: 2516: 2501: 2489: 2475: 2452: 2432: 2328: 2303: 2290: 2284: 2187: 2181: 2084: 1969: 1918: 1899: 1883: 1878: 1866: 1853: 1843: 1838: 1817: 1804: 1794: 1789: 1771: 1742: 1729: 1719: 1714: 1702: 1689: 1679: 1674: 1662: 1625: 1620: 1599: 1594: 1579: 1574: 1559: 1546: 1536: 1531: 1525: 1450: 1434: 1418: 1412: 1317: 1301: 1295: 1207: 1186: 1182: 1181: 1171: 1167: 1166: 1163: 1137: 1116: 1103: 1097: 1065: 1056: 1032: 1023: 874: 712: 706: 661: 648: 635: 622: 609: 596: 583: 570: 554: 541: 522: 509: 500: 417: 395: 376: 354: 341: 326: 298: 279: 257: 244: 235: 146: 3115:tensor and computes the resulting rank-( 1949:Tensor product of linear transformations 3267:question marks, boxes, or other symbols 3176:the tensor product is the expressed as 1092:respectively, the tensors of the form 96:, a bilinear map is a function on the 3130:for doing this is given below in the 2776:{\displaystyle (V\otimes W)^{\star }} 2633:{\displaystyle (V\otimes W)^{\star }} 1236:tensor product of modules over a ring 690:, one can take the tensor product of 7: 3209:can be given by the following code: 81:product on a pair of vectors. Given 3168:the tensor product is expressed as 3142:is a rank-one tensor, with indices 2787:Tensor product of multilinear maps 1125:{\displaystyle v_{i}\otimes w_{j}} 1003:a unique isomorphism by the above 761:The resulting space is called the 35: 3184:, the tensor product is given by 2904:{\displaystyle g(x_{1},...x_{m})} 2846:{\displaystyle f(x_{1},...x_{k})} 3237:tensor product of Hilbert spaces 2334: 2220: 827:Tensor product of vector spaces 813:one obtains a space called the 789:. The tensor product of a rank 3247:tensor product of line bundles 3074: 3027: 3021: 2986: 2977: 2936: 2933: 2921: 2898: 2863: 2840: 2805: 2764: 2751: 2621: 2608: 2389: 2383: 2377: 2371: 2362: 2350: 2347: 2335: 2325: 2312: 2309: 2257: 2251: 2242: 2236: 2233: 2221: 2217: 2205: 2199: 2143: 2137: 2128: 2122: 2113: 2101: 2098: 2086: 2060: 2026: 2020: 2017: 2000: 1991: 1974: 1786: 1773: 891: 839:be vector spaces over a fixed 560: 534: 528: 502: 476: 467: 449: 440: 434: 422: 360: 334: 263: 237: 163: 1: 3201:. Here the tensor product of 1650:tensor is written (using the 1481:In other words, given a rank 858:is another vector space over 3227:tensor product of R-algebras 2597:Relation with the dual space 199:can be thought of as formal 3162:array programming languages 797:tensor is naturally a rank 686:Given a fixed vector space 3286: 3242:topological tensor product 2663:{\displaystyle V\otimes W} 1151:{\displaystyle V\otimes W} 3222:tensor product of modules 3138:is a rank-two tensor and 2693:{\displaystyle V\times W} 1279:is the tensor product of 1242:Tensor product of tensors 1077:{\displaystyle \{w_{i}\}} 1044:{\displaystyle \{v_{i}\}} 991:The tensor product space 3232:tensor product of fields 809:of all tensor powers of 61:) product. The study of 3132:C programming language 3081: 2905: 2847: 2777: 2738: 2694: 2670:containing all linear 2664: 2634: 2587: 2461: 2441: 2396: 2267: 2153: 2067: 1955:linear transformations 1939: 1754: 1637: 1493:Coordinate description 1472: 1357: 1261:. For any nonnegative 1219: 1196: 1152: 1126: 1078: 1045: 1015: 910: 805:tensor. By taking the 752: 674: 483: 405: 314: 182: 126:to a new vector space 3082: 2906: 2848: 2778: 2739: 2695: 2665: 2635: 2588: 2462: 2442: 2397: 2268: 2154: 2068: 1940: 1755: 1638: 1473: 1358: 1220: 1197: 1153: 1127: 1079: 1046: 1013: 911: 753: 675: 484: 406: 315: 183: 3091:Computer programming 2918: 2857: 2799: 2748: 2708: 2678: 2648: 2605: 2601:Note that the space 2474: 2451: 2431: 2283: 2180: 2083: 1968: 1770: 1661: 1652:summation convention 1524: 1411: 1373:is the ground field 1294: 1206: 1202:will have dimension 1162: 1136: 1096: 1055: 1022: 873: 705: 499: 416: 325: 234: 145: 136:tensor product space 111:which is separately 28:User:Fropuff/Draft 8 3255:This page contains 3170:A ∘.× B 1489:+ ℓ tensor. 201:linear combinations 67:multilinear algebra 3257:special characters 3111:tensor and a rank- 3103:of numbers, where 3077: 2901: 2843: 2773: 2734: 2690: 2660: 2630: 2583: 2577: 2457: 2437: 2392: 2263: 2149: 2063: 1935: 1750: 1633: 1468: 1353: 1218:{\displaystyle mn} 1215: 1192: 1148: 1132:forms a basis for 1122: 1074: 1041: 1016: 1005:universal property 906: 793:tensor and a rank 748: 670: 479: 401: 310: 178: 3263:rendering support 2460:{\displaystyle V} 2440:{\displaystyle U} 2421:Kronecker product 2413:Kronecker product 2406:Kronecker product 98:cartesian product 26:(Redirected from 3277: 3179: 3171: 3154:, respectively. 3086: 3084: 3083: 3078: 3073: 3072: 3045: 3044: 3020: 3019: 2998: 2997: 2976: 2975: 2948: 2947: 2910: 2908: 2907: 2902: 2897: 2896: 2875: 2874: 2852: 2850: 2849: 2844: 2839: 2838: 2817: 2816: 2782: 2780: 2779: 2774: 2772: 2771: 2743: 2741: 2740: 2735: 2733: 2732: 2720: 2719: 2699: 2697: 2696: 2691: 2669: 2667: 2666: 2661: 2639: 2637: 2636: 2631: 2629: 2628: 2592: 2590: 2589: 2584: 2582: 2581: 2570: 2558: 2557: 2543: 2542: 2521: 2520: 2506: 2505: 2466: 2464: 2463: 2458: 2446: 2444: 2443: 2438: 2401: 2399: 2398: 2393: 2333: 2332: 2308: 2307: 2295: 2294: 2272: 2270: 2269: 2264: 2192: 2191: 2158: 2156: 2155: 2150: 2072: 2070: 2069: 2064: 2059: 2048: 2016: 1990: 1944: 1942: 1941: 1936: 1931: 1930: 1929: 1928: 1910: 1909: 1894: 1893: 1873: 1872: 1871: 1870: 1858: 1857: 1848: 1847: 1830: 1829: 1828: 1827: 1809: 1808: 1799: 1798: 1759: 1757: 1756: 1751: 1749: 1748: 1747: 1746: 1734: 1733: 1724: 1723: 1709: 1708: 1707: 1706: 1694: 1693: 1684: 1683: 1642: 1640: 1639: 1634: 1632: 1631: 1630: 1629: 1606: 1605: 1604: 1603: 1586: 1585: 1584: 1583: 1566: 1565: 1564: 1563: 1551: 1550: 1541: 1540: 1477: 1475: 1474: 1469: 1461: 1460: 1439: 1438: 1423: 1422: 1362: 1360: 1359: 1354: 1325: 1324: 1306: 1305: 1224: 1222: 1221: 1216: 1201: 1199: 1198: 1193: 1191: 1190: 1185: 1176: 1175: 1170: 1157: 1155: 1154: 1149: 1131: 1129: 1128: 1123: 1121: 1120: 1108: 1107: 1083: 1081: 1080: 1075: 1070: 1069: 1050: 1048: 1047: 1042: 1037: 1036: 915: 913: 912: 907: 862:together with a 757: 755: 754: 749: 720: 719: 679: 677: 676: 671: 666: 665: 653: 652: 640: 639: 627: 626: 614: 613: 601: 600: 588: 587: 575: 574: 559: 558: 546: 545: 527: 526: 514: 513: 488: 486: 485: 480: 410: 408: 407: 402: 400: 399: 381: 380: 359: 358: 346: 345: 319: 317: 316: 311: 303: 302: 284: 283: 262: 261: 249: 248: 191:The elements of 187: 185: 184: 179: 31: 3285: 3284: 3280: 3279: 3278: 3276: 3275: 3274: 3273: 3272: 3271: 3270: 3261:Without proper 3218: 3213: 3188: 3177: 3169: 3158: 3126:A prototypical 3093: 3058: 3030: 3011: 2989: 2961: 2939: 2916: 2915: 2888: 2866: 2855: 2854: 2830: 2808: 2797: 2796: 2789: 2763: 2746: 2745: 2724: 2711: 2706: 2705: 2676: 2675: 2646: 2645: 2620: 2603: 2602: 2599: 2576: 2575: 2569: 2563: 2562: 2549: 2547: 2534: 2531: 2530: 2525: 2512: 2510: 2497: 2490: 2472: 2471: 2449: 2448: 2429: 2428: 2425:block structure 2408: 2324: 2299: 2286: 2281: 2280: 2183: 2178: 2177: 2081: 2080: 2052: 2041: 2009: 1983: 1966: 1965: 1953:The set of all 1951: 1914: 1895: 1879: 1874: 1862: 1849: 1839: 1834: 1813: 1800: 1790: 1785: 1768: 1767: 1738: 1725: 1715: 1710: 1698: 1685: 1675: 1670: 1659: 1658: 1646:A general rank 1621: 1616: 1595: 1590: 1575: 1570: 1555: 1542: 1532: 1527: 1522: 1521: 1505: 1497:Given a basis { 1495: 1446: 1430: 1414: 1409: 1408: 1313: 1297: 1292: 1291: 1244: 1231: 1229:Generalizations 1204: 1203: 1180: 1165: 1160: 1159: 1134: 1133: 1112: 1099: 1094: 1093: 1061: 1053: 1052: 1028: 1020: 1019: 942:there exists a 871: 870: 829: 708: 703: 702: 657: 644: 631: 618: 605: 592: 579: 566: 550: 537: 518: 505: 497: 496: 414: 413: 391: 372: 350: 337: 323: 322: 294: 275: 253: 240: 232: 231: 143: 142: 75: 42: 33: 32: 25: 24: 12: 11: 5: 3283: 3281: 3265:, you may see 3253: 3252: 3251: 3250: 3249: 3244: 3239: 3234: 3229: 3224: 3217: 3214: 3211: 3186: 3156: 3092: 3089: 3088: 3087: 3076: 3071: 3068: 3065: 3061: 3057: 3054: 3051: 3048: 3043: 3040: 3037: 3033: 3029: 3026: 3023: 3018: 3014: 3010: 3007: 3004: 3001: 2996: 2992: 2988: 2985: 2982: 2979: 2974: 2971: 2968: 2964: 2960: 2957: 2954: 2951: 2946: 2942: 2938: 2935: 2932: 2929: 2926: 2923: 2900: 2895: 2891: 2887: 2884: 2881: 2878: 2873: 2869: 2865: 2862: 2842: 2837: 2833: 2829: 2826: 2823: 2820: 2815: 2811: 2807: 2804: 2788: 2785: 2770: 2766: 2762: 2759: 2756: 2753: 2731: 2727: 2723: 2718: 2714: 2689: 2686: 2683: 2659: 2656: 2653: 2627: 2623: 2619: 2616: 2613: 2610: 2598: 2595: 2594: 2593: 2580: 2574: 2571: 2568: 2565: 2564: 2561: 2556: 2552: 2548: 2546: 2541: 2537: 2533: 2532: 2529: 2526: 2524: 2519: 2515: 2511: 2509: 2504: 2500: 2496: 2495: 2493: 2488: 2485: 2482: 2479: 2456: 2436: 2411:Main article: 2407: 2404: 2403: 2402: 2391: 2388: 2385: 2382: 2379: 2376: 2373: 2370: 2367: 2364: 2361: 2358: 2355: 2352: 2349: 2346: 2343: 2340: 2337: 2331: 2327: 2323: 2320: 2317: 2314: 2311: 2306: 2302: 2298: 2293: 2289: 2274: 2273: 2262: 2259: 2256: 2253: 2250: 2247: 2244: 2241: 2238: 2235: 2232: 2229: 2226: 2223: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2195: 2190: 2186: 2160: 2159: 2148: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2103: 2100: 2097: 2094: 2091: 2088: 2076:determined by 2074: 2073: 2062: 2058: 2055: 2051: 2047: 2044: 2040: 2037: 2034: 2031: 2028: 2025: 2022: 2019: 2015: 2012: 2008: 2005: 2002: 1999: 1996: 1993: 1989: 1986: 1982: 1979: 1976: 1973: 1950: 1947: 1946: 1945: 1934: 1927: 1924: 1921: 1917: 1913: 1908: 1905: 1902: 1898: 1892: 1889: 1886: 1882: 1877: 1869: 1865: 1861: 1856: 1852: 1846: 1842: 1837: 1833: 1826: 1823: 1820: 1816: 1812: 1807: 1803: 1797: 1793: 1788: 1784: 1781: 1778: 1775: 1761: 1760: 1745: 1741: 1737: 1732: 1728: 1722: 1718: 1713: 1705: 1701: 1697: 1692: 1688: 1682: 1678: 1673: 1669: 1666: 1644: 1643: 1628: 1624: 1619: 1615: 1612: 1609: 1602: 1598: 1593: 1589: 1582: 1578: 1573: 1569: 1562: 1558: 1554: 1549: 1545: 1539: 1535: 1530: 1510:, a basis for 1501: 1494: 1491: 1479: 1478: 1467: 1464: 1459: 1456: 1453: 1449: 1445: 1442: 1437: 1433: 1429: 1426: 1421: 1417: 1366:By convention 1364: 1363: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1323: 1320: 1316: 1312: 1309: 1304: 1300: 1243: 1240: 1230: 1227: 1214: 1211: 1189: 1184: 1179: 1174: 1169: 1147: 1144: 1141: 1119: 1115: 1111: 1106: 1102: 1073: 1068: 1064: 1060: 1040: 1035: 1031: 1027: 999:is determined 917: 916: 905: 902: 899: 896: 893: 890: 887: 884: 881: 878: 848:tensor product 828: 825: 816:tensor algebra 759: 758: 747: 744: 741: 738: 735: 732: 729: 726: 723: 718: 715: 711: 681: 680: 669: 664: 660: 656: 651: 647: 643: 638: 634: 630: 625: 621: 617: 612: 608: 604: 599: 595: 591: 586: 582: 578: 573: 569: 565: 562: 557: 553: 549: 544: 540: 536: 533: 530: 525: 521: 517: 512: 508: 504: 490: 489: 478: 475: 472: 469: 466: 463: 460: 457: 454: 451: 448: 445: 442: 439: 436: 433: 430: 427: 424: 421: 411: 398: 394: 390: 387: 384: 379: 375: 371: 368: 365: 362: 357: 353: 349: 344: 340: 336: 333: 330: 320: 309: 306: 301: 297: 293: 290: 287: 282: 278: 274: 271: 268: 265: 260: 256: 252: 247: 243: 239: 189: 188: 177: 174: 171: 168: 165: 162: 159: 156: 153: 150: 74: 71: 47:tensor product 43: 41: 39:Tensor product 36: 34: 15: 14: 13: 10: 9: 6: 4: 3: 2: 3282: 3268: 3264: 3260: 3258: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3219: 3215: 3210: 3208: 3204: 3200: 3195: 3193: 3185: 3183: 3175: 3167: 3163: 3155: 3153: 3149: 3145: 3141: 3137: 3133: 3129: 3124: 3122: 3118: 3114: 3110: 3106: 3102: 3099:-dimensional 3098: 3090: 3069: 3066: 3063: 3059: 3055: 3052: 3049: 3046: 3041: 3038: 3035: 3031: 3024: 3016: 3012: 3008: 3005: 3002: 2999: 2994: 2990: 2983: 2980: 2972: 2969: 2966: 2962: 2958: 2955: 2952: 2949: 2944: 2940: 2930: 2927: 2924: 2914: 2913: 2912: 2893: 2889: 2885: 2882: 2879: 2876: 2871: 2867: 2860: 2835: 2831: 2827: 2824: 2821: 2818: 2813: 2809: 2802: 2794: 2786: 2784: 2768: 2760: 2757: 2754: 2729: 2725: 2721: 2716: 2712: 2703: 2687: 2684: 2681: 2673: 2657: 2654: 2651: 2643: 2625: 2617: 2614: 2611: 2596: 2578: 2572: 2566: 2559: 2554: 2550: 2544: 2539: 2535: 2527: 2522: 2517: 2513: 2507: 2502: 2498: 2491: 2486: 2483: 2480: 2477: 2470: 2469: 2468: 2454: 2434: 2426: 2422: 2417: 2416: 2414: 2405: 2386: 2380: 2374: 2368: 2365: 2359: 2356: 2353: 2344: 2341: 2338: 2329: 2321: 2318: 2315: 2304: 2300: 2296: 2291: 2287: 2279: 2278: 2277: 2260: 2254: 2248: 2245: 2239: 2230: 2227: 2224: 2214: 2211: 2208: 2202: 2196: 2193: 2188: 2184: 2176: 2175: 2174: 2172: 2167: 2165: 2146: 2140: 2134: 2131: 2125: 2119: 2116: 2110: 2107: 2104: 2095: 2092: 2089: 2079: 2078: 2077: 2056: 2053: 2049: 2045: 2042: 2038: 2035: 2032: 2029: 2023: 2013: 2010: 2006: 2003: 1997: 1994: 1987: 1984: 1980: 1977: 1971: 1964: 1963: 1962: 1959: 1956: 1948: 1932: 1925: 1922: 1919: 1915: 1911: 1906: 1903: 1900: 1896: 1890: 1887: 1884: 1880: 1875: 1867: 1863: 1859: 1854: 1850: 1844: 1840: 1835: 1831: 1824: 1821: 1818: 1814: 1810: 1805: 1801: 1795: 1791: 1782: 1779: 1776: 1766: 1765: 1764: 1743: 1739: 1735: 1730: 1726: 1720: 1716: 1711: 1703: 1699: 1695: 1690: 1686: 1680: 1676: 1671: 1667: 1664: 1657: 1656: 1655: 1653: 1649: 1626: 1622: 1617: 1613: 1610: 1607: 1600: 1596: 1591: 1587: 1580: 1576: 1571: 1567: 1560: 1556: 1552: 1547: 1543: 1537: 1533: 1528: 1520: 1519: 1518: 1516: 1513: 1509: 1504: 1500: 1492: 1490: 1488: 1484: 1465: 1462: 1457: 1454: 1451: 1447: 1443: 1440: 1435: 1431: 1427: 1424: 1419: 1415: 1407: 1406: 1405: 1402: 1400: 1396: 1393: 1389: 1388: 1383: 1380: 1376: 1372: 1369: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1326: 1321: 1318: 1314: 1310: 1307: 1302: 1298: 1290: 1289: 1288: 1286: 1282: 1278: 1274: 1271: 1267: 1264: 1260: 1257: 1253: 1249: 1241: 1239: 1238: 1237: 1228: 1226: 1212: 1209: 1187: 1177: 1172: 1145: 1142: 1139: 1117: 1113: 1109: 1104: 1100: 1091: 1087: 1066: 1062: 1033: 1029: 1012: 1008: 1006: 1002: 998: 994: 989: 987: 983: 979: 975: 971: 967: 963: 959: 955: 951: 948: 945: 941: 937: 933: 929: 926: 922: 903: 900: 897: 894: 888: 885: 882: 879: 876: 869: 868: 867: 866:bilinear map 865: 861: 857: 853: 849: 845: 842: 838: 834: 826: 824: 822: 818: 817: 812: 808: 804: 800: 796: 792: 788: 784: 781: 777: 773: 769: 768: 764: 745: 742: 739: 736: 733: 730: 727: 724: 721: 716: 713: 709: 701: 700: 699: 697: 693: 689: 684: 667: 662: 658: 654: 649: 645: 641: 636: 632: 628: 623: 619: 615: 610: 606: 602: 597: 593: 589: 584: 580: 576: 571: 567: 563: 555: 551: 547: 542: 538: 531: 523: 519: 515: 510: 506: 495: 494: 493: 473: 470: 464: 461: 458: 455: 452: 446: 443: 437: 431: 428: 425: 419: 412: 396: 392: 388: 385: 382: 377: 373: 369: 366: 363: 355: 351: 347: 342: 338: 331: 328: 321: 307: 304: 299: 295: 291: 288: 285: 280: 276: 272: 269: 266: 258: 254: 250: 245: 241: 230: 229: 228: 226: 222: 218: 214: 210: 206: 202: 198: 194: 175: 172: 169: 166: 160: 157: 154: 151: 148: 141: 140: 139: 137: 133: 129: 125: 121: 116: 114: 110: 106: 102: 99: 95: 91: 87: 84: 83:vector spaces 80: 72: 70: 68: 64: 60: 56: 52: 48: 40: 37: 29: 23: 19: 3254: 3206: 3202: 3196: 3189: 3159: 3151: 3147: 3143: 3139: 3135: 3125: 3120: 3116: 3112: 3108: 3104: 3096: 3094: 2790: 2600: 2420: 2418: 2410: 2409: 2275: 2170: 2168: 2161: 2075: 1960: 1952: 1762: 1647: 1645: 1517:is given by 1514: 1511: 1507: 1502: 1498: 1496: 1486: 1482: 1480: 1403: 1398: 1394: 1385: 1381: 1378: 1374: 1370: 1367: 1365: 1284: 1283:with itself 1280: 1276: 1273:tensor power 1269: 1265: 1258: 1252:vector space 1247: 1245: 1233: 1232: 1089: 1085: 1018:Given bases 1017: 996: 992: 990: 985: 981: 977: 973: 969: 965: 961: 957: 953: 949: 943: 939: 935: 931: 927: 925:bilinear map 920: 918: 863: 859: 855: 851: 847: 843: 836: 832: 830: 820: 814: 810: 802: 798: 794: 790: 786: 782: 771: 767:tensor power 765: 762: 760: 695: 694:with itself 691: 687: 685: 682: 491: 224: 220: 216: 212: 208: 204: 196: 192: 190: 135: 131: 127: 123: 119: 117: 108: 104: 100: 93: 89: 85: 76: 46: 44: 18:User:Fropuff 3182:Mathematica 3172:, while in 2793:multilinear 2702:isomorphism 2672:functionals 1384:are called 203:of symbols 134:called the 59:multilinear 51:mathematics 3123:) tensor. 2642:dual space 964:such that 947:linear map 923:, and any 807:direct sum 3128:algorithm 2928:⊗ 2769:⋆ 2758:⊗ 2730:⋆ 2722:⊗ 2717:⋆ 2704:between 2685:× 2655:⊗ 2626:⋆ 2615:⊗ 2573:⋱ 2567:⋮ 2528:⋯ 2481:⊗ 2467:this is: 2357:⊗ 2342:⊗ 2330:∗ 2319:⊗ 2310:→ 2305:∗ 2297:⊗ 2292:∗ 2228:⊗ 2200:→ 2194:⊗ 2189:∗ 2132:⊗ 2108:⊗ 2093:⊗ 2050:⊗ 2033:⊗ 2021:→ 1995:⊗ 1926:ℓ 1912:⋯ 1860:⋯ 1825:ℓ 1811:⋯ 1780:⊗ 1736:⋯ 1696:⋯ 1614:⊗ 1611:⋯ 1608:⊗ 1588:⊗ 1553:⋯ 1458:ℓ 1444:≅ 1436:ℓ 1428:⊗ 1345:⊗ 1342:⋯ 1339:⊗ 1333:⊗ 1319:⊗ 1178:⊗ 1143:⊗ 1110:⊗ 898:⊗ 892:→ 886:× 880:: 877:⊗ 864:universal 740:⊗ 737:⋯ 734:⊗ 728:⊗ 714:⊗ 655:⊗ 629:⊗ 603:⊗ 577:⊗ 532:⊗ 465:⊗ 453:⊗ 429:⊗ 389:⊗ 370:⊗ 332:⊗ 305:⊗ 286:⊗ 267:⊗ 170:⊗ 164:→ 158:× 152:: 149:⊗ 3216:See also 2057:′ 2046:′ 2014:′ 1988:′ 960:→ 938:→ 223:∈ 215:∈ 79:bilinear 73:Overview 55:bilinear 20:‎ | 3187:Outer 3134:. Here 1387:tensors 1287:times: 1263:integer 1254:over a 995:⊗ 972:⊗ 956:⊗ 776:tensors 698:times: 207:⊗ 195:⊗ 130:⊗ 103:× 63:tensors 3192:Matlab 3178:a */ b 3150:, and 3101:arrays 2791:Given 2164:kernel 1654:) as: 1506:} for 1268:, the 944:unique 934:× 846:. The 113:linear 92:, and 22:Drafts 3180:. In 3160:Many 2795:maps 2640:(the 1256:field 1250:be a 1001:up to 841:field 16:< 3205:and 2853:and 2744:and 2447:and 2276:and 1392:rank 1246:Let 1234:See 1088:and 1084:for 1051:and 976:) = 854:and 835:and 831:Let 780:rank 219:and 211:for 122:and 57:(or 45:The 3199:SQL 3194:). 3166:APL 2644:of 1397:on 1390:of 1275:of 988:). 850:of 819:of 785:on 778:of 770:of 107:to 3146:, 2555:22 2540:21 2518:12 2503:11 1401:. 1225:. 1007:. 984:, 952:: 930:: 138:: 88:, 69:. 3269:. 3259:. 3207:b 3203:a 3174:J 3152:k 3148:j 3144:i 3140:b 3136:a 3121:m 3119:+ 3117:n 3113:m 3109:n 3105:n 3097:n 3075:) 3070:m 3067:+ 3064:k 3060:x 3056:. 3053:. 3050:. 3047:, 3042:1 3039:+ 3036:k 3032:x 3028:( 3025:g 3022:) 3017:k 3013:x 3009:. 3006:. 3003:. 3000:, 2995:1 2991:x 2987:( 2984:f 2981:= 2978:) 2973:m 2970:+ 2967:k 2963:x 2959:. 2956:. 2953:. 2950:, 2945:1 2941:x 2937:( 2934:) 2931:g 2925:f 2922:( 2899:) 2894:m 2890:x 2886:. 2883:. 2880:. 2877:, 2872:1 2868:x 2864:( 2861:g 2841:) 2836:k 2832:x 2828:. 2825:. 2822:. 2819:, 2814:1 2810:x 2806:( 2803:f 2765:) 2761:W 2755:V 2752:( 2726:W 2713:V 2688:W 2682:V 2658:W 2652:V 2622:) 2618:W 2612:V 2609:( 2579:] 2560:V 2551:u 2545:V 2536:u 2523:V 2514:u 2508:V 2499:u 2492:[ 2487:= 2484:V 2478:U 2455:V 2435:U 2415:. 2390:) 2387:w 2384:( 2381:g 2378:) 2375:v 2372:( 2369:f 2366:= 2363:) 2360:w 2354:v 2351:( 2348:) 2345:g 2339:f 2336:( 2326:) 2322:W 2316:V 2313:( 2301:W 2288:V 2261:w 2258:) 2255:v 2252:( 2249:f 2246:= 2243:) 2240:v 2237:( 2234:) 2231:w 2225:f 2222:( 2218:) 2215:W 2212:, 2209:V 2206:( 2203:L 2197:W 2185:V 2171:K 2147:. 2144:) 2141:w 2138:( 2135:g 2129:) 2126:v 2123:( 2120:f 2117:= 2114:) 2111:w 2105:v 2102:( 2099:) 2096:g 2090:f 2087:( 2061:) 2054:W 2043:V 2039:, 2036:W 2030:V 2027:( 2024:L 2018:) 2011:W 2007:, 2004:W 2001:( 1998:L 1992:) 1985:V 1981:, 1978:V 1975:( 1972:L 1933:. 1923:+ 1920:k 1916:i 1907:2 1904:+ 1901:k 1897:i 1891:1 1888:+ 1885:k 1881:i 1876:Y 1868:k 1864:i 1855:2 1851:i 1845:1 1841:i 1836:X 1832:= 1822:+ 1819:k 1815:i 1806:2 1802:i 1796:1 1792:i 1787:) 1783:Y 1777:X 1774:( 1744:k 1740:i 1731:2 1727:i 1721:1 1717:i 1712:e 1704:k 1700:i 1691:2 1687:i 1681:1 1677:i 1672:X 1668:= 1665:X 1648:k 1627:k 1623:i 1618:e 1601:2 1597:i 1592:e 1581:1 1577:i 1572:e 1568:= 1561:k 1557:i 1548:2 1544:i 1538:1 1534:i 1529:e 1515:V 1512:T 1508:V 1503:i 1499:e 1487:k 1483:k 1466:. 1463:V 1455:+ 1452:k 1448:T 1441:V 1432:T 1425:V 1420:k 1416:T 1399:V 1395:k 1382:V 1379:T 1375:K 1371:V 1368:T 1351:. 1348:V 1336:V 1330:V 1327:= 1322:k 1315:V 1311:= 1308:V 1303:k 1299:T 1285:k 1281:V 1277:V 1270:k 1266:k 1259:K 1248:V 1213:n 1210:m 1188:n 1183:R 1173:m 1168:R 1146:W 1140:V 1118:j 1114:w 1105:i 1101:v 1090:W 1086:V 1072:} 1067:i 1063:w 1059:{ 1039:} 1034:i 1030:v 1026:{ 997:W 993:V 986:y 982:x 980:( 978:B 974:w 970:v 968:( 966:L 962:X 958:W 954:V 950:L 940:X 936:W 932:V 928:B 921:X 904:. 901:W 895:V 889:W 883:V 860:K 856:W 852:V 844:K 837:W 833:V 821:V 811:V 803:n 801:+ 799:m 795:n 791:m 787:V 783:k 772:V 763:k 746:. 743:V 731:V 725:V 722:= 717:k 710:V 696:k 692:V 688:V 668:. 663:2 659:w 650:2 646:v 642:+ 637:1 633:w 624:2 620:v 616:+ 611:2 607:w 598:1 594:v 590:+ 585:1 581:w 572:1 568:v 564:= 561:) 556:2 552:w 548:+ 543:1 539:w 535:( 529:) 524:2 520:v 516:+ 511:1 507:v 503:( 477:) 474:w 471:k 468:( 462:v 459:= 456:w 450:) 447:v 444:k 441:( 438:= 435:) 432:w 426:v 423:( 420:k 397:2 393:w 386:v 383:+ 378:1 374:w 367:v 364:= 361:) 356:2 352:w 348:+ 343:1 339:w 335:( 329:v 308:w 300:2 296:v 292:+ 289:w 281:1 277:v 273:= 270:w 264:) 259:2 255:v 251:+ 246:1 242:v 238:( 225:W 221:w 217:V 213:v 209:w 205:v 197:W 193:V 176:. 173:W 167:V 161:W 155:V 132:W 128:V 124:W 120:V 109:X 105:W 101:V 94:X 90:W 86:V 30:)

Index

User:Fropuff
Drafts
User:Fropuff/Draft 8
Tensor product
mathematics
bilinear
multilinear
tensors
multilinear algebra
bilinear
vector spaces
cartesian product
linear
linear combinations
tensor power
tensors
rank
direct sum
tensor algebra
field
bilinear map
linear map
up to
universal property
Universal property of the tensor product space
tensor product of modules over a ring
vector space
field
integer
tensor power

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.