Knowledge

User:Virginia-American/Sandbox/Cubic Reciprocity

Source 📝

3667: 1624: 3111: 1012: 3662:{\displaystyle {\begin{aligned}\left_{3}=1&{\mbox{ if and only if }}&L\equiv M&\equiv 0{\pmod {2}}\\\left_{3}=1&{\mbox{ if and only if }}&M&\equiv 0{\pmod {3}}\\\left_{3}=1&{\mbox{ if and only if }}&LM&\equiv 0{\pmod {5}}\\\left_{3}=1&{\mbox{ if and only if }}&LM&\equiv 0{\pmod {7}}\\\left_{3}=1&{\mbox{ if and only if }}&LM(L-3M)(L+3M)&\equiv 0{\pmod {11}}\\\left_{3}=1&{\mbox{ if and only if }}&LM(L-2M)(L+2M)&\equiv 0{\pmod {13}}\end{aligned}}} 1619:{\displaystyle {\begin{aligned}\left_{3}=1&{\mbox{ if and only if }}3|a\\\left_{3}=1&{\mbox{ if and only if }}9|a;{\mbox{ or }}9|(a\pm b)\\\left_{3}=1&{\mbox{ if and only if }}15|a;{\mbox{ or }}3|a{\mbox{ and }}5|b;{\mbox{ or }}15|(a\pm b);{\mbox{ or }}15|(a\pm 2b)\\\left_{3}=1&{\mbox{ if and only if }}9|a;{\mbox{ or }}9|(2a\pm b)\\\left_{3}=1&{\mbox{ if and only if }}21|a;{\mbox{ or }}3|a{\mbox{ and }}7|b;{\mbox{ or }}21|(a\pm b);{\mbox{ or }}7|(4a\pm b);{\mbox{ or }}7|(a\pm 2b)\end{aligned}}} 4914:
to all cyclotomic number fields. Under this definition, if gcd(Nλ, 3) = 1 one of λ, ω&lambda, or ωλ is primary. A primary under Eisenstein's definition is primary under the modern one, and if λ is primary under the modern one, either λ or −λ is primary under Eisenstein's. Since &minus1 is a cube, this does not affect the statement of cubic reciprocity, but it does affect the unique factorization theorem. This article uses the modern definition, so
3079: 6634: 134:, respectively), can be applied to cubic and biquadratic reciprocity; proofs of these were found in his posthumous papers, but it is not clear if they are his or Eisenstein's. He published two monographs on biquadratic reciprocity. In a footnote in the second one (1832) he stated that cubic reciprocity is most easily described in the ring of Eisenstein integers, but he said nothing else about it. 4706: 2772: 6382: 4445: 6080: 953: 5652: 4913:
Most modern authors say that a number is primary if it is coprime to 3 and congruent to an ordinary integer (mod (1 − ω)), which is the same as saying it is ≡ ±2 (mod 3). There are two reasons to do this: first, the product of two primaries is a primary, and second, it generalizes
3074:{\displaystyle \left_{3}=1{\mbox{ if and only if }}{\begin{cases}q|LM{\mbox{ or }}\\L\equiv \pm {\frac {9r}{2u+1}}M{\pmod {q}},\;\;\;{\mbox{ where }}\\\;\;\;\;\;u\not \equiv 0,1,-{\frac {1}{2}},-{\frac {1}{3}}{\pmod {q}}\;\;\;{\mbox{ and }}\\\;\;\;\;\;3u+1\equiv r^{2}(3u-3){\pmod {q}}\end{cases}}} 137:
From hs diary and other unpublished sources, it appears that Gauss knew the rules for the cubic and quartic residuacity of integers by 1805, and discovered the full-blown theorems and proofs of cubic and quartic reciprocity around 1814. Cox and Lemmermeyer reconstruct the chronology of Gauss's
5756: 5068: 6629:{\displaystyle {\Bigg (}{\frac {\omega }{\alpha }}{\Bigg )}_{3}=\omega ^{\frac {1-a-b}{3}}=\omega ^{-m-n},\;\;\;{\Bigg (}{\frac {1-\omega }{\alpha }}{\Bigg )}_{3}=\omega ^{\frac {a-1}{3}}=\omega ^{m},\;\;\;{\Bigg (}{\frac {3}{\alpha }}{\Bigg )}_{3}=\omega ^{\frac {b}{3}}=\omega ^{n}.} 687: 5419: 4248: 4701:{\displaystyle {\begin{aligned}\lambda &=a+b\omega \\\omega \lambda &=-b+(a-b)\omega \\\omega ^{2}\lambda &=(b-a)-a\omega \\-\lambda &=-a-b\omega \\-\omega \lambda &=b+(b-a)\omega \\-\omega ^{2}\lambda &=(a-b)+a\omega \end{aligned}}} 6340: 5949: 5843: 5929: 814: 2213: 4909:
if it is ≡ 2 (mod 3). It is straightforward to show that if gcd(Nλ, 3) = 1 then exactly one associate of λ is primary. A disadvantage of this definition is that the product of two primary numbers is the negative of a primary.
6172: 3903: 5306: 5539: 4800: 141:
Jacobi published several theorems about cubic residuacity in 1827, but these papers contain no proofs. In his Königsberg lectures of 1836–37 Jacobi presented proofs. The first proofs were published by Eisenstein (1844).
7197:
The two monographs Gauss published on biquadratic reciprocity have consecutively-numbered sections: the first contains §§ 1–23 and the second §§ 24–76. Footnotes referencing these are of the form "Gauss, BQ, §
4121: 2767: 5660: 2305: 4930: 5181: 2372: 2524: 1774: 4387:
are the numbers that divide 1. They are ±1, ±ω, and ±ω. They are similar to 1 and −1 in the ordinary integers, in that they divide evey number. The units are the powers of −ω, a
3757: 5531: 2005: 781: 5232: 499: 4450: 3116: 1017: 504: 6244: 5479: 4288: 2677: 5321: 1838: 4157: 4806:. The norm of zero is zero, the norm of any other number is a positive integer. ε is a unit if and only if Nε = 1. Note that the norm is always ≡ 0 or ≡ 1 (mod 3). 7138:
The references to the original papers of Euler, Jacobi, and Eisenstein were copied from the bibliographies in Lemmermeyer and Cox, and were not used in the preparation of this article.
6075:{\displaystyle \left({\frac {\alpha }{\lambda }}\right)_{3}=\left({\frac {\alpha }{\pi _{1}}}\right)_{3}^{\alpha _{1}}\left({\frac {\alpha }{\pi _{2}}}\right)_{3}^{\alpha _{2}}\dots } 118:
made the first conjectures about the cubic residuacity of small integers, but they were not published until 1849, after his death. There is one result pertaining to cubic residues in
6260: 5766: 1914: 948:{\displaystyle \left_{3}={\begin{cases}&+1{\mbox{ if }}m{\mbox{ is a cubic residue }}{\pmod {n}}\\&-1{\mbox{ if }}m{\mbox{ is a cubic nonresidue }}{\pmod {n}}\end{cases}}} 5852: 4154:
Since ω − 1 = (ω − 1)(ω + ω + 1) = 0 and ω ≠ 1, we have ω = − ω − 1 and ω = − ω − 1. Since
7332:
Nachtrag zum cubischen Reciprocitätssatzes für die aus den dritten Wurzeln der Einheit zusammengesetzen Zahlen, Criterien des cubischen Characters der Zahl 3 and ihrer Teiler
4905:
In order to state the unique factorization theorem, it is necessary to have a way of distinguishing one of the associates of a number. Eisenstein defines a number to be
2025: 6085: 346:); then the first (respectively second, third) set is the numbers whose indices with respect to this root are ≡ 0 (resp. 1, 2) (mod 3). In the vocabulary of 4019:
In his first monograph on cubic reciprocity Eisenstein developed the theory of the numbers built up from a cube root of unity; they are now called the ring of
126:(1801). In the introduction to the fifth and sixth proofs of quadratic reciprocity (1818) he said that he was publishing these proofs because their techniques ( 3768: 5647:{\displaystyle {\Bigg (}{\frac {\alpha \beta }{\pi }}{\Bigg )}_{3}={\Bigg (}{\frac {\alpha }{\pi }}{\Bigg )}_{3}{\Bigg (}{\frac {\beta }{\pi }}{\Bigg )}_{3}} 5237: 5104:. Because the units divide all numbers, a congruence (mod λ) is also true modulo any associate of λ, and any associate of a GCD is also a GCD. 4726: 5751:{\displaystyle {\overline {{\Bigg (}{\frac {\alpha }{\pi }}{\Bigg )}_{3}}}={\Bigg (}{\frac {\overline {\alpha }}{\overline {\pi }}}{\Bigg )}_{3}} 4049: 5063:{\displaystyle \lambda =(-1)^{\kappa }\omega ^{\mu }(1-\omega )^{\nu }\pi _{1}^{\alpha _{1}}\pi _{2}^{\alpha _{2}}\pi _{3}^{\alpha _{3}}\dots } 2693: 3956:
The theorems on biquadratic residues gleam with the greatest simplilcity and genuine beauty only when the field of arithmetic is extended to
5126: 4802:
From the definition, if λ and μ are two Eisenstein integers, Nλμ = Nλ Nμ; in other words, the norm is a
4803: 2380: 1692: 7321:
Beweis des Reciprocitätssatzes für die cubischen Reste in der Theorie der aus den dritten Wurzeln der Einheit zusammengesetzen Zahlen
7447: 7423: 7399: 7283: 2228: 5935:
The cubic character can be extended multiplicatively to composite numbers (coprime to 3) in the "denominator" in the same way the
3687: 6376:≡ 2 (mod 3) replace α with its associate −α; this will not change the value of the cubic characters.) Then 5488: 1938: 714: 2310: 5192: 682:{\displaystyle {\begin{aligned}4p&=(2m-n)^{2}+3n^{2}\\&=(2n-m)^{2}+3m^{2}\\&=(m+n)^{2}+3(m-n)^{2},\end{aligned}}} 21: 7276:
Untersuchungen uber hohere Arithmetik (Disquisitiones Arithmeticae & other papers on number theory) (Second edition)
6201: 5435: 4253: 4034:
The "other imaginary quantities" needed for the "theory of residues of higher powers" are the rings of integers of the
2535: 7266: 5414:{\displaystyle \left({\frac {\alpha }{\pi }}\right)_{3}=\omega ^{k}\equiv \alpha ^{\frac {N\pi -1}{3}}{\pmod {\pi }}.} 4813: 4028: 4015:= 1 ... and similarly the theory of residues of higher powers leads to the introduction of other imaginary quantities. 123: 7157:
This was actually written 1748–1750, but was only published posthumously; It is in Vol V, pp. 182–283 of
5943:. As in that case, if the "denominator" is composite, the symbol can equal one without the conguence being solvable: 4243:{\displaystyle \omega ^{3}=\omega \omega ^{2}=\omega {\overline {\omega }}=1,\;\;\ {\overline {\omega }}=\omega ^{2}} 4023:. Eisenstein said (paraphrasing) "to investigate the properties of this ring one need only consult Gauss's work on 1779: 229: 189:
As is often the case in number theory, it is easiest to work modulo prime numbers, so in this section all moduli
6335:{\displaystyle {\Bigg (}{\frac {\alpha }{\beta }}{\Bigg )}_{3}={\Bigg (}{\frac {\beta }{\alpha }}{\Bigg )}_{3}.} 5838:{\displaystyle {\Bigg (}{\frac {\alpha }{\pi }}{\Bigg )}_{3}={\Bigg (}{\frac {\alpha }{\theta }}{\Bigg )}_{3}} 5093: 38: 1843: 5924:{\displaystyle {\Bigg (}{\frac {\alpha }{\pi }}{\Bigg )}_{3}={\Bigg (}{\frac {\beta }{\pi }}{\Bigg )}_{3}} 17: 6645: 5073:
where 0 ≤ κ ≤ 1,   0 ≤ μ ≤ 2,  ν ≥ 0, the π
3999:
The theory of cubic residues must be based in a similar way on a consideration of numbers of the form
119: 7252:
Theoramatis fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novae
4917:
The product of two prmary numbers is primary and the conjugate of a primary number is also primary.
2819: 2208:{\displaystyle \left_{3}=1{\mbox{ if and only if }}\left_{3}=1{\mbox{ if and only if }}\left_{3}=1.} 851: 6650: 5113: 4020: 6167:{\displaystyle \lambda =\pi _{1}^{\alpha _{1}}\pi _{2}^{\alpha _{2}}\pi _{3}^{\alpha _{3}}\dots } 4377: 4124: 3977: 72: 7485: 7456: 7443: 7419: 7395: 7292: 7279: 7171: 6655: 3981: 7488: 4035: 127: 7469: 7304: 7184: 5936: 5425: 3898:{\displaystyle \left_{3}\left_{3}=1\;\;{\mbox{ if and only if }}\;\;\left_{3}\left_{3}=1} 5301:{\displaystyle \alpha ^{\frac {\mathrm {N} \pi -1}{3}}\equiv \omega ^{k}{\pmod {\pi }}} 339: 115: 5940: 4870:
Thus, inert primes are 2, 5, 11, 17, ... and a factorization of the split primes is
131: 41: 34: 7265:
German translations of all three of the above are the following, which also has the
334:
times the numbers in the first set. Another way to describe this division is to let
4795:{\displaystyle \mathrm {N} \lambda =\lambda {\overline {\lambda }}=a^{2}-ab+b^{2}.} 347: 4820:
3 is a special case: 3 = −ω(1 − ω). It is the only prime in
5085:
s ≥ 1, and this representation is unique, up to the order of the factors.
6345:
There are supplementary theorems for the units and the prime 1 − ω:
5089: 326:
be a cubic nonresidue. The first set is the cubic residues; the second one is
45: 7493: 4038:; the Gaussian and Eisenstein integers are the simplest examples of these. 4116:{\displaystyle \omega ={\frac {-1+i{\sqrt {3}}}{2}}=e^{\frac {2\pi i}{3}}} 7439: 7415: 2762:{\displaystyle q{\mbox{ and }}p={\frac {1}{4}}\left(L^{2}+27M^{2}\right)} 4845:. In algebraic number theory, these primes are said to remain inert in 4148: 3105:
The first few examples of this are equivalent to Euler's conjectures:
350:, the first set is a subgroup of index 3 (of the multiplicative group 1663:≡ 1 (mod 3) be a positive prime. Then 3 is a cubic residue of 1638:≡ 1 (mod 3) be a positive prime. Then 2 is a cubic residue of 4027:
and modify the proofs". This is not surprising since both rings are
370:≡ 1 (mod 3) is the sum of a square and three times a square, 7274:
Gauss, Carl Friedrich; Maser, H. (translator into German) (1965),
5758:    where the bar denotes complex conjugation. 5176:{\displaystyle \alpha ^{\mathrm {N} \pi -1}\equiv 1{\pmod {\pi }}} 7412:
A Classical Introduction to Modern Number Theory (Second edition)
692:
and it is a straightforward exercise to show that exactly one of
59:) is solvable; the word "reciprocity" comes from the form of the 7323:, J. Reine Angew. Math. 27, pp. 289–310 (Crelle's Journal) 5186:
Now assume that Nπ ≠ 3, so that Nπ ≡ 1 (mod 3).
4862:. In algebraic number theory, these primes are said to split in 3952:
In his second monograph on biquadratic reciprocity, Gauss says:
2519:{\displaystyle \left_{3}=1{\mbox{ if and only if }}\left_{3}=1.} 1769:{\displaystyle p=3n+1={\frac {1}{4}}\left(L^{2}+27M^{2}\right),} 158:) is any number congruent to the third power of an integer (mod 7345:, J. Reine Angew. Math. 29 pp. 177–184 (Crelle's Journal) 7245:
Gauss's fifth and sixth proofs of quadratic reciprocity are in
7334:, J. Reine Angew. Math. 28, pp. 28–35 (Crelle's Journal) 7150:
Tractatus de numeroroum doctrina capita sedecim quae supersunt
3960:
numbers, so that without restriction, the numbers of the form
4858:≡ 1 (mod 3) are the product of two conjugate primes in 2300:{\displaystyle q={\frac {1}{4}}\left(L'^{2}+27M'^{2}\right),} 7369:, J. Reine Angew. Math. 2 pp. 66–69 (Crelle's Journal) 3752:{\displaystyle pq={\frac {1}{4}}\left(L^{2}+27M^{2}\right).} 783:  and this representation is unique up to the signs of 5526:{\displaystyle \left({\frac {\alpha }{\pi }}\right)_{3}=1.} 3067: 2218:(The "numerator" in the last expression is an integer (mod 2000:{\displaystyle p={\frac {1}{4}}\left(L^{2}+27M^{2}\right),} 941: 776:{\displaystyle p={\frac {1}{4}}\left(L^{2}+27M^{2}\right),} 208:
is ≡ 2 (mod 3) every number is a cubic residue (mod
4887:
The associates and conjugate of a prime are also primes.
4376:
is closed under addition and multiplication, making it a
303:
Therefore, the only interesting case is when the modulus
3968:
constitute the object of study ... we call such numbers
2367:{\displaystyle x\equiv \pm {\frac {L'}{3M'}}{\pmod {q}}} 7343:
Application de l'algèbre à l'arithmétique transcendante
7231:
Theoria residuorum biquadraticorum, Commentatio secunda
5227:{\displaystyle \alpha ^{\frac {\mathrm {N} \pi -1}{3}}} 200:
The first thing to notice when working within the ring
3831: 3579: 3465: 3387: 3309: 3234: 3153: 2990: 2908: 2837: 2808: 2701: 2416: 2125: 2061: 1580: 1544: 1511: 1490: 1472: 1451: 1381: 1360: 1290: 1257: 1236: 1218: 1197: 1130: 1109: 1054: 916: 906: 872: 862: 220:+ 2; since 0 = 0 is obviously a cubic residue, assume 7220:
Theoria residuorum biquadraticorum, Commentatio prima
6385: 6263: 6204: 6088: 5952: 5855: 5769: 5663: 5542: 5491: 5438: 5324: 5240: 5195: 5129: 4933: 4828:. In algebraic number theory, 3 is said to ramify in 4729: 4448: 4256: 4160: 4052: 3771: 3690: 3114: 2775: 2696: 2538: 2383: 2313: 2231: 2028: 1941: 1846: 1782: 1695: 1015: 817: 717: 502: 330:
times the numbers in the first set, and the third is
4883:
31 = (1 + 6ω) × (−5 − 6ω), ...
966:
Euler's conjectures are based on the representation
314:≡ 1 (mod 3), the nonzero residue classes (mod 5849:
if α ≡ β (mod π),   
1935:≡ 1 (mod 6) be positive primes,    318:) can be divided into three sets, each containing ( 7233:, Göttingen: Comment. Soc. regiae sci, Göttingen 7 7222:, Göttingen: Comment. Soc. regiae sci, Göttingen 6 6628: 6334: 6239:{\displaystyle \left({\frac {a}{b}}\right)_{3}=1.} 6238: 6166: 6074: 5923: 5837: 5750: 5646: 5525: 5473: 5413: 5300: 5226: 5175: 5062: 4794: 4723:ω is the product of λ and its conjugate 4700: 4282: 4242: 4115: 3897: 3751: 3661: 3073: 2761: 2671: 2518: 2366: 2299: 2207: 1999: 1908: 1832: 1768: 1618: 947: 775: 681: 6581: 6563: 6505: 6479: 6406: 6388: 6318: 6300: 6284: 6266: 5910: 5892: 5876: 5858: 5824: 5806: 5790: 5772: 5763:if π and θ are associates,    5737: 5709: 5687: 5669: 5633: 5615: 5602: 5584: 5568: 5545: 5474:{\displaystyle x^{3}\equiv \alpha {\pmod {\pi }}} 5424:It has formal properties similar to those of the 5120:: if α is not divisible by a prime π, 4283:{\displaystyle {\overline {\omega ^{2}}}=\omega } 2672:{\displaystyle \left_{3}\left_{3}=\left_{3}^{2}.} 6934:Lemmermeyer, pp. 209–212, Props 7.1-7.3 6828:Ireland & Rosen, Props 8.3.1 & 8.3.2 6734:Lemmermeyer, pp. 199–201, 222–224 1833:{\displaystyle L(n!)^{3}\equiv 1{\pmod {p}},} 197:, etc., are assumed to positive, odd primes. 138:unpublished work on higher reciprocity laws. 60: 8: 4874: 7 = (3 + ω) × (2 − ω), 4290:where the bar denotes complex conjugation. 366:A theorem of Fermat states that every prime 7269:and Gauss's other papers on number theory. 7242:, Vol II, pp. 65–92 and 93–148 7436:Reciprocity Laws: from Euler to Eisenstein 6970:Gauss, BQ, § 30, translation in Cox, p. 84 6961:Gauss, BQ, § 30, translation in Cox, p. 83 6560: 6559: 6558: 6476: 6475: 6474: 5315:of α (mod π) and is denoted by 4213: 4212: 3838: 3837: 3829: 3828: 3004: 3003: 3002: 3001: 3000: 2988: 2987: 2986: 2922: 2921: 2920: 2919: 2918: 2906: 2905: 2904: 7410:Ireland, Kenneth; Rosen, Michael (1990), 7164:Opera Omnia, Series prima, Vols I–V 6868:Ireland & Rosen, Prop. 9.6.2, Ex 9.23 6617: 6599: 6586: 6580: 6579: 6568: 6562: 6561: 6549: 6523: 6510: 6504: 6503: 6484: 6478: 6477: 6456: 6424: 6411: 6405: 6404: 6393: 6387: 6386: 6384: 6323: 6317: 6316: 6305: 6299: 6298: 6289: 6283: 6282: 6271: 6265: 6264: 6262: 6224: 6210: 6203: 6153: 6148: 6143: 6131: 6126: 6121: 6109: 6104: 6099: 6087: 6061: 6056: 6051: 6039: 6030: 6017: 6012: 6007: 5995: 5986: 5972: 5958: 5951: 5915: 5909: 5908: 5897: 5891: 5890: 5881: 5875: 5874: 5863: 5857: 5856: 5854: 5829: 5823: 5822: 5811: 5805: 5804: 5795: 5789: 5788: 5777: 5771: 5770: 5768: 5742: 5736: 5735: 5714: 5708: 5707: 5692: 5686: 5685: 5674: 5668: 5667: 5664: 5662: 5638: 5632: 5631: 5620: 5614: 5613: 5607: 5601: 5600: 5589: 5583: 5582: 5573: 5567: 5566: 5550: 5544: 5543: 5541: 5511: 5497: 5490: 5455: 5443: 5437: 5392: 5370: 5357: 5344: 5330: 5323: 5282: 5276: 5248: 5245: 5239: 5203: 5200: 5194: 5157: 5135: 5134: 5128: 5049: 5044: 5039: 5027: 5022: 5017: 5005: 5000: 4995: 4985: 4963: 4953: 4932: 4880:19 = (3 − 2ω) × (5 + 2ω), 4783: 4761: 4744: 4730: 4728: 4654: 4527: 4449: 4447: 4263: 4257: 4255: 4234: 4217: 4193: 4181: 4165: 4159: 4094: 4074: 4059: 4051: 3883: 3869: 3858: 3844: 3830: 3816: 3802: 3791: 3777: 3770: 3735: 3719: 3700: 3689: 3639: 3578: 3564: 3550: 3525: 3464: 3450: 3436: 3411: 3386: 3372: 3358: 3333: 3308: 3294: 3280: 3255: 3233: 3219: 3205: 3180: 3152: 3138: 3124: 3115: 3113: 3048: 3024: 2989: 2970: 2960: 2944: 2907: 2885: 2856: 2836: 2825: 2814: 2807: 2795: 2781: 2774: 2748: 2732: 2713: 2700: 2695: 2660: 2655: 2603: 2597: 2583: 2569: 2558: 2544: 2537: 2504: 2433: 2427: 2415: 2403: 2389: 2382: 2348: 2323: 2312: 2282: 2261: 2238: 2230: 2193: 2142: 2136: 2124: 2112: 2075: 2072: 2060: 2048: 2034: 2027: 1983: 1967: 1948: 1940: 1894: 1880: 1866: 1852: 1845: 1811: 1799: 1781: 1752: 1736: 1717: 1694: 1589: 1579: 1553: 1543: 1520: 1510: 1499: 1489: 1481: 1471: 1460: 1450: 1436: 1422: 1390: 1380: 1369: 1359: 1345: 1331: 1299: 1289: 1266: 1256: 1245: 1235: 1227: 1217: 1206: 1196: 1182: 1168: 1139: 1129: 1118: 1108: 1094: 1080: 1063: 1053: 1039: 1025: 1016: 1014: 922: 915: 905: 878: 871: 861: 846: 837: 823: 816: 759: 743: 724: 716: 666: 638: 606: 590: 555: 539: 503: 501: 7367:De residuis cubicis commentatio numerosa 7127:Ireland & Rosen, Ex. 9.32–9.37 5308:    for a unique unit ω. 2529:Along the same lines, von Lienen proved 204:of integers is that if the prime number 7341:Eisenstein, Ferdinand Gotthold (1845), 7330:Eisenstein, Ferdinand Gotthold (1844), 7319:Eisenstein, Ferdinand Gotthold (1844), 7024:Lemmermeyer, p. 361 calls such numbers 6666: 6254:Let α and β be primary. Then 4877:13 = (4 + ω) × (3 − ω), 3083:Note that the first condition implies: 2279: 2258: 7465: 7454: 7300: 7290: 7180: 7169: 5100:as they are for the ordinary integers 4824:divisible by the square of a prime in 4816:. The primes fall into three classes: 44:that state conditions under which the 7351:These papers are all in Vol I of his 4920:The unique factorization theorem for 4890:Note that the norm of an inert prime 4841:≡ 2 (mod 3) are also primes in 4011:is an imaginary root of the equation 1909:{\displaystyle \left_{3}=\left_{3}=1} 358:), and the other two are its cosets. 174:) does not have an integer solution, 7: 3684:≡ 1 (mod 3) be primes,   493:are not determined uniquely). Thus, 384:, and that, except for the signs of 7365:Jacobi, Carl Gustave Jacob (1827), 7162:Euler, Leonhard (1911–1944), 5463: 5400: 5290: 5165: 5079:s are primary primes and the α 3647: 3533: 3419: 3341: 3263: 3188: 3056: 3049: 2978: 2971: 2893: 2886: 2356: 1819: 930: 923: 886: 879: 71:are primary numbers in the ring of 6767:Beweis des Reciprocitätssatzes ... 5249: 5204: 5136: 4804:completely multiplicative function 4731: 4392:(not just a third) root of unity. 392:, this representation is unique. 28: 7206:are of the form "Gauss, DA, Art. 3976:These numbers are now called the 1689:Gauss proves that if    1642:if and only if     1629:The first two can be restated as 918: is a cubic nonresidue  7100:Ireland & Rosen, Prop. 9.3.4 7091:Ireland & Rosen, Prop. 9.3.3 6877:Lemmermeyer, Prop. 7.1 & 7.2 6686:Gauss, DA, footnote to art. 358 7166:, Leipzig & Berlin: Teubner 7082:Ireland & Rosen, Prop 9.3.3 7064:Ireland & Rosen. Prop 9.3.1 6988:Ireland & Rosen Prop. 9.3.5 6082:   where    5456: 5393: 5283: 5234:    makes sense, and 5158: 3640: 3526: 3412: 3334: 3256: 3181: 2349: 1812: 33:is a collection of theorems in 7250:Gauss, Carl Friedrich (1818), 7229:Gauss, Carl Friedrich (1832), 7218:Gauss, Carl Friedrich (1828), 6997:Ireland & Rosen Prop 9.1.4 6886:Gauss, DA footnote to art. 358 6859:Cox, p. 2, Thm. 4.15, Ex. 4.15 5467: 5457: 5404: 5394: 5294: 5284: 5169: 5159: 4982: 4969: 4950: 4940: 4682: 4670: 4637: 4625: 4555: 4543: 4513: 4501: 3651: 3641: 3626: 3611: 3608: 3593: 3537: 3527: 3512: 3497: 3494: 3479: 3423: 3413: 3345: 3335: 3267: 3257: 3192: 3182: 3060: 3050: 3045: 3030: 2982: 2972: 2897: 2887: 2826: 2642: 2600: 2491: 2430: 2360: 2350: 2180: 2139: 1924:Jacobi stated (without proof) 1840:   from which   1823: 1813: 1796: 1786: 1609: 1594: 1590: 1573: 1558: 1554: 1537: 1525: 1521: 1500: 1482: 1461: 1410: 1395: 1391: 1370: 1319: 1304: 1300: 1283: 1271: 1267: 1246: 1228: 1207: 1156: 1144: 1140: 1119: 1064: 934: 924: 890: 880: 874: is a cubic residue  796:For relatively-prime integers 663: 650: 635: 622: 587: 571: 536: 520: 92:) is solvable if and only if 1: 7202:". Footnotes referencing the 7055:cf. Gauss, BQ, §§ 46–47 7046:cf. Gauss, BQ, §§ 38–45 6916:Lemmermeyer, p. 226–227 6850:Lemmermeyer, p. 222–223 6697:Theorematis fundamentalis ... 4407:means its complex conjugate 806:rational cubic residue symbol 6198:, 3) = 1, then    6186:are ordinary integers, gcd( 5728: 5720: 5699: 5481:   is solvable in 5432:The congruence    5096:are defined the same way in 4749: 4439:are its six unit multiples: 4269: 4222: 4198: 4131:are all numbers of the form 4029:unique factorization domains 7489:"Cubic Reciprocity Theorem" 7434:Lemmermeyer, Franz (2000), 7267:Disquisitiones Arithmeticae 7204:Disquisitiones Arithmeticae 7073:Ireland & Rosen, p. 112 7037:Ireland & Rosen, p. 206 7015:Ireland & Rosen, p. 206 7006:Ireland & Rosen, p. 113 6791:Application de l'algèbre... 5485:if and only if    4814:unique factorization domain 4127:. The Eisenstein integers 2222:), not a Legendre symbol). 124:Disquisitiones Arithmeticae 7517: 7392:Primes of the form x + n y 7262:, Vol II, pp. 47–64 3833: if and only if  3581: if and only if  3467: if and only if  3389: if and only if  3311: if and only if  3236: if and only if  3155: if and only if  2810: if and only if  2418: if and only if  2127: if and only if  2063: if and only if  1453: if and only if  1362: if and only if  1199: if and only if  1111: if and only if  1056: if and only if  296:) is a cubic residue (mod 7374:This is in Vol VI of his 6979:Ireland & Rosen p. 14 6779:Nachtrag zum cubischen... 322:−1)/3 numbers. Let 7148:Euler, Leonhard (1849), 6250:Statement of the theorem 5939:is generalized into the 5311:This unit is called the 4924:is: if λ ≠ 0, then 4395:Given a number λ = 4036:cyclotomic number fields 3970:integral complex numbers 3933:is a cubic residue (mod 3096:is a cubic residue (mod 3088:Any number that divides 1776:  then    994:" and means there is an 708:is a multiple of 3, so 362:Primes ≡ 1 (mod 3) 6745:De residuis cubicis ... 5313:cubic residue character 5108:Cubic residue character 5094:greatest common divisor 3992:is a fourth root of 1. 230:Fermat's little theorem 63:, which states that if 7390:Cox, David A. (1989), 7179:Check date values in: 7152:, Comment. Arithmet. 2 6906:De residuis cubicis... 6630: 6336: 6240: 6168: 6076: 5925: 5839: 5752: 5648: 5527: 5475: 5415: 5302: 5228: 5177: 5064: 4796: 4702: 4284: 4244: 4117: 4017: 3995:In a footnote he adds 3974: 3899: 3753: 3663: 3075: 2763: 2673: 2520: 2368: 2301: 2209: 2015:≡ −3 (mod 2001: 1916:is an easy deduction. 1910: 1834: 1770: 1667:if and only if  4 1620: 949: 777: 683: 419:this is equivalent to 18:User:Virginia-American 7278:, New York: Chelsea, 7238:These are in Gauss's 7109:Lemmermeyer, Prop 7.7 6952:Lemmermeyer, Ex. 7.12 6943:Lemmermeyer, Ex. 7.11 6925:Lemmermeyer, Prop.7.4 6646:Quadratic reciprocity 6631: 6337: 6241: 6169: 6077: 5926: 5840: 5753: 5649: 5528: 5476: 5416: 5303: 5229: 5178: 5065: 4797: 4703: 4285: 4245: 4118: 4042:Facts and terminology 3997: 3954: 3900: 3754: 3664: 3076: 2764: 2674: 2521: 2369: 2302: 2210: 2007:   and let 2002: 1911: 1835: 1771: 1621: 950: 778: 684: 114:Sometime before 1748 75:, both coprime to 3, 7118:Lemmermeyer, Th. 6.9 6895:Lemmermeyer, Ex. 7.9 6725:Cox, pp. 83–90 6383: 6261: 6202: 6086: 5950: 5853: 5767: 5661: 5540: 5489: 5436: 5322: 5238: 5193: 5127: 4931: 4727: 4446: 4301:ω and μ = 4254: 4158: 4050: 3769: 3688: 3112: 2773: 2694: 2536: 2381: 2311: 2229: 2026: 1939: 1844: 1780: 1693: 1013: 815: 715: 500: 224:is not divisible by 7394:, New York: Wiley, 7258:This is in Gauss's 6819:Gauss, DA, Art. 182 6756:Lemmermeyer, p. 200 6707:Lemmermeyer, p. 200 6651:Quartic reciprocity 6356:ω be primary, 6160: 6138: 6116: 6068: 6024: 5056: 5034: 5012: 4902:≡ 1 (mod 3). 4854:Positive primes in 4837:Positive primes in 4427:ω  (not 4313:λ + μ = ( 4021:Eisenstein integers 3943:Eisenstein integers 2769:  be primes. 2687:Emma Lehmer proved 2665: 307:≡ 1 (mod 3). 73:Eisenstein integers 51: ≡  7486:Weisstein, Eric W. 7303:has generic name ( 6841:, §§ 407–401 6677:, §§ 407–410 6626: 6332: 6236: 6164: 6139: 6117: 6095: 6072: 6025: 5981: 5921: 5835: 5748: 5644: 5523: 5471: 5411: 5298: 5224: 5173: 5060: 5035: 5013: 4991: 4792: 4698: 4696: 4280: 4240: 4125:cube root of unity 4113: 3895: 3835: 3749: 3659: 3657: 3583: 3469: 3391: 3313: 3238: 3157: 3071: 3066: 2994: 2912: 2841: 2812: 2759: 2705: 2669: 2592: 2516: 2420: 2364: 2307:   then 2297: 2205: 2129: 2065: 1997: 1906: 1830: 1766: 1616: 1614: 1584: 1548: 1515: 1494: 1476: 1455: 1385: 1364: 1294: 1261: 1240: 1222: 1201: 1134: 1113: 1058: 945: 940: 920: 910: 876: 866: 773: 679: 677: 7468:value: checksum ( 6810:cf. Gauss, BQ § 2 6801:cf. Gauss, BQ § 2 6656:Artin reciprocity 6607: 6576: 6539: 6500: 6446: 6401: 6313: 6279: 6218: 6045: 6001: 5966: 5905: 5871: 5819: 5785: 5732: 5731: 5723: 5702: 5682: 5628: 5597: 5563: 5505: 5389: 5338: 5266: 5221: 4752: 4435:ω), and its 4272: 4225: 4216: 4201: 4139:ω where and 4110: 4085: 4079: 3982:Gaussian integers 3877: 3852: 3834: 3810: 3785: 3708: 3582: 3558: 3468: 3444: 3390: 3366: 3312: 3288: 3237: 3213: 3156: 3132: 2993: 2968: 2952: 2911: 2910: where  2880: 2840: 2811: 2789: 2721: 2704: 2649: 2640: 2577: 2552: 2498: 2489: 2419: 2397: 2346: 2246: 2187: 2178: 2128: 2106: 2097: 2064: 2042: 2011:be a solution of 1956: 1888: 1860: 1725: 1583: 1547: 1514: 1493: 1475: 1454: 1430: 1384: 1363: 1339: 1293: 1260: 1239: 1221: 1200: 1176: 1133: 1112: 1088: 1057: 1033: 919: 909: 875: 865: 831: 732: 31:Cubic reciprocity 7508: 7499: 7498: 7473: 7467: 7462: 7460: 7452: 7428: 7404: 7370: 7346: 7335: 7324: 7308: 7302: 7298: 7296: 7288: 7254: 7234: 7223: 7188: 7182: 7177: 7175: 7167: 7153: 7128: 7125: 7119: 7116: 7110: 7107: 7101: 7098: 7092: 7089: 7083: 7080: 7074: 7071: 7065: 7062: 7056: 7053: 7047: 7044: 7038: 7035: 7029: 7022: 7016: 7013: 7007: 7004: 6998: 6995: 6989: 6986: 6980: 6977: 6971: 6968: 6962: 6959: 6953: 6950: 6944: 6941: 6935: 6932: 6926: 6923: 6917: 6914: 6908: 6902: 6896: 6893: 6887: 6884: 6878: 6875: 6869: 6866: 6860: 6857: 6851: 6848: 6842: 6835: 6829: 6826: 6820: 6817: 6811: 6808: 6802: 6799: 6793: 6787: 6781: 6775: 6769: 6763: 6757: 6754: 6748: 6741: 6735: 6732: 6726: 6723: 6717: 6714: 6708: 6705: 6699: 6693: 6687: 6684: 6678: 6671: 6635: 6633: 6632: 6627: 6622: 6621: 6609: 6608: 6600: 6591: 6590: 6585: 6584: 6577: 6569: 6567: 6566: 6554: 6553: 6541: 6540: 6535: 6524: 6515: 6514: 6509: 6508: 6501: 6496: 6485: 6483: 6482: 6470: 6469: 6448: 6447: 6442: 6425: 6416: 6415: 6410: 6409: 6402: 6394: 6392: 6391: 6341: 6339: 6338: 6333: 6328: 6327: 6322: 6321: 6314: 6306: 6304: 6303: 6294: 6293: 6288: 6287: 6280: 6272: 6270: 6269: 6245: 6243: 6242: 6237: 6229: 6228: 6223: 6219: 6211: 6173: 6171: 6170: 6165: 6159: 6158: 6157: 6147: 6137: 6136: 6135: 6125: 6115: 6114: 6113: 6103: 6081: 6079: 6078: 6073: 6067: 6066: 6065: 6055: 6050: 6046: 6044: 6043: 6031: 6023: 6022: 6021: 6011: 6006: 6002: 6000: 5999: 5987: 5977: 5976: 5971: 5967: 5959: 5930: 5928: 5927: 5922: 5920: 5919: 5914: 5913: 5906: 5898: 5896: 5895: 5886: 5885: 5880: 5879: 5872: 5864: 5862: 5861: 5844: 5842: 5841: 5836: 5834: 5833: 5828: 5827: 5820: 5812: 5810: 5809: 5800: 5799: 5794: 5793: 5786: 5778: 5776: 5775: 5757: 5755: 5754: 5749: 5747: 5746: 5741: 5740: 5733: 5724: 5716: 5715: 5713: 5712: 5703: 5698: 5697: 5696: 5691: 5690: 5683: 5675: 5673: 5672: 5665: 5653: 5651: 5650: 5645: 5643: 5642: 5637: 5636: 5629: 5621: 5619: 5618: 5612: 5611: 5606: 5605: 5598: 5590: 5588: 5587: 5578: 5577: 5572: 5571: 5564: 5559: 5551: 5549: 5548: 5532: 5530: 5529: 5524: 5516: 5515: 5510: 5506: 5498: 5480: 5478: 5477: 5472: 5470: 5448: 5447: 5420: 5418: 5417: 5412: 5407: 5391: 5390: 5385: 5371: 5362: 5361: 5349: 5348: 5343: 5339: 5331: 5307: 5305: 5304: 5299: 5297: 5281: 5280: 5268: 5267: 5262: 5252: 5246: 5233: 5231: 5230: 5225: 5223: 5222: 5217: 5207: 5201: 5182: 5180: 5179: 5174: 5172: 5150: 5149: 5139: 5114:Fermat's theorem 5069: 5067: 5066: 5061: 5055: 5054: 5053: 5043: 5033: 5032: 5031: 5021: 5011: 5010: 5009: 4999: 4990: 4989: 4968: 4967: 4958: 4957: 4801: 4799: 4798: 4793: 4788: 4787: 4766: 4765: 4753: 4745: 4734: 4707: 4705: 4704: 4699: 4697: 4659: 4658: 4532: 4531: 4372:This shows that 4332:λ μ = 4289: 4287: 4286: 4281: 4273: 4268: 4267: 4258: 4249: 4247: 4246: 4241: 4239: 4238: 4226: 4218: 4214: 4202: 4194: 4186: 4185: 4170: 4169: 4122: 4120: 4119: 4114: 4112: 4111: 4106: 4095: 4086: 4081: 4080: 4075: 4060: 3924:be prime. Then 3904: 3902: 3901: 3896: 3888: 3887: 3882: 3878: 3870: 3863: 3862: 3857: 3853: 3845: 3836: 3832: 3821: 3820: 3815: 3811: 3803: 3796: 3795: 3790: 3786: 3778: 3758: 3756: 3755: 3750: 3745: 3741: 3740: 3739: 3724: 3723: 3709: 3701: 3673:Martinet proved 3668: 3666: 3665: 3660: 3658: 3654: 3584: 3580: 3569: 3568: 3563: 3559: 3551: 3540: 3470: 3466: 3455: 3454: 3449: 3445: 3437: 3426: 3392: 3388: 3377: 3376: 3371: 3367: 3359: 3348: 3314: 3310: 3299: 3298: 3293: 3289: 3281: 3270: 3239: 3235: 3224: 3223: 3218: 3214: 3206: 3195: 3158: 3154: 3143: 3142: 3137: 3133: 3125: 3080: 3078: 3077: 3072: 3070: 3069: 3063: 3029: 3028: 2995: 2991: 2985: 2969: 2961: 2953: 2945: 2913: 2909: 2900: 2881: 2879: 2865: 2857: 2842: 2838: 2829: 2813: 2809: 2800: 2799: 2794: 2790: 2782: 2768: 2766: 2765: 2760: 2758: 2754: 2753: 2752: 2737: 2736: 2722: 2714: 2706: 2702: 2678: 2676: 2675: 2670: 2664: 2659: 2654: 2650: 2645: 2641: 2639: 2631: 2627: 2616: 2604: 2598: 2588: 2587: 2582: 2578: 2570: 2563: 2562: 2557: 2553: 2545: 2525: 2523: 2522: 2517: 2509: 2508: 2503: 2499: 2494: 2490: 2488: 2484: 2473: 2461: 2457: 2446: 2434: 2428: 2421: 2417: 2408: 2407: 2402: 2398: 2390: 2373: 2371: 2370: 2365: 2363: 2347: 2345: 2344: 2332: 2324: 2306: 2304: 2303: 2298: 2293: 2289: 2288: 2287: 2286: 2267: 2266: 2265: 2247: 2239: 2225:If    2214: 2212: 2211: 2206: 2198: 2197: 2192: 2188: 2183: 2179: 2177: 2160: 2143: 2137: 2130: 2126: 2117: 2116: 2111: 2107: 2102: 2098: 2093: 2076: 2073: 2066: 2062: 2053: 2052: 2047: 2043: 2035: 2006: 2004: 2003: 1998: 1993: 1989: 1988: 1987: 1972: 1971: 1957: 1949: 1915: 1913: 1912: 1907: 1899: 1898: 1893: 1889: 1881: 1871: 1870: 1865: 1861: 1853: 1839: 1837: 1836: 1831: 1826: 1804: 1803: 1775: 1773: 1772: 1767: 1762: 1758: 1757: 1756: 1741: 1740: 1726: 1718: 1625: 1623: 1622: 1617: 1615: 1593: 1585: 1581: 1557: 1549: 1545: 1524: 1516: 1512: 1503: 1495: 1491: 1485: 1477: 1473: 1464: 1456: 1452: 1441: 1440: 1435: 1431: 1423: 1394: 1386: 1382: 1373: 1365: 1361: 1350: 1349: 1344: 1340: 1332: 1303: 1295: 1291: 1270: 1262: 1258: 1249: 1241: 1237: 1231: 1223: 1219: 1210: 1202: 1198: 1187: 1186: 1181: 1177: 1169: 1143: 1135: 1131: 1122: 1114: 1110: 1099: 1098: 1093: 1089: 1081: 1067: 1059: 1055: 1044: 1043: 1038: 1034: 1026: 954: 952: 951: 946: 944: 943: 937: 921: 917: 911: 907: 897: 893: 877: 873: 867: 863: 853: 842: 841: 836: 832: 824: 782: 780: 779: 774: 769: 765: 764: 763: 748: 747: 733: 725: 688: 686: 685: 680: 678: 671: 670: 643: 642: 615: 611: 610: 595: 594: 564: 560: 559: 544: 543: 256:≡ 1 (mod 180:cubic nonresidue 55: (mod  7516: 7515: 7511: 7510: 7509: 7507: 7506: 7505: 7503: 7484: 7483: 7480: 7463: 7453: 7450: 7433: 7426: 7409: 7402: 7389: 7386: 7380: 7364: 7361: 7350: 7340: 7329: 7318: 7315: 7299: 7289: 7286: 7273: 7249: 7228: 7217: 7213: 7195: 7178: 7168: 7161: 7147: 7144: 7136: 7131: 7126: 7122: 7117: 7113: 7108: 7104: 7099: 7095: 7090: 7086: 7081: 7077: 7072: 7068: 7063: 7059: 7054: 7050: 7045: 7041: 7036: 7032: 7023: 7019: 7014: 7010: 7005: 7001: 6996: 6992: 6987: 6983: 6978: 6974: 6969: 6965: 6960: 6956: 6951: 6947: 6942: 6938: 6933: 6929: 6924: 6920: 6915: 6911: 6903: 6899: 6894: 6890: 6885: 6881: 6876: 6872: 6867: 6863: 6858: 6854: 6849: 6845: 6836: 6832: 6827: 6823: 6818: 6814: 6809: 6805: 6800: 6796: 6788: 6784: 6776: 6772: 6764: 6760: 6755: 6751: 6742: 6738: 6733: 6729: 6724: 6720: 6716:Gauss, BQ, § 30 6715: 6711: 6706: 6702: 6694: 6690: 6685: 6681: 6672: 6668: 6664: 6642: 6613: 6595: 6578: 6545: 6525: 6519: 6502: 6486: 6452: 6426: 6420: 6403: 6381: 6380: 6315: 6281: 6259: 6258: 6252: 6206: 6205: 6200: 6199: 6149: 6127: 6105: 6084: 6083: 6057: 6035: 6026: 6013: 5991: 5982: 5954: 5953: 5948: 5947: 5937:Legendre symbol 5934: 5907: 5873: 5851: 5850: 5821: 5787: 5765: 5764: 5734: 5684: 5666: 5659: 5658: 5630: 5599: 5565: 5552: 5538: 5537: 5493: 5492: 5487: 5486: 5439: 5434: 5433: 5426:Legendre symbol 5372: 5366: 5353: 5326: 5325: 5320: 5319: 5272: 5247: 5241: 5236: 5235: 5202: 5196: 5191: 5190: 5130: 5125: 5124: 5112:An analogue of 5110: 5088:The notions of 5084: 5078: 5045: 5023: 5001: 4981: 4959: 4949: 4929: 4928: 4779: 4757: 4725: 4724: 4695: 4694: 4663: 4650: 4644: 4643: 4612: 4600: 4599: 4577: 4568: 4567: 4536: 4523: 4520: 4519: 4485: 4476: 4475: 4456: 4444: 4443: 4259: 4252: 4251: 4230: 4177: 4161: 4156: 4155: 4096: 4090: 4061: 4048: 4047: 4044: 3950: 3945: 3929:Any divisor of 3909:Sharifi proved 3908: 3865: 3864: 3840: 3839: 3798: 3797: 3773: 3772: 3767: 3766: 3762: 3731: 3715: 3714: 3710: 3686: 3685: 3672: 3656: 3655: 3629: 3585: 3576: 3546: 3545: 3542: 3541: 3515: 3471: 3462: 3432: 3431: 3428: 3427: 3401: 3393: 3384: 3354: 3353: 3350: 3349: 3323: 3315: 3306: 3276: 3275: 3272: 3271: 3245: 3240: 3231: 3201: 3200: 3197: 3196: 3170: 3159: 3150: 3120: 3119: 3110: 3109: 3065: 3064: 3020: 2997: 2996: 2992: and  2915: 2914: 2866: 2858: 2844: 2843: 2815: 2777: 2776: 2771: 2770: 2744: 2728: 2727: 2723: 2703: and  2692: 2691: 2685: 2632: 2620: 2609: 2605: 2599: 2593: 2565: 2564: 2540: 2539: 2534: 2533: 2477: 2466: 2462: 2450: 2439: 2435: 2429: 2423: 2422: 2385: 2384: 2379: 2378: 2337: 2333: 2325: 2309: 2308: 2278: 2274: 2257: 2253: 2252: 2248: 2227: 2226: 2161: 2144: 2138: 2132: 2131: 2077: 2074: 2068: 2067: 2030: 2029: 2024: 2023: 1979: 1963: 1962: 1958: 1937: 1936: 1922: 1876: 1875: 1848: 1847: 1842: 1841: 1795: 1778: 1777: 1748: 1732: 1731: 1727: 1691: 1690: 1687: 1613: 1612: 1492: and  1448: 1418: 1417: 1414: 1413: 1357: 1327: 1326: 1323: 1322: 1238: and  1194: 1164: 1163: 1160: 1159: 1106: 1076: 1075: 1072: 1071: 1051: 1021: 1020: 1011: 1010: 964: 958: 939: 938: 895: 894: 847: 819: 818: 813: 812: 795: 755: 739: 738: 734: 713: 712: 676: 675: 662: 634: 613: 612: 602: 586: 562: 561: 551: 535: 513: 498: 497: 437:(which equals ( 364: 148: 112: 80:The congruence 26: 25: 24: 12: 11: 5: 7514: 7512: 7501: 7500: 7479: 7478:External links 7476: 7475: 7474: 7448: 7430: 7429: 7424: 7406: 7405: 7400: 7385: 7384:Modern authors 7382: 7372: 7371: 7360: 7357: 7348: 7347: 7337: 7336: 7326: 7325: 7314: 7311: 7310: 7309: 7284: 7256: 7255: 7236: 7235: 7225: 7224: 7194: 7191: 7190: 7189: 7155: 7154: 7143: 7140: 7135: 7132: 7130: 7129: 7120: 7111: 7102: 7093: 7084: 7075: 7066: 7057: 7048: 7039: 7030: 7017: 7008: 6999: 6990: 6981: 6972: 6963: 6954: 6945: 6936: 6927: 6918: 6909: 6897: 6888: 6879: 6870: 6861: 6852: 6843: 6830: 6821: 6812: 6803: 6794: 6782: 6770: 6758: 6749: 6736: 6727: 6718: 6709: 6700: 6688: 6679: 6665: 6663: 6660: 6659: 6658: 6653: 6648: 6641: 6638: 6637: 6636: 6625: 6620: 6616: 6612: 6606: 6603: 6598: 6594: 6589: 6583: 6575: 6572: 6565: 6557: 6552: 6548: 6544: 6538: 6534: 6531: 6528: 6522: 6518: 6513: 6507: 6499: 6495: 6492: 6489: 6481: 6473: 6468: 6465: 6462: 6459: 6455: 6451: 6445: 6441: 6438: 6435: 6432: 6429: 6423: 6419: 6414: 6408: 6400: 6397: 6390: 6343: 6342: 6331: 6326: 6320: 6312: 6309: 6302: 6297: 6292: 6286: 6278: 6275: 6268: 6251: 6248: 6247: 6246: 6235: 6232: 6227: 6222: 6217: 6214: 6209: 6175: 6174: 6163: 6156: 6152: 6146: 6142: 6134: 6130: 6124: 6120: 6112: 6108: 6102: 6098: 6094: 6091: 6071: 6064: 6060: 6054: 6049: 6042: 6038: 6034: 6029: 6020: 6016: 6010: 6005: 5998: 5994: 5990: 5985: 5980: 5975: 5970: 5965: 5962: 5957: 5932: 5931: 5918: 5912: 5904: 5901: 5894: 5889: 5884: 5878: 5870: 5867: 5860: 5846: 5845: 5832: 5826: 5818: 5815: 5808: 5803: 5798: 5792: 5784: 5781: 5774: 5760: 5759: 5745: 5739: 5730: 5727: 5722: 5719: 5711: 5706: 5701: 5695: 5689: 5681: 5678: 5671: 5655: 5654: 5641: 5635: 5627: 5624: 5617: 5610: 5604: 5596: 5593: 5586: 5581: 5576: 5570: 5562: 5558: 5555: 5547: 5534: 5533: 5522: 5519: 5514: 5509: 5504: 5501: 5496: 5469: 5466: 5462: 5459: 5454: 5451: 5446: 5442: 5422: 5421: 5410: 5406: 5403: 5399: 5396: 5388: 5384: 5381: 5378: 5375: 5369: 5365: 5360: 5356: 5352: 5347: 5342: 5337: 5334: 5329: 5296: 5293: 5289: 5286: 5279: 5275: 5271: 5265: 5261: 5258: 5255: 5251: 5244: 5220: 5216: 5213: 5210: 5206: 5199: 5184: 5183: 5171: 5168: 5164: 5161: 5156: 5153: 5148: 5145: 5142: 5138: 5133: 5109: 5106: 5080: 5074: 5071: 5070: 5059: 5052: 5048: 5042: 5038: 5030: 5026: 5020: 5016: 5008: 5004: 4998: 4994: 4988: 4984: 4980: 4977: 4974: 4971: 4966: 4962: 4956: 4952: 4948: 4945: 4942: 4939: 4936: 4885: 4884: 4881: 4878: 4875: 4868: 4867: 4851: 4850: 4834: 4833: 4791: 4786: 4782: 4778: 4775: 4772: 4769: 4764: 4760: 4756: 4751: 4748: 4743: 4740: 4737: 4733: 4709: 4708: 4693: 4690: 4687: 4684: 4681: 4678: 4675: 4672: 4669: 4666: 4664: 4662: 4657: 4653: 4649: 4646: 4645: 4642: 4639: 4636: 4633: 4630: 4627: 4624: 4621: 4618: 4615: 4613: 4611: 4608: 4605: 4602: 4601: 4598: 4595: 4592: 4589: 4586: 4583: 4580: 4578: 4576: 4573: 4570: 4569: 4566: 4563: 4560: 4557: 4554: 4551: 4548: 4545: 4542: 4539: 4537: 4535: 4530: 4526: 4522: 4521: 4518: 4515: 4512: 4509: 4506: 4503: 4500: 4497: 4494: 4491: 4488: 4486: 4484: 4481: 4478: 4477: 4474: 4471: 4468: 4465: 4462: 4459: 4457: 4455: 4452: 4451: 4370: 4369: 4330: 4279: 4276: 4271: 4266: 4262: 4237: 4233: 4229: 4224: 4221: 4211: 4208: 4205: 4200: 4197: 4192: 4189: 4184: 4180: 4176: 4173: 4168: 4164: 4109: 4105: 4102: 4099: 4093: 4089: 4084: 4078: 4073: 4070: 4067: 4064: 4058: 4055: 4043: 4040: 3949: 3946: 3944: 3941: 3940: 3939: 3906: 3905: 3894: 3891: 3886: 3881: 3876: 3873: 3868: 3861: 3856: 3851: 3848: 3843: 3827: 3824: 3819: 3814: 3809: 3806: 3801: 3794: 3789: 3784: 3781: 3776: 3748: 3744: 3738: 3734: 3730: 3727: 3722: 3718: 3713: 3707: 3704: 3699: 3696: 3693: 3670: 3669: 3653: 3650: 3646: 3643: 3638: 3635: 3632: 3630: 3628: 3625: 3622: 3619: 3616: 3613: 3610: 3607: 3604: 3601: 3598: 3595: 3592: 3589: 3586: 3577: 3575: 3572: 3567: 3562: 3557: 3554: 3549: 3544: 3543: 3539: 3536: 3532: 3529: 3524: 3521: 3518: 3516: 3514: 3511: 3508: 3505: 3502: 3499: 3496: 3493: 3490: 3487: 3484: 3481: 3478: 3475: 3472: 3463: 3461: 3458: 3453: 3448: 3443: 3440: 3435: 3430: 3429: 3425: 3422: 3418: 3415: 3410: 3407: 3404: 3402: 3400: 3397: 3394: 3385: 3383: 3380: 3375: 3370: 3365: 3362: 3357: 3352: 3351: 3347: 3344: 3340: 3337: 3332: 3329: 3326: 3324: 3322: 3319: 3316: 3307: 3305: 3302: 3297: 3292: 3287: 3284: 3279: 3274: 3273: 3269: 3266: 3262: 3259: 3254: 3251: 3248: 3246: 3244: 3241: 3232: 3230: 3227: 3222: 3217: 3212: 3209: 3204: 3199: 3198: 3194: 3191: 3187: 3184: 3179: 3176: 3173: 3171: 3169: 3166: 3163: 3160: 3151: 3149: 3146: 3141: 3136: 3131: 3128: 3123: 3118: 3117: 3103: 3102: 3068: 3062: 3059: 3055: 3052: 3047: 3044: 3041: 3038: 3035: 3032: 3027: 3023: 3019: 3016: 3013: 3010: 3007: 2999: 2998: 2984: 2981: 2977: 2974: 2967: 2964: 2959: 2956: 2951: 2948: 2943: 2940: 2937: 2934: 2931: 2928: 2925: 2917: 2916: 2903: 2899: 2896: 2892: 2889: 2884: 2878: 2875: 2872: 2869: 2864: 2861: 2855: 2852: 2849: 2846: 2845: 2839: or  2835: 2832: 2828: 2824: 2821: 2820: 2818: 2806: 2803: 2798: 2793: 2788: 2785: 2780: 2757: 2751: 2747: 2743: 2740: 2735: 2731: 2726: 2720: 2717: 2712: 2709: 2699: 2684: 2683:Other theorems 2681: 2680: 2679: 2668: 2663: 2658: 2653: 2648: 2644: 2638: 2635: 2630: 2626: 2623: 2619: 2615: 2612: 2608: 2602: 2596: 2591: 2586: 2581: 2576: 2573: 2568: 2561: 2556: 2551: 2548: 2543: 2527: 2526: 2515: 2512: 2507: 2502: 2497: 2493: 2487: 2483: 2480: 2476: 2472: 2469: 2465: 2460: 2456: 2453: 2449: 2445: 2442: 2438: 2432: 2426: 2414: 2411: 2406: 2401: 2396: 2393: 2388: 2374:, and we have 2362: 2359: 2355: 2352: 2343: 2340: 2336: 2331: 2328: 2322: 2319: 2316: 2296: 2292: 2285: 2281: 2277: 2273: 2270: 2264: 2260: 2256: 2251: 2245: 2242: 2237: 2234: 2216: 2215: 2204: 2201: 2196: 2191: 2186: 2182: 2176: 2173: 2170: 2167: 2164: 2159: 2156: 2153: 2150: 2147: 2141: 2135: 2123: 2120: 2115: 2110: 2105: 2101: 2096: 2092: 2089: 2086: 2083: 2080: 2071: 2059: 2056: 2051: 2046: 2041: 2038: 2033: 1996: 1992: 1986: 1982: 1978: 1975: 1970: 1966: 1961: 1955: 1952: 1947: 1944: 1921: 1918: 1905: 1902: 1897: 1892: 1887: 1884: 1879: 1874: 1869: 1864: 1859: 1856: 1851: 1829: 1825: 1822: 1818: 1815: 1810: 1807: 1802: 1798: 1794: 1791: 1788: 1785: 1765: 1761: 1755: 1751: 1747: 1744: 1739: 1735: 1730: 1724: 1721: 1716: 1713: 1710: 1707: 1704: 1701: 1698: 1686: 1683: 1682: 1681: 1656: 1627: 1626: 1611: 1608: 1605: 1602: 1599: 1596: 1592: 1588: 1582: or  1578: 1575: 1572: 1569: 1566: 1563: 1560: 1556: 1552: 1546: or  1542: 1539: 1536: 1533: 1530: 1527: 1523: 1519: 1513: or  1509: 1506: 1502: 1498: 1488: 1484: 1480: 1474: or  1470: 1467: 1463: 1459: 1449: 1447: 1444: 1439: 1434: 1429: 1426: 1421: 1416: 1415: 1412: 1409: 1406: 1403: 1400: 1397: 1393: 1389: 1383: or  1379: 1376: 1372: 1368: 1358: 1356: 1353: 1348: 1343: 1338: 1335: 1330: 1325: 1324: 1321: 1318: 1315: 1312: 1309: 1306: 1302: 1298: 1292: or  1288: 1285: 1282: 1279: 1276: 1273: 1269: 1265: 1259: or  1255: 1252: 1248: 1244: 1234: 1230: 1226: 1220: or  1216: 1213: 1209: 1205: 1195: 1193: 1190: 1185: 1180: 1175: 1172: 1167: 1162: 1161: 1158: 1155: 1152: 1149: 1146: 1142: 1138: 1132: or  1128: 1125: 1121: 1117: 1107: 1105: 1102: 1097: 1092: 1087: 1084: 1079: 1074: 1073: 1070: 1066: 1062: 1052: 1050: 1047: 1042: 1037: 1032: 1029: 1024: 1019: 1018: 963: 960: 956: 955: 942: 936: 933: 929: 926: 914: 908: if  904: 901: 898: 896: 892: 889: 885: 882: 870: 864: if  860: 857: 854: 852: 850: 845: 840: 835: 830: 827: 822: 793: 792: 772: 768: 762: 758: 754: 751: 746: 742: 737: 731: 728: 723: 720: 690: 689: 674: 669: 665: 661: 658: 655: 652: 649: 646: 641: 637: 633: 630: 627: 624: 621: 618: 616: 614: 609: 605: 601: 598: 593: 589: 585: 582: 579: 576: 573: 570: 567: 565: 563: 558: 554: 550: 547: 542: 538: 534: 531: 528: 525: 522: 519: 516: 514: 512: 509: 506: 505: 363: 360: 340:primitive root 310:In this case, 147: 144: 111: 108: 107: 106: 27: 15: 14: 13: 10: 9: 6: 4: 3: 2: 7513: 7504: 7496: 7495: 7490: 7487: 7482: 7481: 7477: 7471: 7458: 7451: 7449:3-540-66967-4 7445: 7441: 7437: 7432: 7431: 7427: 7425:0-387-97329-X 7421: 7417: 7413: 7408: 7407: 7403: 7401:0-471-50654-0 7397: 7393: 7388: 7387: 7383: 7381: 7378: 7377: 7368: 7363: 7362: 7358: 7356: 7354: 7344: 7339: 7338: 7333: 7328: 7327: 7322: 7317: 7316: 7312: 7306: 7301:|first2= 7294: 7287: 7285:0-8284-0191-8 7281: 7277: 7272: 7271: 7270: 7268: 7263: 7261: 7253: 7248: 7247: 7246: 7243: 7241: 7232: 7227: 7226: 7221: 7216: 7215: 7214: 7211: 7209: 7205: 7201: 7192: 7186: 7173: 7165: 7160: 7159: 7158: 7151: 7146: 7145: 7141: 7139: 7133: 7124: 7121: 7115: 7112: 7106: 7103: 7097: 7094: 7088: 7085: 7079: 7076: 7070: 7067: 7061: 7058: 7052: 7049: 7043: 7040: 7034: 7031: 7027: 7021: 7018: 7012: 7009: 7003: 7000: 6994: 6991: 6985: 6982: 6976: 6973: 6967: 6964: 6958: 6955: 6949: 6946: 6940: 6937: 6931: 6928: 6922: 6919: 6913: 6910: 6907: 6901: 6898: 6892: 6889: 6883: 6880: 6874: 6871: 6865: 6862: 6856: 6853: 6847: 6844: 6840: 6834: 6831: 6825: 6822: 6816: 6813: 6807: 6804: 6798: 6795: 6792: 6786: 6783: 6780: 6774: 6771: 6768: 6762: 6759: 6753: 6750: 6746: 6740: 6737: 6731: 6728: 6722: 6719: 6713: 6710: 6704: 6701: 6698: 6692: 6689: 6683: 6680: 6676: 6675:Tractatus ... 6670: 6667: 6661: 6657: 6654: 6652: 6649: 6647: 6644: 6643: 6639: 6623: 6618: 6614: 6610: 6604: 6601: 6596: 6592: 6587: 6573: 6570: 6555: 6550: 6546: 6542: 6536: 6532: 6529: 6526: 6520: 6516: 6511: 6497: 6493: 6490: 6487: 6471: 6466: 6463: 6460: 6457: 6453: 6449: 6443: 6439: 6436: 6433: 6430: 6427: 6421: 6417: 6412: 6398: 6395: 6379: 6378: 6377: 6375: 6371: 6367: 6363: 6359: 6355: 6351: 6348:Let α = 6346: 6329: 6324: 6310: 6307: 6295: 6290: 6276: 6273: 6257: 6256: 6255: 6249: 6233: 6230: 6225: 6220: 6215: 6212: 6207: 6197: 6193: 6189: 6185: 6181: 6177: 6176: 6161: 6154: 6150: 6144: 6140: 6132: 6128: 6122: 6118: 6110: 6106: 6100: 6096: 6092: 6089: 6069: 6062: 6058: 6052: 6047: 6040: 6036: 6032: 6027: 6018: 6014: 6008: 6003: 5996: 5992: 5988: 5983: 5978: 5973: 5968: 5963: 5960: 5955: 5946: 5945: 5944: 5942: 5941:Jacobi symbol 5938: 5916: 5902: 5899: 5887: 5882: 5868: 5865: 5848: 5847: 5830: 5816: 5813: 5801: 5796: 5782: 5779: 5762: 5761: 5743: 5725: 5717: 5704: 5693: 5679: 5676: 5657: 5656: 5639: 5625: 5622: 5608: 5594: 5591: 5579: 5574: 5560: 5556: 5553: 5536: 5535: 5520: 5517: 5512: 5507: 5502: 5499: 5494: 5484: 5464: 5460: 5452: 5449: 5444: 5440: 5431: 5430: 5429: 5427: 5408: 5401: 5397: 5386: 5382: 5379: 5376: 5373: 5367: 5363: 5358: 5354: 5350: 5345: 5340: 5335: 5332: 5327: 5318: 5317: 5316: 5314: 5309: 5291: 5287: 5277: 5273: 5269: 5263: 5259: 5256: 5253: 5242: 5218: 5214: 5211: 5208: 5197: 5187: 5166: 5162: 5154: 5151: 5146: 5143: 5140: 5131: 5123: 5122: 5121: 5119: 5115: 5107: 5105: 5103: 5099: 5095: 5091: 5086: 5083: 5077: 5057: 5050: 5046: 5040: 5036: 5028: 5024: 5018: 5014: 5006: 5002: 4996: 4992: 4986: 4978: 4975: 4972: 4964: 4960: 4954: 4946: 4943: 4937: 4934: 4927: 4926: 4925: 4923: 4918: 4915: 4911: 4908: 4903: 4901: 4897: 4893: 4888: 4882: 4879: 4876: 4873: 4872: 4871: 4865: 4861: 4857: 4853: 4852: 4848: 4844: 4840: 4836: 4835: 4831: 4827: 4823: 4819: 4818: 4817: 4815: 4811: 4807: 4805: 4789: 4784: 4780: 4776: 4773: 4770: 4767: 4762: 4758: 4754: 4746: 4741: 4738: 4735: 4722: 4718: 4714: 4691: 4688: 4685: 4679: 4676: 4673: 4667: 4665: 4660: 4655: 4651: 4647: 4640: 4634: 4631: 4628: 4622: 4619: 4616: 4614: 4609: 4606: 4603: 4596: 4593: 4590: 4587: 4584: 4581: 4579: 4574: 4571: 4564: 4561: 4558: 4552: 4549: 4546: 4540: 4538: 4533: 4528: 4524: 4516: 4510: 4507: 4504: 4498: 4495: 4492: 4489: 4487: 4482: 4479: 4472: 4469: 4466: 4463: 4460: 4458: 4453: 4442: 4441: 4440: 4438: 4434: 4430: 4426: 4422: 4418: 4414: 4410: 4406: 4402: 4398: 4393: 4391: 4386: 4381: 4379: 4375: 4367: 4363: 4359: 4355: 4351: 4347: 4343: 4339: 4335: 4331: 4328: 4324: 4320: 4316: 4312: 4311: 4310: 4308: 4304: 4300: 4296: 4291: 4277: 4274: 4264: 4260: 4235: 4231: 4227: 4219: 4209: 4206: 4203: 4195: 4190: 4187: 4182: 4178: 4174: 4171: 4166: 4162: 4152: 4150: 4147:are ordinary 4146: 4142: 4138: 4134: 4130: 4126: 4123:be a complex 4107: 4103: 4100: 4097: 4091: 4087: 4082: 4076: 4071: 4068: 4065: 4062: 4056: 4053: 4041: 4039: 4037: 4032: 4030: 4026: 4022: 4016: 4014: 4010: 4006: 4002: 3996: 3993: 3991: 3987: 3984:, denoted by 3983: 3979: 3973: 3971: 3967: 3963: 3959: 3953: 3947: 3942: 3938: 3936: 3932: 3927: 3926: 3925: 3923: 3919: 3915: 3910: 3892: 3889: 3884: 3879: 3874: 3871: 3866: 3859: 3854: 3849: 3846: 3841: 3825: 3822: 3817: 3812: 3807: 3804: 3799: 3792: 3787: 3782: 3779: 3774: 3765: 3764: 3763: 3760: 3746: 3742: 3736: 3732: 3728: 3725: 3720: 3716: 3711: 3705: 3702: 3697: 3694: 3691: 3683: 3679: 3674: 3648: 3644: 3636: 3633: 3631: 3623: 3620: 3617: 3614: 3605: 3602: 3599: 3596: 3590: 3587: 3573: 3570: 3565: 3560: 3555: 3552: 3547: 3534: 3530: 3522: 3519: 3517: 3509: 3506: 3503: 3500: 3491: 3488: 3485: 3482: 3476: 3473: 3459: 3456: 3451: 3446: 3441: 3438: 3433: 3420: 3416: 3408: 3405: 3403: 3398: 3395: 3381: 3378: 3373: 3368: 3363: 3360: 3355: 3342: 3338: 3330: 3327: 3325: 3320: 3317: 3303: 3300: 3295: 3290: 3285: 3282: 3277: 3264: 3260: 3252: 3249: 3247: 3242: 3228: 3225: 3220: 3215: 3210: 3207: 3202: 3189: 3185: 3177: 3174: 3172: 3167: 3164: 3161: 3147: 3144: 3139: 3134: 3129: 3126: 3121: 3108: 3107: 3106: 3101: 3099: 3095: 3091: 3086: 3085: 3084: 3081: 3057: 3053: 3042: 3039: 3036: 3033: 3025: 3021: 3017: 3014: 3011: 3008: 3005: 2979: 2975: 2965: 2962: 2957: 2954: 2949: 2946: 2941: 2938: 2935: 2932: 2929: 2926: 2923: 2901: 2894: 2890: 2882: 2876: 2873: 2870: 2867: 2862: 2859: 2853: 2850: 2847: 2833: 2830: 2822: 2816: 2804: 2801: 2796: 2791: 2786: 2783: 2778: 2755: 2749: 2745: 2741: 2738: 2733: 2729: 2724: 2718: 2715: 2710: 2707: 2697: 2688: 2682: 2666: 2661: 2656: 2651: 2646: 2636: 2633: 2628: 2624: 2621: 2617: 2613: 2610: 2606: 2594: 2589: 2584: 2579: 2574: 2571: 2566: 2559: 2554: 2549: 2546: 2541: 2532: 2531: 2530: 2513: 2510: 2505: 2500: 2495: 2485: 2481: 2478: 2474: 2470: 2467: 2463: 2458: 2454: 2451: 2447: 2443: 2440: 2436: 2424: 2412: 2409: 2404: 2399: 2394: 2391: 2386: 2377: 2376: 2375: 2357: 2353: 2341: 2338: 2334: 2329: 2326: 2320: 2317: 2314: 2294: 2290: 2283: 2275: 2271: 2268: 2262: 2254: 2249: 2243: 2240: 2235: 2232: 2223: 2221: 2202: 2199: 2194: 2189: 2184: 2174: 2171: 2168: 2165: 2162: 2157: 2154: 2151: 2148: 2145: 2133: 2121: 2118: 2113: 2108: 2103: 2099: 2094: 2090: 2087: 2084: 2081: 2078: 2069: 2057: 2054: 2049: 2044: 2039: 2036: 2031: 2022: 2021: 2020: 2018: 2014: 2010: 1994: 1990: 1984: 1980: 1976: 1973: 1968: 1964: 1959: 1953: 1950: 1945: 1942: 1934: 1930: 1925: 1919: 1917: 1903: 1900: 1895: 1890: 1885: 1882: 1877: 1872: 1867: 1862: 1857: 1854: 1849: 1827: 1820: 1816: 1808: 1805: 1800: 1792: 1789: 1783: 1763: 1759: 1753: 1749: 1745: 1742: 1737: 1733: 1728: 1722: 1719: 1714: 1711: 1708: 1705: 1702: 1699: 1696: 1684: 1680: 1678: 1674: 1670: 1666: 1662: 1657: 1655: 1653: 1649: 1645: 1641: 1637: 1632: 1631: 1630: 1606: 1603: 1600: 1597: 1586: 1576: 1570: 1567: 1564: 1561: 1550: 1540: 1534: 1531: 1528: 1517: 1507: 1504: 1496: 1486: 1478: 1468: 1465: 1457: 1445: 1442: 1437: 1432: 1427: 1424: 1419: 1407: 1404: 1401: 1398: 1387: 1377: 1374: 1366: 1354: 1351: 1346: 1341: 1336: 1333: 1328: 1316: 1313: 1310: 1307: 1296: 1286: 1280: 1277: 1274: 1263: 1253: 1250: 1242: 1232: 1224: 1214: 1211: 1203: 1191: 1188: 1183: 1178: 1173: 1170: 1165: 1153: 1150: 1147: 1136: 1126: 1123: 1115: 1103: 1100: 1095: 1090: 1085: 1082: 1077: 1068: 1060: 1048: 1045: 1040: 1035: 1030: 1027: 1022: 1009: 1008: 1007: 1005: 1001: 997: 993: 989: 985: 981: 978:. The symbol 977: 973: 969: 961: 959: 931: 927: 912: 902: 899: 887: 883: 868: 858: 855: 848: 843: 838: 833: 828: 825: 820: 811: 810: 809: 807: 803: 799: 790: 786: 770: 766: 760: 756: 752: 749: 744: 740: 735: 729: 726: 721: 718: 711: 710: 709: 707: 703: 699: 695: 672: 667: 659: 656: 653: 647: 644: 639: 631: 628: 625: 619: 617: 607: 603: 599: 596: 591: 583: 580: 577: 574: 568: 566: 556: 552: 548: 545: 540: 532: 529: 526: 523: 517: 515: 510: 507: 496: 495: 494: 492: 488: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 435: 431: 427: 423: 418: 414: 410: 406: 402: 398: 393: 391: 387: 383: 382: 378: 374: 369: 361: 359: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 308: 306: 301: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 198: 196: 192: 187: 185: 181: 177: 173: 169: 165: 161: 157: 153: 152:cubic residue 145: 143: 139: 135: 133: 132:Gaussian sums 129: 128:Gauss's lemma 125: 121: 117: 109: 105: 103: 99: 95: 91: 87: 83: 78: 77: 76: 74: 70: 66: 62: 58: 54: 50: 47: 43: 42:number theory 40: 36: 32: 23: 19: 7502: 7492: 7435: 7414:, New York: 7411: 7391: 7379: 7375: 7373: 7366: 7352: 7349: 7342: 7331: 7320: 7275: 7264: 7259: 7257: 7251: 7244: 7239: 7237: 7230: 7219: 7212: 7207: 7203: 7199: 7196: 7163: 7156: 7149: 7137: 7123: 7114: 7105: 7096: 7087: 7078: 7069: 7060: 7051: 7042: 7033: 7026:semi-primary 7025: 7020: 7011: 7002: 6993: 6984: 6975: 6966: 6957: 6948: 6939: 6930: 6921: 6912: 6905: 6900: 6891: 6882: 6873: 6864: 6855: 6846: 6838: 6833: 6824: 6815: 6806: 6797: 6790: 6789:Eisenstein, 6785: 6778: 6777:Eisenstein, 6773: 6766: 6765:Eisenstein, 6761: 6752: 6744: 6739: 6730: 6721: 6712: 6703: 6696: 6691: 6682: 6674: 6669: 6373: 6369: 6365: 6361: 6357: 6353: 6349: 6347: 6344: 6253: 6195: 6191: 6187: 6183: 6179: 5933: 5482: 5423: 5312: 5310: 5189:Then   5188: 5185: 5117: 5111: 5101: 5097: 5087: 5081: 5075: 5072: 4921: 4919: 4916: 4912: 4906: 4904: 4899: 4895: 4891: 4889: 4886: 4869: 4863: 4859: 4855: 4846: 4842: 4838: 4829: 4825: 4821: 4809: 4808: 4720: 4716: 4715:of λ = 4712: 4710: 4436: 4432: 4428: 4424: 4420: 4416: 4412: 4408: 4404: 4403:ω, its 4400: 4396: 4394: 4389: 4384: 4382: 4373: 4371: 4365: 4361: 4357: 4353: 4349: 4345: 4341: 4337: 4333: 4326: 4322: 4318: 4314: 4306: 4302: 4298: 4294: 4293:If λ = 4292: 4153: 4144: 4140: 4136: 4132: 4128: 4045: 4033: 4024: 4018: 4012: 4008: 4004: 4000: 3998: 3994: 3989: 3988:. Note that 3985: 3975: 3969: 3965: 3961: 3957: 3955: 3951: 3934: 3930: 3928: 3921: 3917: 3913: 3911: 3907: 3761: 3759:  Then 3681: 3677: 3675: 3671: 3104: 3097: 3093: 3089: 3087: 3082: 2690:Let   2689: 2686: 2528: 2224: 2219: 2217: 2016: 2012: 2008: 1932: 1928: 1926: 1923: 1688: 1676: 1672: 1668: 1664: 1660: 1658: 1651: 1647: 1643: 1639: 1635: 1633: 1628: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 967: 965: 957: 805: 801: 797: 794: 788: 784: 705: 701: 697: 693: 691: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 446: 442: 438: 433: 429: 425: 421: 420: 416: 412: 408: 404: 400: 396: 394: 389: 385: 380: 376: 372: 371: 367: 365: 355: 351: 348:group theory 343: 335: 331: 327: 323: 319: 315: 311: 309: 304: 302: 297: 293: 289: 285: 281: 277: 273: 269: 268:× 1 ≡ 265: 261: 257: 253: 249: 245: 241: 237: 233: 225: 221: 217: 213: 209: 205: 201: 199: 194: 190: 188: 183: 179: 175: 171: 167: 163: 159: 155: 151: 149: 140: 136: 113: 101: 97: 93: 89: 85: 81: 79: 68: 64: 61:main theorem 56: 52: 48: 30: 29: 7466:|isbn= 7181:|date= 5116:is true in 4329:)ω and 804:define the 445:) − ( 7438:, Berlin: 7313:Eisenstein 7134:References 5090:congruence 4437:associates 4423:) − 4348:ω = ( 4344:)ω + 3948:Background 1650:+  27 998:such that 228:. Then by 46:congruence 35:elementary 7494:MathWorld 6839:Tractatus 6615:ω 6597:ω 6574:α 6547:ω 6530:− 6521:ω 6498:α 6494:ω 6491:− 6464:− 6458:− 6454:ω 6437:− 6431:− 6422:ω 6399:α 6396:ω 6311:α 6308:β 6277:β 6274:α 6162:… 6151:α 6141:π 6129:α 6119:π 6107:α 6097:π 6090:λ 6070:… 6059:α 6037:π 6033:α 6015:α 5993:π 5989:α 5964:λ 5961:α 5903:π 5900:β 5869:π 5866:α 5817:θ 5814:α 5783:π 5780:α 5729:¯ 5726:π 5721:¯ 5718:α 5700:¯ 5680:π 5677:α 5626:π 5623:β 5595:π 5592:α 5561:π 5557:β 5554:α 5503:π 5500:α 5465:π 5453:α 5450:≡ 5402:π 5380:− 5377:π 5368:α 5364:≡ 5355:ω 5336:π 5333:α 5292:π 5274:ω 5270:≡ 5257:− 5254:π 5243:α 5212:− 5209:π 5198:α 5167:π 5152:≡ 5144:− 5141:π 5132:α 5058:… 5047:α 5037:π 5025:α 5015:π 5003:α 4993:π 4987:ν 4979:ω 4976:− 4965:μ 4961:ω 4955:κ 4944:− 4935:λ 4768:− 4750:¯ 4747:λ 4742:λ 4736:λ 4692:ω 4677:− 4661:λ 4652:ω 4648:− 4641:ω 4632:− 4610:λ 4607:ω 4604:− 4597:ω 4591:− 4585:− 4575:λ 4572:− 4565:ω 4559:− 4550:− 4534:λ 4525:ω 4517:ω 4508:− 4493:− 4483:λ 4480:ω 4473:ω 4454:λ 4405:conjugate 4278:ω 4270:¯ 4261:ω 4232:ω 4223:¯ 4220:ω 4199:¯ 4196:ω 4191:ω 4179:ω 4175:ω 4163:ω 4101:π 4063:− 4054:ω 3958:imaginary 3634:≡ 3600:− 3520:≡ 3486:− 3406:≡ 3328:≡ 3250:≡ 3175:≡ 3165:≡ 3040:− 3018:≡ 2958:− 2942:− 2854:± 2851:≡ 2475:− 2321:± 2318:≡ 2166:− 1806:≡ 1601:± 1568:± 1532:± 1405:± 1311:± 1278:± 1151:± 986:is read " 900:− 657:− 581:− 530:− 39:algebraic 7457:citation 7440:Springer 7416:Springer 7293:citation 7172:citation 6904:Jacobi, 6743:Jacobi, 6640:See also 6364:+ 1 and 6194:) = gcd( 4431:− 4419:− 4368:)ω. 4364:− 4352:− 4309:ω, 4149:integers 3680:≡ 2927:≢ 2625:′ 2614:′ 2482:′ 2471:′ 2455:′ 2444:′ 2342:′ 2330:′ 2280:′ 2259:′ 2019:). Then 1931:≡ 990:divides 704:− 481:− 473:− 465:− 449:− 441:− 428:− 415:− 395:Letting 240:≡ 166:≡ 146:Integers 96:≡ 84:≡ 20:‎ | 6837:Euler, 6695:Gauss, 6673:Euler, 4907:primary 4413:bω 3916:= 1 + 3 292:) (mod 212:). Let 110:History 22:Sandbox 7464:Check 7446:  7422:  7398:  7359:Jacobi 7282:  6372:. (If 4215:  4007:where 1920:Jacobi 485:), so 260:), so 248:) and 162:). If 7376:Werke 7353:Werke 7260:Werke 7240:Werke 7193:Gauss 7142:Euler 6662:Notes 4812:is a 4390:sixth 4385:units 4356:) + ( 4321:) + ( 1685:Gauss 1675:+ 243 962:Euler 700:, or 477:) + ( 407:and 342:(mod 338:be a 300:). 244:(mod 182:(mod 178:is a 170:(mod 154:(mod 120:Gauss 116:Euler 104:) is. 100:(mod 88:(mod 16:< 7470:help 7444:ISBN 7420:ISBN 7396:ISBN 7305:help 7280:ISBN 7185:help 6182:and 5092:and 4894:is N 4713:norm 4711:The 4383:The 4378:ring 4250:and 4143:and 4046:Let 3978:ring 3912:Let 3676:Let 1927:Let 1659:Let 1634:Let 800:and 787:and 489:and 388:and 130:and 122:'s 67:and 37:and 7210:". 6368:= 3 6360:= 3 6178:If 5461:mod 5398:mod 5288:mod 5163:mod 4415:= ( 4336:+ ( 3980:of 3920:+ 9 3645:mod 3531:mod 3417:mod 3339:mod 3261:mod 3186:mod 3092:or 3054:mod 2976:mod 2891:mod 2354:mod 1817:mod 974:+ 3 928:mod 884:mod 808:as 432:+ 379:+ 3 288:= ( 216:= 3 186:). 7491:. 7461:: 7459:}} 7455:{{ 7442:, 7418:, 7355:. 7297:: 7295:}} 7291:{{ 7176:: 7174:}} 7170:{{ 6352:+ 6234:1. 6190:, 5521:1. 5428:. 4898:= 4719:+ 4411:+ 4399:+ 4380:. 4366:bd 4362:bc 4360:+ 4358:ad 4354:bd 4350:ac 4346:bd 4342:bc 4340:+ 4338:ad 4334:ac 4325:+ 4317:+ 4305:+ 4297:+ 4151:. 4135:+ 4031:. 4005:bh 4003:+ 3972:. 3966:bi 3964:+ 3937:). 3729:27 3649:13 3553:13 3535:11 3439:11 3100:). 2742:27 2514:1. 2272:27 2203:1. 1977:27 1746:27 1671:= 1646:= 1518:21 1458:21 1297:15 1264:15 1204:15 1006:. 1004:ma 1002:= 970:= 753:27 696:, 461:= 457:+ 430:mn 424:= 411:= 403:+ 399:= 375:= 354:/p 284:= 280:× 276:= 272:× 264:= 252:= 236:= 232:, 193:, 150:A 7497:. 7472:) 7307:) 7208:n 7200:n 7187:) 7183:( 7028:. 6747:. 6624:. 6619:n 6611:= 6605:3 6602:b 6593:= 6588:3 6582:) 6571:3 6564:( 6556:, 6551:m 6543:= 6537:3 6533:1 6527:a 6517:= 6512:3 6506:) 6488:1 6480:( 6472:, 6467:n 6461:m 6450:= 6444:3 6440:b 6434:a 6428:1 6418:= 6413:3 6407:) 6389:( 6374:a 6370:n 6366:b 6362:m 6358:a 6354:b 6350:a 6330:. 6325:3 6319:) 6301:( 6296:= 6291:3 6285:) 6267:( 6231:= 6226:3 6221:) 6216:b 6213:a 6208:( 6196:b 6192:b 6188:a 6184:b 6180:a 6155:3 6145:3 6133:2 6123:2 6111:1 6101:1 6093:= 6063:2 6053:3 6048:) 6041:2 6028:( 6019:1 6009:3 6004:) 5997:1 5984:( 5979:= 5974:3 5969:) 5956:( 5917:3 5911:) 5893:( 5888:= 5883:3 5877:) 5859:( 5831:3 5825:) 5807:( 5802:= 5797:3 5791:) 5773:( 5744:3 5738:) 5710:( 5705:= 5694:3 5688:) 5670:( 5640:3 5634:) 5616:( 5609:3 5603:) 5585:( 5580:= 5575:3 5569:) 5546:( 5518:= 5513:3 5508:) 5495:( 5483:Z 5468:) 5458:( 5445:3 5441:x 5409:. 5405:) 5395:( 5387:3 5383:1 5374:N 5359:k 5351:= 5346:3 5341:) 5328:( 5295:) 5285:( 5278:k 5264:3 5260:1 5250:N 5219:3 5215:1 5205:N 5170:) 5160:( 5155:1 5147:1 5137:N 5118:Z 5102:Z 5098:Z 5082:i 5076:i 5051:3 5041:3 5029:2 5019:2 5007:1 4997:1 4983:) 4973:1 4970:( 4951:) 4947:1 4941:( 4938:= 4922:Z 4900:q 4896:q 4892:q 4866:. 4864:Z 4860:Z 4856:Z 4849:. 4847:Z 4843:Z 4839:Z 4832:. 4830:Z 4826:Z 4822:Z 4810:Z 4790:. 4785:2 4781:b 4777:+ 4774:b 4771:a 4763:2 4759:a 4755:= 4739:= 4732:N 4721:b 4717:a 4689:a 4686:+ 4683:) 4680:b 4674:a 4671:( 4668:= 4656:2 4638:) 4635:a 4629:b 4626:( 4623:+ 4620:b 4617:= 4594:b 4588:a 4582:= 4562:a 4556:) 4553:a 4547:b 4544:( 4541:= 4529:2 4514:) 4511:b 4505:a 4502:( 4499:+ 4496:b 4490:= 4470:b 4467:+ 4464:a 4461:= 4433:b 4429:a 4425:b 4421:b 4417:a 4409:a 4401:b 4397:a 4374:Z 4327:d 4323:b 4319:c 4315:a 4307:d 4303:c 4299:b 4295:a 4275:= 4265:2 4236:2 4228:= 4210:, 4207:1 4204:= 4188:= 4183:2 4172:= 4167:3 4145:b 4141:a 4137:b 4133:a 4129:Z 4108:3 4104:i 4098:2 4092:e 4088:= 4083:2 4077:3 4072:i 4069:+ 4066:1 4057:= 4025:Z 4013:h 4009:h 4001:a 3990:i 3986:Z 3962:a 3935:p 3931:x 3922:x 3918:x 3914:p 3893:1 3890:= 3885:3 3880:] 3875:q 3872:p 3867:[ 3860:3 3855:] 3850:p 3847:q 3842:[ 3826:1 3823:= 3818:3 3813:] 3808:q 3805:L 3800:[ 3793:3 3788:] 3783:p 3780:L 3775:[ 3747:. 3743:) 3737:2 3733:M 3726:+ 3721:2 3717:L 3712:( 3706:4 3703:1 3698:= 3695:q 3692:p 3682:q 3678:p 3652:) 3642:( 3637:0 3627:) 3624:M 3621:2 3618:+ 3615:L 3612:( 3609:) 3606:M 3603:2 3597:L 3594:( 3591:M 3588:L 3574:1 3571:= 3566:3 3561:] 3556:p 3548:[ 3538:) 3528:( 3523:0 3513:) 3510:M 3507:3 3504:+ 3501:L 3498:( 3495:) 3492:M 3489:3 3483:L 3480:( 3477:M 3474:L 3460:1 3457:= 3452:3 3447:] 3442:p 3434:[ 3424:) 3421:7 3414:( 3409:0 3399:M 3396:L 3382:1 3379:= 3374:3 3369:] 3364:p 3361:7 3356:[ 3346:) 3343:5 3336:( 3331:0 3321:M 3318:L 3304:1 3301:= 3296:3 3291:] 3286:p 3283:5 3278:[ 3268:) 3265:3 3258:( 3253:0 3243:M 3229:1 3226:= 3221:3 3216:] 3211:p 3208:3 3203:[ 3193:) 3190:2 3183:( 3178:0 3168:M 3162:L 3148:1 3145:= 3140:3 3135:] 3130:p 3127:2 3122:[ 3098:p 3094:M 3090:L 3061:) 3058:q 3051:( 3046:) 3043:3 3037:u 3034:3 3031:( 3026:2 3022:r 3015:1 3012:+ 3009:u 3006:3 2983:) 2980:q 2973:( 2966:3 2963:1 2955:, 2950:2 2947:1 2939:, 2936:1 2933:, 2930:0 2924:u 2902:, 2898:) 2895:q 2888:( 2883:M 2877:1 2874:+ 2871:u 2868:2 2863:r 2860:9 2848:L 2834:M 2831:L 2827:| 2823:q 2817:{ 2805:1 2802:= 2797:3 2792:] 2787:p 2784:q 2779:[ 2756:) 2750:2 2746:M 2739:+ 2734:2 2730:L 2725:( 2719:4 2716:1 2711:= 2708:p 2698:q 2667:. 2662:2 2657:3 2652:] 2647:q 2643:) 2637:M 2634:2 2629:M 2622:L 2618:+ 2611:M 2607:L 2601:( 2595:[ 2590:= 2585:3 2580:] 2575:p 2572:q 2567:[ 2560:3 2555:] 2550:q 2547:p 2542:[ 2511:= 2506:3 2501:] 2496:p 2492:) 2486:M 2479:L 2468:M 2464:L 2459:M 2452:L 2448:+ 2441:M 2437:L 2431:( 2425:[ 2413:1 2410:= 2405:3 2400:] 2395:p 2392:q 2387:[ 2361:) 2358:q 2351:( 2339:M 2335:3 2327:L 2315:x 2295:, 2291:) 2284:2 2276:M 2269:+ 2263:2 2255:L 2250:( 2244:4 2241:1 2236:= 2233:q 2220:q 2200:= 2195:3 2190:] 2185:q 2181:) 2175:x 2172:M 2169:3 2163:L 2158:x 2155:M 2152:3 2149:+ 2146:L 2140:( 2134:[ 2122:1 2119:= 2114:3 2109:] 2104:q 2100:p 2095:2 2091:x 2088:M 2085:3 2082:+ 2079:L 2070:[ 2058:1 2055:= 2050:3 2045:] 2040:p 2037:q 2032:[ 2017:q 2013:x 2009:x 1995:, 1991:) 1985:2 1981:M 1974:+ 1969:2 1965:L 1960:( 1954:4 1951:1 1946:= 1943:p 1933:p 1929:q 1904:1 1901:= 1896:3 1891:] 1886:p 1883:M 1878:[ 1873:= 1868:3 1863:] 1858:p 1855:L 1850:[ 1828:, 1824:) 1821:p 1814:( 1809:1 1801:3 1797:) 1793:! 1790:n 1787:( 1784:L 1764:, 1760:) 1754:2 1750:M 1743:+ 1738:2 1734:L 1729:( 1723:4 1720:1 1715:= 1712:1 1709:+ 1706:n 1703:3 1700:= 1697:p 1679:. 1677:b 1673:a 1669:p 1665:p 1661:p 1654:. 1652:b 1648:a 1644:p 1640:p 1636:p 1610:) 1607:b 1604:2 1598:a 1595:( 1591:| 1587:7 1577:; 1574:) 1571:b 1565:a 1562:4 1559:( 1555:| 1551:7 1541:; 1538:) 1535:b 1529:a 1526:( 1522:| 1508:; 1505:b 1501:| 1497:7 1487:a 1483:| 1479:3 1469:; 1466:a 1462:| 1446:1 1443:= 1438:3 1433:] 1428:p 1425:7 1420:[ 1411:) 1408:b 1402:a 1399:2 1396:( 1392:| 1388:9 1378:; 1375:a 1371:| 1367:9 1355:1 1352:= 1347:3 1342:] 1337:p 1334:6 1329:[ 1320:) 1317:b 1314:2 1308:a 1305:( 1301:| 1287:; 1284:) 1281:b 1275:a 1272:( 1268:| 1254:; 1251:b 1247:| 1243:5 1233:a 1229:| 1225:3 1215:; 1212:a 1208:| 1192:1 1189:= 1184:3 1179:] 1174:p 1171:5 1166:[ 1157:) 1154:b 1148:a 1145:( 1141:| 1137:9 1127:; 1124:a 1120:| 1116:9 1104:1 1101:= 1096:3 1091:] 1086:p 1083:3 1078:[ 1069:a 1065:| 1061:3 1049:1 1046:= 1041:3 1036:] 1031:p 1028:2 1023:[ 1000:n 996:a 992:n 988:m 984:n 982:| 980:m 976:b 972:a 968:p 935:) 932:n 925:( 913:m 903:1 891:) 888:n 881:( 869:m 859:1 856:+ 849:{ 844:= 839:3 834:] 829:n 826:m 821:[ 802:n 798:m 791:. 789:M 785:L 771:, 767:) 761:2 757:M 750:+ 745:2 741:L 736:( 730:4 727:1 722:= 719:p 706:n 702:m 698:n 694:m 673:, 668:2 664:) 660:n 654:m 651:( 648:3 645:+ 640:2 636:) 632:n 629:+ 626:m 623:( 620:= 608:2 604:m 600:3 597:+ 592:2 588:) 584:m 578:n 575:2 572:( 569:= 557:2 553:n 549:3 546:+ 541:2 537:) 533:n 527:m 524:2 521:( 518:= 511:p 508:4 491:n 487:m 483:n 479:m 475:n 471:m 469:( 467:m 463:m 459:n 455:n 453:) 451:n 447:m 443:n 439:m 434:n 426:m 422:p 417:b 413:a 409:n 405:b 401:a 397:m 390:b 386:a 381:b 377:a 373:p 368:p 356:Z 352:Z 344:p 336:e 332:e 328:e 324:e 320:p 316:p 312:p 305:p 298:q 294:q 290:x 286:x 282:x 278:x 274:x 270:x 266:x 262:x 258:q 254:x 250:x 246:q 242:x 238:x 234:x 226:q 222:x 218:n 214:q 210:q 206:q 202:Z 195:q 191:p 184:p 176:a 172:p 168:a 164:x 160:p 156:p 102:p 98:q 94:x 90:q 86:p 82:x 69:q 65:p 57:q 53:p 49:x

Index

User:Virginia-American
Sandbox
elementary
algebraic
number theory
congruence
main theorem
Eisenstein integers
Euler
Gauss
Disquisitiones Arithmeticae
Gauss's lemma
Gaussian sums
Fermat's little theorem
primitive root
group theory
ring
Gaussian integers
Eisenstein integers
unique factorization domains
cyclotomic number fields
cube root of unity
integers
ring
completely multiplicative function
unique factorization domain
congruence
greatest common divisor
Fermat's theorem
Legendre symbol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.