Knowledge (XXG)

Vámos matroid

Source 📝

71:. The matroid has rank 4: all sets of three or fewer elements are independent, and 65 of the 70 possible sets of four elements are also independent. The five exceptions are four-element circuits in the matroid. Four of these five circuits are formed by faces of the cuboid (omitting two opposite faces). The fifth circuit connects two opposite edges of the cuboid, each of which is shared by two of the chosen four faces. 20: 277:
schemes in which any coalition of users who can gain any information about a secret key can learn the whole key (these coalitions are the dependent sets of the matroid), and in which the shared information contains no more information than is needed to represent the key. These matroids also have
308:
follows from a certain intersection property of the flats of the matroid; the Vámos matroid provides an example of a matroid in which the intersection property is not true, but the Hahn–Banach theorem nevertheless
453: 113:
of these vectors is isomorphic to the Vámos matroid. Indeed, it is one of the smallest non-representable matroids, and served as a counterexample to a conjecture of
540: 244: 264: 206: 186: 162: 142: 691: 621: 569: 321: 536:, Prop. 6.4.10, p. 196. A proof of representability for every matroid with fewer elements or the same number but smaller rank was given by 506: 882: 731: 921: 836: 726: 616: 102:, but it is not identically self-dual (the isomorphism requires a nontrivial permutation of the matroid elements). 654: 305: 997: 114: 768:
Brickell, Ernest F.; Davenport, Daniel M. (1991), "On the classification of ideal secret sharing schemes",
538:
Fournier, Jean-Claude (1970), "Sur la représentation sur un corps des matroïdes à sept et huit éléments",
286: 44: 770: 973: 267: 110: 48: 963: 877: 52: 74:
Another way of describing the same structure is that it has two elements for each vertex of the
502: 290: 105:
The Vámos matroid cannot be represented over any field. That is, it is not possible to find a
496: 930: 891: 845: 808: 779: 740: 700: 663: 630: 578: 313: 301: 273:
The Vámos matroid is not a secret-sharing matroid. Secret-sharing matroids describe "ideal"
944: 905: 859: 820: 754: 712: 675: 642: 590: 553: 940: 901: 873: 855: 816: 750: 708: 671: 638: 586: 549: 501:, Oxford Graduate Texts in Mathematics, vol. 3, Oxford University Press, p. 76, 294: 216: 165: 221: 63:
The Vámos matroid has eight elements, which may be thought of as the eight vertices of a
977: 649: 274: 249: 209: 191: 171: 147: 127: 88: 991: 935: 896: 745: 279: 121: 75: 106: 99: 92: 919:
Bachem, Achim; Wanka, Alfred (1988), "Separation theorems for oriented matroids",
23:
The Vámos matroid; the shaded parallelograms depict its five circuits of size four
492: 28: 958:
Merino, Criel; Ramírez-Ibáñez, Marcelino; Sanchez, Guadalupe Rodríguez (2012),
634: 812: 582: 109:, and a system of eight vectors within that space, such that the matroid of 850: 704: 19: 270:
of sets of these eight elements equals the rank function of the matroid.
784: 40: 448:{\displaystyle x^{4}+4x^{3}+10x^{2}+15x+5xy+15y+10y^{2}+4y^{3}+y^{4}.} 689:
Ingleton, A. W.; Main, R. A. (1975), "Non-algebraic matroids exist",
567:
Ingleton, A. W. (1959), "A note on independence functions and rank",
68: 667: 117:
that the matroids on eight or fewer elements were all representable.
799:
Simonis, Juriaan; Ashikhmin, Alexei (1998), "Almost affine codes",
91:, meaning that all of its circuits have size at least equal to its 968: 215:
The Vámos matroid is not algebraic. That is, there do not exist a
164:
has five or more elements. However, it is not possible to test in
18: 78:, and a four-element circuit for each edge of the diamond graph. 64: 55:, who first described it in an unpublished manuscript in 1968. 844:(3): 363–365, correction, ibid. 17 (1974), no. 4, 623, 285:
The Vámos matroid has no adjoint. This means that the
834:
Cheung, Alan L. C. (1974), "Adjoints of a geometry",
652:(1982), "Complexity of matroid property algorithms", 324: 252: 224: 194: 174: 150: 130: 619:; Walton, P. N. (1981), "Detecting matroid minors", 447: 258: 238: 200: 180: 156: 136: 476:On the representation of independence structures 297:into another geometric lattice of the same rank. 8: 124:for the matroids representable over a field 43:over a set of eight elements that cannot be 692:Bulletin of the London Mathematical Society 622:Journal of the London Mathematical Society 570:Journal of the London Mathematical Society 51:. It is named after English mathematician 967: 934: 895: 849: 783: 744: 541:Comptes rendus de l'Académie des sciences 436: 423: 407: 361: 345: 329: 323: 251: 228: 223: 193: 173: 168:whether it is a minor of a given matroid 149: 129: 487: 485: 466: 98:The Vámos matroid is isomorphic to its 729:(1992), "On secret-sharing matroids", 304:. In oriented matroids, a form of the 960:The Tutte polynomial of some matroids 880:(1978), "Orientability of matroids", 603: 533: 521: 16:Matroid with no linear representation 7: 14: 883:Journal of Combinatorial Theory 801:Designs, Codes and Cryptography 732:Journal of Combinatorial Theory 293:of the Vámos matroid cannot be 246:and a set of eight elements of 837:Canadian Mathematical Bulletin 1: 936:10.1016/0012-365X(88)90006-4 897:10.1016/0095-8956(78)90080-1 746:10.1016/0095-8956(92)90007-K 1014: 495:(2006), "Example 2.1.22", 655:SIAM Journal on Computing 300:The Vámos matroid can be 635:10.1112/jlms/s2-23.2.193 316:of the Vámos matroid is 813:10.1023/A:1008244215660 583:10.1112/jlms/s1-34.1.49 120:The Vámos matroid is a 87:The Vámos matroid is a 45:represented as a matrix 851:10.4153/CMB-1974-066-5 449: 260: 240: 202: 182: 158: 138: 24: 771:Journal of Cryptology 450: 261: 241: 203: 183: 159: 139: 22: 922:Discrete Mathematics 705:10.1112/blms/7.2.144 322: 268:transcendence degree 250: 222: 192: 172: 148: 128: 978:2012arXiv1203.0090M 878:Las Vergnas, Michel 306:Hahn–Banach theorem 239:{\displaystyle L/K} 210:independence oracle 111:linear independence 785:10.1007/BF00196772 474:Vámos, P. (1968), 445: 256: 236: 198: 188:, given access to 178: 154: 134: 25: 625:, Second Series, 573:, Second Series, 291:geometric lattice 259:{\displaystyle L} 201:{\displaystyle M} 181:{\displaystyle M} 157:{\displaystyle F} 137:{\displaystyle F} 1005: 982: 980: 971: 955: 949: 947: 938: 916: 910: 908: 899: 874:Bland, Robert G. 870: 864: 862: 853: 831: 825: 823: 796: 790: 788: 787: 765: 759: 757: 748: 723: 717: 715: 686: 680: 678: 648:Jensen, Per M.; 645: 613: 607: 601: 595: 593: 564: 558: 556: 531: 525: 519: 513: 511: 489: 480: 478: 471: 454: 452: 451: 446: 441: 440: 428: 427: 412: 411: 366: 365: 350: 349: 334: 333: 314:Tutte polynomial 278:applications in 266:, such that the 265: 263: 262: 257: 245: 243: 242: 237: 232: 207: 205: 204: 199: 187: 185: 184: 179: 163: 161: 160: 155: 143: 141: 140: 135: 1013: 1012: 1008: 1007: 1006: 1004: 1003: 1002: 988: 987: 986: 985: 957: 956: 952: 918: 917: 913: 872: 871: 867: 833: 832: 828: 798: 797: 793: 767: 766: 762: 725: 724: 720: 688: 687: 683: 668:10.1137/0211014 650:Korte, Bernhard 647: 615: 614: 610: 602: 598: 566: 565: 561: 537: 532: 528: 520: 516: 509: 493:Oxley, James G. 491: 490: 483: 473: 472: 468: 463: 432: 419: 403: 357: 341: 325: 320: 319: 248: 247: 220: 219: 217:field extension 190: 189: 170: 169: 166:polynomial time 146: 145: 126: 125: 122:forbidden minor 84: 61: 17: 12: 11: 5: 1011: 1009: 1001: 1000: 998:Matroid theory 990: 989: 984: 983: 950: 929:(3): 303–310, 911: 865: 826: 807:(2): 179–197, 791: 778:(2): 123–134, 760: 727:Seymour, P. D. 718: 681: 662:(1): 184–190, 629:(2): 193–203, 617:Seymour, P. D. 608: 596: 559: 526: 524:, pp. 170–172. 514: 507: 498:Matroid Theory 481: 465: 464: 462: 459: 458: 457: 456: 455: 444: 439: 435: 431: 426: 422: 418: 415: 410: 406: 402: 399: 396: 393: 390: 387: 384: 381: 378: 375: 372: 369: 364: 360: 356: 353: 348: 344: 340: 337: 332: 328: 310: 298: 295:order-embedded 283: 275:secret sharing 271: 255: 235: 231: 227: 213: 197: 177: 153: 133: 118: 103: 96: 89:paving matroid 83: 80: 60: 57: 15: 13: 10: 9: 6: 4: 3: 2: 1010: 999: 996: 995: 993: 979: 975: 970: 965: 961: 954: 951: 946: 942: 937: 932: 928: 924: 923: 915: 912: 907: 903: 898: 893: 890:(1): 94–123, 889: 885: 884: 879: 875: 869: 866: 861: 857: 852: 847: 843: 839: 838: 830: 827: 822: 818: 814: 810: 806: 802: 795: 792: 786: 781: 777: 773: 772: 764: 761: 756: 752: 747: 742: 738: 734: 733: 728: 722: 719: 714: 710: 706: 702: 698: 694: 693: 685: 682: 677: 673: 669: 665: 661: 657: 656: 651: 644: 640: 636: 632: 628: 624: 623: 618: 612: 609: 605: 600: 597: 592: 588: 584: 580: 576: 572: 571: 563: 560: 555: 551: 548:: A810–A813, 547: 543: 542: 535: 530: 527: 523: 518: 515: 510: 508:9780199202508 504: 500: 499: 494: 488: 486: 482: 477: 470: 467: 460: 442: 437: 433: 429: 424: 420: 416: 413: 408: 404: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 370: 367: 362: 358: 354: 351: 346: 342: 338: 335: 330: 326: 318: 317: 315: 311: 307: 303: 299: 296: 292: 288: 284: 281: 280:coding theory 276: 272: 269: 253: 233: 229: 225: 218: 214: 211: 195: 175: 167: 151: 131: 123: 119: 116: 112: 108: 104: 101: 97: 94: 90: 86: 85: 81: 79: 77: 76:diamond graph 72: 70: 66: 58: 56: 54: 50: 46: 42: 38: 34: 33:Vámos matroid 30: 21: 959: 953: 926: 920: 914: 887: 886:, Series B, 881: 868: 841: 835: 829: 804: 800: 794: 775: 769: 763: 739:(1): 69–73, 736: 735:, Series B, 730: 721: 696: 690: 684: 659: 653: 626: 620: 611: 604:Oxley (2006) 599: 574: 568: 562: 545: 544:, Sér. A-B, 539: 534:Oxley (2006) 529: 522:Oxley (2006) 517: 497: 475: 469: 287:dual lattice 107:vector space 100:dual matroid 73: 62: 36: 32: 26: 699:: 144–146, 208:through an 144:, whenever 53:Peter Vámos 29:mathematics 461:References 82:Properties 59:Definition 37:Vámos cube 969:1203.0090 606:, p. 511. 577:: 49–56, 47:over any 992:Category 302:oriented 115:Ingleton 974:Bibcode 945:0955127 906:0485461 860:0373976 821:1614357 755:1182458 713:0369110 676:0646772 643:0609098 591:0101848 554:0263665 289:of the 41:matroid 943:  904:  858:  819:  753:  711:  674:  641:  589:  552:  505:  309:holds. 69:cuboid 31:, the 964:arXiv 49:field 39:is a 503:ISBN 312:The 93:rank 65:cube 931:doi 892:doi 846:doi 809:doi 780:doi 741:doi 701:doi 664:doi 631:doi 579:doi 546:270 67:or 35:or 27:In 994:: 972:, 962:, 941:MR 939:, 927:70 925:, 902:MR 900:, 888:24 876:; 856:MR 854:, 842:17 840:, 817:MR 815:, 805:14 803:, 774:, 751:MR 749:, 737:56 709:MR 707:, 695:, 672:MR 670:, 660:11 658:, 646:. 639:MR 637:, 627:23 587:MR 585:, 575:34 550:MR 484:^ 401:10 392:15 371:15 355:10 981:. 976:: 966:: 948:. 933:: 909:. 894:: 863:. 848:: 824:. 811:: 789:. 782:: 776:4 758:. 743:: 716:. 703:: 697:7 679:. 666:: 633:: 594:. 581:: 557:. 512:. 479:. 443:. 438:4 434:y 430:+ 425:3 421:y 417:4 414:+ 409:2 405:y 398:+ 395:y 389:+ 386:y 383:x 380:5 377:+ 374:x 368:+ 363:2 359:x 352:+ 347:3 343:x 339:4 336:+ 331:4 327:x 282:. 254:L 234:K 230:/ 226:L 212:. 196:M 176:M 152:F 132:F 95:.

Index


mathematics
matroid
represented as a matrix
field
Peter Vámos
cube
cuboid
diamond graph
paving matroid
rank
dual matroid
vector space
linear independence
Ingleton
forbidden minor
polynomial time
independence oracle
field extension
transcendence degree
secret sharing
coding theory
dual lattice
geometric lattice
order-embedded
oriented
Hahn–Banach theorem
Tutte polynomial

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.