Knowledge (XXG)

Valley of stability

Source 📝

1205: 1325:, corresponding to the most stable nuclides. On one side of the valley of stability, this ratio is small, corresponding to an excess of protons over neutrons in the nuclides. These nuclides tend to be unstable to β decay or electron capture, since such decay converts a proton to a neutron. The decay serves to move the nuclides toward a more stable neutron-proton ratio. On the other side of the valley of stability, this ratio is large, corresponding to an excess of neutrons over protons in the nuclides. These nuclides tend to be unstable to β decay, since such decay converts neutrons to protons. On this side of the valley of stability, β decay also serves to move nuclides toward a more stable neutron-proton ratio. 1218: 803: 1231: 3344: 2000: 2601: 2230: 2623: 1204: 816: 1217: 3357: 31: 3339:{\displaystyle {\begin{array}{l}{}\\{\ce {^{238}_{92}U->{^{234}_{90}Th}->{^{234\!m}_{91}Pa}}}{\ce {->}}{\ce {^{234}_{92}U->{^{230}_{90}Th}->}}\\{\ce {^{226}_{88}Ra->{^{222}_{86}Rn}->{^{218}_{84}Po}->{^{214}_{82}Pb}->{^{214}_{83}Bi}->}}\\{\ce {^{214}_{84}Po->{^{210}_{82}Pb}->{^{210}_{83}Bi}->{^{210}_{84}Po}->{^{206}_{82}Pb}}}\\{}\end{array}}} 1230: 1173:, to be stable. The valley of stability is formed by the negative of binding energy, the binding energy being the energy required to break apart the nuclide into its proton and neutron components. The stable nuclides have high binding energy, and these nuclides lie along the bottom of the valley of stability. Nuclides with weaker binding energy have combinations of 2371:
drip lines, no nuclei can exist. The location of the neutron drip line is not well known for most of the Segrè chart, whereas the proton and alpha drip lines have been measured for a wide range of elements. Drip lines are defined for protons, neutrons, and alpha particles, and these all play important roles in nuclear physics.
1197:
that take the resulting nuclides sequentially down the slopes of the valley of stability. The sequence of decays take nuclides toward greater binding energies, and the nuclides terminating the chain are stable. The valley of stability provides both a conceptual approach for how to organize the myriad
1223:
Chart of nuclides by half life. Black squares represent nuclides with the longest half lives hence they correspond to the most stable nuclides. The most stable, long-lived nuclides lie along the floor of the valley of stability. Nuclides with more than 20 protons must have more neutrons than protons
2370:
The boundaries of the valley of stability, that is, the upper limits of the valley walls, are the neutron drip line on the neutron-rich side, and the proton drip line on the proton-rich side. The nucleon drip lines are at the extremes of the neutron-proton ratio. At neutron–proton ratios beyond the
2270:
Te are unstable with an excess of neutrons, while those on the right are unstable with an excess of protons. A nuclide on the left therefore undergoes β decay, which converts a neutron to a proton, hence shifts the nuclide to the right and toward greater stability. A nuclide on the right similarly
2225:
These reactions correspond to the decay of a neutron to a proton, or the decay of a proton to a neutron, within the nucleus, respectively. These reactions begin on one side or the other of the valley of stability, and the directions of the reactions are to move the initial nuclides down the valley
2011:
The figure at right shows the average binding energy per nucleon as a function of atomic mass number along the line of beta stability, that is, along the bottom of the valley of stability. For very small atomic mass number (H, He, Li), binding energy per nucleon is small, and this energy increases
1210:
Chart of nuclides (isotopes) by binding energy, depicting the valley of stability. The diagonal line corresponds to equal numbers of neutrons and protons. Dark blue squares represent nuclides with the greatest binding energy, hence they correspond to the most stable nuclides. The binding energy is
3416:
near that of uranium or other fissionable nuclei have too many neutrons to be stable; this neutron excess is why multiple free neutrons but no free protons are usually emitted in the fission process, and it is also why many fission product nuclei undergo a long chain of β decays, each of which
2374:
The difference in binding energy between neighboring nuclides increases as the sides of the valley of stability are ascended, and correspondingly the nuclide half-lives decrease, as indicated in the figure above. If one were to add nucleons one at a time to a given nuclide, the process will
1236:
Chart of nuclides by type of decay. Black squares are stable nuclides. Nuclides with excessive neutrons or protons are unstable to β (light blue) or β (green) decay, respectively. At high atomic number, alpha emission (orange) or spontaneous fission (dark blue) become common decay
2402:
in West Germany. Research in the field flourished after this breakthrough, and to date more than 25 nuclides have been found to exhibit proton emission. The study of proton emission has aided the understanding of nuclear deformation, masses and structure, and it is an example of
1713: 1290:. By acting to separate protons from one another, the neutrons within a nuclide play an essential role in stabilizing nuclides. With increasing atomic number, even greater numbers of neutrons are required to obtain stability. The heaviest stable element, 2024:(26 protons, 30 neutrons) are a close second and third. These nuclides lie at the very bottom of the valley of stability. From this bottom, the average binding energy per nucleon slowly decreases with increasing atomic mass number. The heavy nuclide 2604:
The uranium-238 series is a series of α (N and Z less 2) and β− decays (N less 1, Z plus 1) to nuclides that are successively deeper into the valley of stability. The series terminates at lead-206, a stable nuclide at the bottom of the valley of
2375:
eventually lead to a newly formed nuclide that is so unstable that it promptly decays by emitting a proton (or neutron). Colloquially speaking, the nucleon has 'leaked' or 'dripped' out of the nucleus, hence giving rise to the term "drip line".
3448:
for each fission that has occurred. These antineutrinos come from the decay of fission products that, as their nuclei progress down a β decay chain toward the valley of stability, emit an antineutrino along with each β particle. In 1956,
2553:" of neutrons and protons. One possible magic number of neutrons for spherical nuclei is 184, and some possible matching proton numbers are 114, 120 and 126. These configurations imply that the most stable spherical isotopes would be 1141:
is less than that of the original nuclide. The difference between the initial and final nuclide binding energies is carried away by the kinetic energies of the decay products, often the beta particle and its associated neutrino.
3388:, usually with the release of additional neutrons. Like all nuclides with a high atomic number, these uranium nuclei require many neutrons to bolster their stability, so they have a large neutron-proton ratio ( 2233:
The negative of binding energy per nucleon for nuclides with atomic mass number 125 plotted as a function of atomic number. The profile of binding energy across the valley of stability is roughly a parabola.
1726:
is often divided by the mass number to obtain binding energy per nucleon for comparisons of binding energies between nuclides. Each of the terms in this formula has a theoretical basis. The coefficients
1959: 1286:(C) is composed of six neutrons and six protons, for example. Protons have a positive charge, hence within a nuclide with many protons there are large repulsive forces between protons arising from the 1419: 900:. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most 955:. The Segrè chart may be considered a map of the nuclear valley. The region of proton and neutron combinations outside of the valley of stability is referred to as the sea of instability. 2437:). Since only a neutron is lost in this process, the atom does not gain or lose any protons, and so it does not become an atom of a different element. Instead, the atom will become a new 1531: 4185: 2348:
carries away two neutrons and two protons, leaving a lighter nuclide. Since heavy nuclides have many more neutrons than protons, α decay increases a nuclide's neutron-proton ratio.
1161:
forms a rough initial line defining stable nuclides. The greater the number of protons, the more neutrons are required to stabilize a nuclide; nuclides with larger values for
2530:
that are relatively close to each other. Energy levels from quantum states in two different shells will be separated by a relatively large energy gap. So when the number of
1868: 912:(β or β). The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the 2577:
of 184 are thought to be magic). This doubly magic configuration is the most likely to have a very long half-life. The next lighter doubly magic spherical nucleus is
1994: 1833: 1806: 1779: 1752: 1503: 1476: 1449: 4198:
by Mackintosh, Ai-Khalili, Jonson, and Pena describes the valley of stability and its implications (Baltimore, Maryland:The Johns Hopkins University Press), 2001.
1961:. This equation for the neutron-proton ratio shows that in stable nuclides the number of neutrons is greater than the number of protons by a factor that scales as 2546:
per nucleon will reach a local maximum and thus that particular configuration will have a longer lifetime than nearby isotopes that do not possess filled shells.
1030:
greater than 10 years, and there are many combinations of protons and neutrons that form nuclides that are unstable. A common example of an unstable nuclide is
1255:
that binds nucleons together is a complicated function depending on nucleon type, spin state, electric charge, momentum, etc. and with contributions from non-
3847: 3444:
When fission reactions are sustained at a given rate, such as in a liquid-cooled or solid fuel nuclear reactor, the nuclear fuel in the system produces many
3750:
Rare Isotope Science Assessment; Committee Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council (2007).
2526:
is built up in "shells" in a manner similar to the structure of the much larger electron shells in atoms. In both cases, shells are just groups of quantum
761: 847: 1275:
are unbound. The nuclear force is not sufficiently strong to form either p-p or n-n bound states, or equivalently, the nuclear force does not form a
3620: 2399: 802: 4022: 3980: 3458: 1153:
as a function of neutron and proton numbers. Most stable nuclides have roughly equal numbers of protons and neutrons, so the line for which
3897: 1198:
stable and unstable nuclides into a coherent picture and an intuitive way to understand how and why sequences of radioactive decay occur.
4203: 110: 4061: 3603: 3550: 3408:, but have atomic numbers that are approximately half that of uranium. Isotopes with the atomic number of the fission products and an 3761: 2344:
As in β decay, the decay product X′ has greater binding energy and it is closer to the middle of the valley of stability. The
1718:
The difference between the mass of a nucleus and the sum of the masses of the neutrons and protons that comprise it is known as the
4172: 3353:
move further down the valley of stability towards the line of beta stability. Pb is stable and lies on the line of beta stability.
1247:
The protons and neutrons that comprise an atomic nucleus behave almost identically within the nucleus. The approximate symmetry of
1873:
The binding energy expression gives a quantitative estimate for the neutron-proton ratio. The energy is a quadratic expression in
1880: 414: 1513:
is used here. The binding energy is subtracted from the sum of the proton and neutron masses because the mass of the nucleus is
2137:
of the decaying nucleus, and X and X′ are the initial and final nuclides, respectively. For β decay, the generic form is
2028:
is not stable, but is slow to decay with a half-life of 4.5 billion years. It has relatively small binding energy per nucleon.
606: 2254:
The figure at right shows the average binding energy per nucleon across the valley of stability for nuclides with mass number
1181:
that lie off of the line of stability and further up the sides of the valley of stability. Unstable nuclides can be formed in
311: 3697:
Chowdhury, P. Roy; Samanta, C.; Basu, D. N. (2008). "Search for long lived heaviest nuclei beyond the valley of stability".
1345: 1251:
treats these particles as identical, but in a different quantum state. This symmetry is only approximate, however, and the
2489: 840: 2003:
The negative of binding energy per nucleon for the stable nuclides located along the bottom of the valley of stability.
2589:
The valley of stability can be helpful in interpreting and understanding properties of nuclear decay processes such as
1510: 2390:
as early as 1969, no other proton-emitting states were found until 1981, when the proton radioactive ground states of
2383: 1334: 624: 594: 95: 671: 4094: 1708:{\displaystyle E_{B}=a_{V}A-a_{S}A^{2/3}-a_{C}{\frac {Z^{2}}{A^{1/3}}}-a_{A}{\frac {(A-2Z)^{2}}{A}}\pm \delta (A,Z)} 221: 3839: 4069:, DOE-HDBK-1019/1-93, U.S. Department of Energy, January 1993, p. 29 (p. 133 of .pdf format), archived from 905: 557: 1322: 958:
Scientists have long searched for long-lived heavy isotopes outside of the valley of stability, hypothesized by
256: 4218: 4140: 833: 820: 552: 2506:
The island of stability is a region outside the valley of stability where it is predicted that a set of heavy
1999: 3397: 547: 444: 409: 105: 1259:. The nuclear force is not a fundamental force of nature, but a consequence of the residual effects of the 601: 4223: 2550: 2511: 1026:. Not all nuclides are stable, however. According to Byrne, stable nuclides are defined as those having a 963: 251: 216: 2259: 2235: 1130: 726: 611: 503: 962:
in the late 1960s. These relatively stable nuclides are expected to have particular configurations of "
666: 3938: 3870: 3812: 3716: 3655: 2515: 2243: 990:
nuclides that occur naturally on earth, each corresponding to a unique number of protons, called the
736: 711: 528: 2600: 3501: 2519: 2501: 2453: 1315: 971: 933: 631: 510: 404: 347: 340: 330: 266: 100: 3457:
exploited the (anticipated) intense flux of antineutrinos from a nuclear reactor in the design of
2229: 2007:
is about the most stable nuclide, and it is about the lowest point within the valley of stability.
1838: 1318:). Neutron number increases along the line of beta stability at a faster rate than atomic number. 1137:
are emitted. An essential property of this and all nuclide decays is that the total energy of the
3732: 3706: 3679: 2378:
Proton emission is not seen in naturally occurring nuclides. Proton emitters can be produced via
1302: = 124, for example. For this reason, the valley of stability does not follow the line 1129:
In this form of decay, the original element becomes a new chemical element in a process known as
987: 574: 569: 384: 4113: 3904: 2386:(linac). Although prompt (i.e. not beta-delayed) proton emission was observed from an isomer in 1282:
Stable nuclides require approximately equal numbers of protons and neutrons. The stable nuclide
4228: 4199: 4018: 3976: 3757: 3671: 3599: 3546: 3506: 2609:
Radioactive decay often proceeds via a sequence of steps known as a decay chain. For example,
2488:. Delayed neutron decay can occur at times from a few milliseconds to a few minutes. The U.S. 2404: 2357: 2274:
Heavy nuclides are susceptible to α decay, and these nuclear reactions have the generic form,
948: 913: 766: 746: 741: 701: 579: 318: 306: 289: 261: 231: 72: 1964: 4070: 4012: 3946: 3878: 3820: 3724: 3663: 3481: 3450: 3369: 2379: 2365: 1291: 1287: 1190: 1182: 959: 921: 756: 686: 439: 357: 325: 145: 77: 4038: 1811: 1784: 1757: 1730: 1481: 1454: 1427: 3486: 3365: 2594: 2485: 2477: 2465: 2361: 917: 861: 751: 731: 706: 636: 523: 451: 397: 362: 22: 952: 904:. The line of stable nuclides down the center of the valley of stability is known as the 4181: 3942: 3874: 3816: 3720: 3659: 3540: 3496: 3373: 2574: 2543: 2523: 2457: 2345: 1522: 1506: 1276: 1256: 1150: 999: 967: 941: 901: 807: 661: 656: 535: 468: 276: 211: 188: 175: 162: 62: 40: 2271:
undergoes β decay, which shifts the nuclide to the left and toward greater stability.
4212: 3736: 3491: 3350: 2570: 2226:
walls towards a region of greater stability, that is, toward greater binding energy.
2134: 2016:(28 protons, 34 neutrons) has the highest mean binding energy of all nuclides, while 1521:, is necessary for a stable nucleus; within a nucleus, the nuclides are trapped by a 1267:, a bound state of a proton (p) and a neutron (n) is stable, exotic nuclides such as 1252: 1138: 991: 983: 925: 889: 786: 781: 776: 771: 721: 379: 352: 196: 135: 88: 67: 3683: 1263:
that surround the nucleons. One consequence of these complications is that although
4102:, ORNL/TM-2004/234, Oak Ridge National Laboratory, p. 1 (p. 11 of .pdf format) 2590: 2566: 2539: 2527: 2446: 2442: 2411: 2391: 1260: 1134: 716: 691: 676: 421: 369: 226: 2514:
of protons and neutrons will locally reverse the trend of decreasing stability in
1525:. A semi-empirical mass formula states that the binding energy will take the form 951:. The chart of those nuclides is also known as a Segrè chart, after the physicist 3929:
Fewell, M. P. (1995). "The atomic nuclide with the highest mean binding energy".
3751: 3667: 3441:
are, respectively, the numbers of neutrons and protons contained in the nucleus.
3778: 3476: 3471: 3454: 3377: 2610: 2469: 2395: 2130: 2025: 1719: 1518: 1194: 1039: 1007: 929: 681: 374: 296: 149: 3728: 3545:. Baltimore, Maryland: The Johns Hopkins University Press. pp. Chapter 6. 2492:
defines a prompt neutron as a neutron emerging from fission within 10 seconds.
4191: 3824: 3566: 3356: 2562: 2558: 2481: 1272: 1186: 1035: 937: 909: 651: 641: 498: 478: 301: 171: 30: 982:
All atomic nuclei are composed of protons and neutrons bound together by the
3643: 2554: 2387: 2013: 1283: 1264: 1043: 1031: 1027: 696: 646: 473: 461: 456: 335: 3675: 3596:
Neutrons, Nuclei and Matter: An Exploration of the Physics of Slow Neutrons
4171: 3753:
Scientific Opportunities with a Rare-Isotope Facility in the United States
3972: 3882: 3445: 3349:
With each step of this sequence of reactions, energy is released and the
2628: 2614: 2507: 2426: 1268: 4184:– a virtual "flight" through 3D representation of the nuclide chart, by 4014:
Proton radioactivity, Ch. 3 of Nuclear Decay Modes, Ed. Dorin N. Poenaru
3385: 3380:
absorbs a neutron and breaks into nuclides of lighter elements such as
2531: 2473: 2461: 2438: 2021: 2017: 2004: 1248: 897: 885: 158: 131: 123: 55: 45: 4175: 3381: 3289: 3241: 3193: 3149: 3097: 3049: 3008: 2967: 2928: 2870: 2816: 2768: 2711: 2657: 2581:-208, the heaviest known stable nucleus and most stable heavy metal. 2535: 2421: 1294:(Pb), has many more neutrons than protons. The stable nuclide Pb has 893: 50: 3950: 3302: 3254: 3206: 3165: 3110: 3062: 3021: 2980: 2939: 2896: 2842: 2781: 2724: 2683: 3711: 3355: 2599: 2228: 1998: 908:. The sides of the valley correspond to increasing instability to 947:
The nuclides within the valley of stability encompass the entire
3461:
to detect and confirm the existence of these elusive particles.
2578: 4120:. Department of Physics and Astronomy, Georgia State University 2613:
decays to Th which decays to Pa and so on, eventually reaching
2518:. The hypothesis for the island of stability is based upon the 1478:
are the rest mass of a proton and a neutron, respectively, and
4063:
DOE Fundamentals Handbook - Nuclear Physics and Reactor Theory
4017:. Institute of Physics Publishing, Bristol. pp. 143–203. 2468:
event. Prompt neutrons emerge from the fission of an unstable
3861:
M. Schirber (2012). "Focus: Nuclei Emit Paired-up Neutrons".
3539:
Mackintosh, R.; Ai-Khalili, J.; Jonson, B.; Pena, T. (2001).
3372:
are accompanied by the release of neutrons that sustain the
1954:{\displaystyle N/Z\approx 1+{\frac {a_{C}}{2a_{A}}}A^{2/3}} 4192:
The nuclear landscape: The variety and abundance of nuclei
1321:
The line of beta stability follows a particular curve of
1189:, for example. Such nuclides often decay in sequences of 1014:, of a nuclide is the sum of atomic and neutron numbers, 1149:
is a way of organizing all of the nuclides according to
892:
based on their binding energy. Nuclides are composed of
3642:
Seaborg, G. T.; Loveland, W.; Morrissey, D. J. (1979).
2031:
For β decay, nuclear reactions have the generic form
1414:{\displaystyle m=Zm_{p}+Nm_{n}-{\frac {E_{B}}{c^{2}}}} 2626: 1967: 1883: 1841: 1814: 1787: 1760: 1733: 1534: 1484: 1457: 1430: 1348: 1211:
greatest along the floor of the valley of stability.
1877:that is minimized when the neutron-proton ratio is 924:. Regions of instability within the valley at high 3338: 1988: 1953: 1862: 1835:and a coefficient that appears in the formula for 1827: 1800: 1773: 1746: 1707: 1497: 1470: 1443: 1413: 936:. The shape of the valley is roughly an elongated 2754: 2480:can occur within the same context, emitted after 2258: = 125. At the bottom of this curve is 2565:-310. Of particular note is Fl, which would be " 2410:Two examples of nuclides that emit neutrons are 3360:Nuclear fission seen with a uranium-235 nucleus 3803:Seaborg, G. T. (1987). "Superheavy elements". 3376:. Fission occurs when a heavy nuclide such as 2266:Te), which is stable. Nuclides to the left of 1279:deep enough to bind these identical nucleons. 998:, and a unique number of neutrons, called the 916:, where nuclides become so unstable they emit 944:as a function of neutron and atomic numbers. 841: 8: 4141:"The Neutrino: From Poltergeist to Particle" 3898:"Nuclear Masses and Binding Energy Lesson 3" 3534: 3532: 3530: 3528: 3526: 3524: 3522: 884:) is a characterization of the stability of 1165:require an even larger number of neutrons, 3962: 3960: 1339:The mass of an atomic nucleus is given by 848: 834: 18: 3710: 3598:. Mineola, New York: Dover Publications. 3330: 3309: 3296: 3284: 3268: 3259: 3248: 3236: 3220: 3211: 3200: 3188: 3172: 3159: 3144: 3129: 3115: 3104: 3092: 3076: 3067: 3056: 3044: 3028: 3015: 3003: 2987: 2974: 2962: 2946: 2923: 2908: 2890: 2881: 2865: 2849: 2836: 2827: 2811: 2796: 2786: 2775: 2763: 2762: 2753: 2738: 2729: 2718: 2706: 2690: 2677: 2668: 2652: 2637: 2631: 2627: 2625: 1976: 1972: 1966: 1941: 1937: 1924: 1910: 1904: 1887: 1882: 1840: 1819: 1813: 1792: 1786: 1765: 1759: 1738: 1732: 1672: 1650: 1644: 1625: 1621: 1611: 1605: 1599: 1582: 1578: 1568: 1552: 1539: 1533: 1517:than that sum. This property, called the 1489: 1483: 1462: 1456: 1435: 1429: 1403: 1393: 1387: 1378: 1362: 1347: 4196:Nucleus: A trip into the heart of matter 3840:"Greetings From the Island of Stability" 3623:. Lawrence Livermore National Laboratory 3542:Nucleus: A trip into the heart of matter 3396:). The nuclei resulting from a fission ( 4093:Mihalczo, John T. (November 19, 2004), 3589: 3587: 3585: 3583: 3518: 1200: 21: 4139:Reines, Frederick (December 8, 1995). 2476:heavy nucleus almost instantaneously. 2542:of a given shell in the nucleus, the 1329:Neutrons, protons, and binding energy 16:Characterization of nuclide stability 7: 3779:"Climbing out of the nuclear valley" 2449:after emitting one of its neutrons. 2398:were observed at experiments at the 1133:and a beta particle and an electron 3644:"Superheavy elements: a crossroads" 3621:"Discovery of Elements 113 and 115" 928:also include radioactive decay by 14: 4176:The Live Chart of Nuclides - IAEA 2441:of the original element, such as 2012:rapidly with atomic mass number. 4170: 4096:Radiation Detection From Fission 4000:. New York: John Wiley and Sons. 3850:from the original on 2023-10-13. 1229: 1216: 1203: 815: 814: 801: 29: 4182:The Valley of Stability (video) 3967:Konya, J.; Nagy, N. M. (2012). 1314: = 20 is the element 2020:(26 protons, 32 neutrons) and 1857: 1845: 1702: 1690: 1669: 1653: 1: 2516:elements heavier than uranium 2490:Nuclear Regulatory Commission 2352:Proton and neutron drip lines 940:corresponding to the nuclide 3998:Introductory Nuclear Physics 3756:. National Academies Press. 3668:10.1126/science.203.4382.711 3368:processes that occur within 2384:linear particle accelerators 2250:Sb) is unstable to β− decay. 1870:are determined empirically. 1863:{\displaystyle \delta (A,Z)} 3969:Nuclear and Radio-chemistry 3931:American Journal of Physics 2549:A filled shell would have " 1335:Semi-empirical mass formula 595:High-energy nuclear physics 4245: 3729:10.1103/PhysRevC.77.044603 2499: 2355: 1332: 4178:with filter on decay type 3896:Oregon State University. 3825:10.1080/00107518708211038 3323: 3282: 3234: 3186: 3143: 3090: 3042: 3001: 2960: 2922: 2863: 2810: 2759: 2704: 2651: 2522:, which implies that the 2464:immediately emitted by a 4194:– Chapter 6 of the book 4114:"Shell Model of Nucleus" 3316: 3310: 3275: 3269: 3227: 3221: 3179: 3173: 3136: 3130: 3083: 3077: 3035: 3029: 2994: 2988: 2953: 2947: 2915: 2909: 2856: 2850: 2803: 2797: 2745: 2739: 2697: 2691: 2644: 2638: 3568:The valley of stability 1989:{\displaystyle A^{2/3}} 1511:mass–energy equivalence 970:, and form a so-called 106:Interacting boson model 3361: 3340: 3307: 3266: 3218: 3170: 3122: 3074: 3026: 2985: 2944: 2901: 2847: 2793: 2736: 2688: 2606: 2251: 2008: 1990: 1955: 1864: 1829: 1802: 1775: 1748: 1709: 1499: 1472: 1445: 1415: 1310:for A larger than 40 ( 1046:of about 5,730 years: 906:line of beta stability 3359: 3341: 3285: 3237: 3189: 3145: 3093: 3045: 3004: 2963: 2924: 2866: 2812: 2764: 2707: 2653: 2603: 2538:completely fills the 2478:Delayed neutron decay 2242:Te) is stable, while 2232: 2002: 1991: 1956: 1865: 1830: 1828:{\displaystyle a_{A}} 1803: 1801:{\displaystyle a_{C}} 1776: 1774:{\displaystyle a_{S}} 1749: 1747:{\displaystyle a_{V}} 1710: 1500: 1498:{\displaystyle E_{B}} 1473: 1471:{\displaystyle m_{n}} 1446: 1444:{\displaystyle m_{p}} 1416: 1131:nuclear transmutation 882:beta stability valley 493:High-energy processes 191:– equal all the above 89:Models of the nucleus 3996:K. S. Krane (1988). 3910:on 30 September 2015 3883:10.1103/physics.5.30 3805:Contemporary Physics 3400:) inherit a similar 2624: 2382:, usually utilizing 1965: 1881: 1839: 1812: 1785: 1758: 1731: 1532: 1509:of the nucleus. The 1482: 1455: 1428: 1346: 1323:neutron–proton ratio 1298: = 82 and 1243:The role of neutrons 529:nuclear astrophysics 4156:Nobel Prize lecture 4011:S. Hofmann (1996). 3943:1995AmJPh..63..653F 3875:2012PhyOJ...5...30S 3817:1987ConPh..28...33S 3777:Boutin, C. (2002). 3721:2008PhRvC..77d4603C 3660:1979Sci...203..711S 3502:Nuclear shell model 3417:converts a nucleus 3306: 3301: 3265: 3253: 3217: 3205: 3169: 3164: 3121: 3109: 3073: 3061: 3025: 3020: 2984: 2979: 2943: 2938: 2900: 2895: 2846: 2841: 2792: 2780: 2735: 2723: 2687: 2682: 2520:nuclear shell model 2502:Island of stability 2496:Island of stability 2454:nuclear engineering 1147:valley of stability 1145:The concept of the 972:island of stability 934:spontaneous fission 866:valley of stability 511:Photodisintegration 434:Capturing processes 348:Spontaneous fission 341:Internal conversion 272:Valley of stability 267:Island of stability 101:Nuclear shell model 4146:. Nobel Foundation 4039:"Neutron Emission" 3975:. pp. 74–75. 3844:The New York Times 3594:Byrne, J. (2011). 3362: 3336: 3334: 2607: 2252: 2009: 1986: 1951: 1860: 1825: 1798: 1771: 1744: 1705: 1495: 1468: 1441: 1411: 914:nuclear drip lines 808:Physics portal 602:Quark–gluon plasma 385:Radiogenic nuclide 4024:978-0-7503-0338-5 3982:978-0-12-391487-3 3699:Physical Review C 3654:(4382): 711–717. 3507:Nuclear drip line 3315: 3314: 3313: 3299: 3295: 3274: 3273: 3272: 3251: 3247: 3226: 3225: 3224: 3203: 3199: 3178: 3177: 3176: 3162: 3155: 3135: 3134: 3133: 3107: 3103: 3082: 3081: 3080: 3059: 3055: 3034: 3033: 3032: 3018: 3014: 2993: 2992: 2991: 2977: 2973: 2952: 2951: 2950: 2934: 2914: 2913: 2912: 2893: 2889: 2855: 2854: 2853: 2839: 2835: 2802: 2801: 2800: 2778: 2774: 2757: 2744: 2743: 2742: 2721: 2717: 2696: 2695: 2694: 2680: 2676: 2643: 2642: 2641: 2405:quantum tunneling 2380:nuclear reactions 2358:Nuclear drip line 1931: 1682: 1635: 1409: 949:table of nuclides 870:belt of stability 868:(also called the 858: 857: 544: 290:Radioactive decay 246:Nuclear stability 73:Nuclear structure 4236: 4174: 4159: 4158: 4153: 4151: 4145: 4136: 4130: 4129: 4127: 4125: 4110: 4104: 4103: 4101: 4090: 4084: 4083: 4082: 4081: 4075: 4068: 4058: 4052: 4051: 4049: 4048: 4043: 4035: 4029: 4028: 4008: 4002: 4001: 3993: 3987: 3986: 3964: 3955: 3954: 3926: 3920: 3919: 3917: 3915: 3909: 3903:. Archived from 3902: 3893: 3887: 3886: 3858: 3852: 3851: 3835: 3829: 3828: 3800: 3794: 3793: 3791: 3789: 3774: 3768: 3767: 3747: 3741: 3740: 3714: 3694: 3688: 3687: 3639: 3633: 3632: 3630: 3628: 3619:Shaughnessy, D. 3616: 3610: 3609: 3591: 3578: 3577: 3576: 3575: 3563: 3557: 3556: 3536: 3482:Neutron emission 3398:fission products 3370:nuclear reactors 3345: 3343: 3342: 3337: 3335: 3331: 3325: 3324: 3311: 3308: 3300: 3297: 3293: 3283: 3270: 3267: 3264: 3263: 3252: 3249: 3245: 3235: 3222: 3219: 3216: 3215: 3204: 3201: 3197: 3187: 3174: 3171: 3163: 3160: 3153: 3131: 3124: 3123: 3120: 3119: 3108: 3105: 3101: 3091: 3078: 3075: 3072: 3071: 3060: 3057: 3053: 3043: 3030: 3027: 3019: 3016: 3012: 3002: 2989: 2986: 2978: 2975: 2971: 2961: 2948: 2945: 2932: 2910: 2903: 2902: 2894: 2891: 2887: 2886: 2885: 2864: 2851: 2848: 2840: 2837: 2833: 2832: 2831: 2798: 2795: 2794: 2791: 2790: 2779: 2776: 2772: 2761: 2760: 2758: 2755: 2740: 2737: 2734: 2733: 2722: 2719: 2715: 2705: 2692: 2689: 2681: 2678: 2674: 2673: 2672: 2639: 2632: 2486:fission products 2436: 2434: 2424: 2419: 2366:neutron emission 2340: 2339: 2338: 2331: 2330: 2321: 2320: 2319: 2312: 2311: 2309: 2297: 2296: 2295: 2288: 2287: 2285: 2221: 2220: 2219: 2211: 2210: 2202: 2201: 2200: 2193: 2192: 2184: 2183: 2182: 2175: 2174: 2172: 2160: 2159: 2158: 2151: 2150: 2148: 2128: 2124: 2117: 2116: 2115: 2108: 2105: 2104: 2096: 2095: 2094: 2087: 2086: 2078: 2077: 2076: 2069: 2068: 2066: 2054: 2053: 2052: 2045: 2044: 2042: 1995: 1993: 1992: 1987: 1985: 1984: 1980: 1960: 1958: 1957: 1952: 1950: 1949: 1945: 1932: 1930: 1929: 1928: 1915: 1914: 1905: 1891: 1876: 1869: 1867: 1866: 1861: 1834: 1832: 1831: 1826: 1824: 1823: 1807: 1805: 1804: 1799: 1797: 1796: 1780: 1778: 1777: 1772: 1770: 1769: 1753: 1751: 1750: 1745: 1743: 1742: 1714: 1712: 1711: 1706: 1683: 1678: 1677: 1676: 1651: 1649: 1648: 1636: 1634: 1633: 1629: 1616: 1615: 1606: 1604: 1603: 1591: 1590: 1586: 1573: 1572: 1557: 1556: 1544: 1543: 1504: 1502: 1501: 1496: 1494: 1493: 1477: 1475: 1474: 1469: 1467: 1466: 1450: 1448: 1447: 1442: 1440: 1439: 1420: 1418: 1417: 1412: 1410: 1408: 1407: 1398: 1397: 1388: 1383: 1382: 1367: 1366: 1233: 1220: 1207: 1183:nuclear reactors 1125: 1124: 1123: 1116: 1113: 1112: 1104: 1103: 1102: 1095: 1094: 1086: 1085: 1084: 1077: 1076: 1067: 1066: 1065: 1058: 1057: 986:. There are 286 960:Glenn T. Seaborg 942:binding energies 850: 843: 836: 823: 818: 817: 810: 806: 805: 682:Skłodowska-Curie 542: 358:Neutron emission 126:' classification 78:Nuclear reaction 33: 19: 4244: 4243: 4239: 4238: 4237: 4235: 4234: 4233: 4219:Nuclear physics 4209: 4208: 4167: 4162: 4149: 4147: 4143: 4138: 4137: 4133: 4123: 4121: 4112: 4111: 4107: 4099: 4092: 4091: 4087: 4079: 4077: 4073: 4066: 4060: 4059: 4055: 4046: 4044: 4041: 4037: 4036: 4032: 4025: 4010: 4009: 4005: 3995: 3994: 3990: 3983: 3966: 3965: 3958: 3951:10.1119/1.17828 3928: 3927: 3923: 3913: 3911: 3907: 3900: 3895: 3894: 3890: 3860: 3859: 3855: 3837: 3836: 3832: 3802: 3801: 3797: 3787: 3785: 3776: 3775: 3771: 3764: 3749: 3748: 3744: 3696: 3695: 3691: 3641: 3640: 3636: 3626: 3624: 3618: 3617: 3613: 3606: 3593: 3592: 3581: 3573: 3571: 3565: 3564: 3560: 3553: 3538: 3537: 3520: 3516: 3511: 3487:Proton emission 3467: 3333: 3332: 3327: 3326: 3255: 3207: 3126: 3125: 3111: 3063: 2905: 2904: 2877: 2823: 2782: 2749: 2725: 2664: 2634: 2633: 2622: 2621: 2595:nuclear fission 2587: 2504: 2498: 2466:nuclear fission 2432: 2430: 2417: 2415: 2368: 2362:proton emission 2356:Main articles: 2354: 2337: 2335: 2334: 2333: 2329: 2326: 2325: 2324: 2323: 2318: 2316: 2315: 2314: 2310: 2304: 2302: 2301: 2300: 2299: 2294: 2292: 2291: 2290: 2286: 2283: 2281: 2280: 2279: 2278: 2269: 2265: 2249: 2241: 2218: 2215: 2214: 2213: 2209: 2207: 2206: 2205: 2204: 2199: 2197: 2196: 2195: 2191: 2189: 2188: 2187: 2186: 2181: 2179: 2178: 2177: 2173: 2167: 2165: 2164: 2163: 2162: 2157: 2155: 2154: 2153: 2149: 2146: 2144: 2143: 2142: 2141: 2126: 2122: 2114: 2111: 2110: 2109: 2106: 2103: 2101: 2100: 2099: 2098: 2093: 2091: 2090: 2089: 2085: 2083: 2082: 2081: 2080: 2075: 2073: 2072: 2071: 2067: 2061: 2059: 2058: 2057: 2056: 2051: 2049: 2048: 2047: 2043: 2040: 2038: 2037: 2036: 2035: 1968: 1963: 1962: 1933: 1920: 1916: 1906: 1879: 1878: 1874: 1837: 1836: 1815: 1810: 1809: 1788: 1783: 1782: 1761: 1756: 1755: 1734: 1729: 1728: 1725: 1668: 1652: 1640: 1617: 1607: 1595: 1574: 1564: 1548: 1535: 1530: 1529: 1485: 1480: 1479: 1458: 1453: 1452: 1431: 1426: 1425: 1399: 1389: 1374: 1358: 1344: 1343: 1337: 1331: 1245: 1238: 1234: 1225: 1221: 1212: 1208: 1122: 1119: 1118: 1117: 1114: 1111: 1109: 1108: 1107: 1106: 1101: 1099: 1098: 1097: 1093: 1091: 1090: 1089: 1088: 1083: 1081: 1080: 1079: 1075: 1072: 1071: 1070: 1069: 1064: 1062: 1061: 1060: 1056: 1053: 1052: 1051: 1050: 1034:that decays by 980: 968:neutron numbers 930:alpha radiation 922:single neutrons 862:nuclear physics 854: 813: 800: 799: 792: 791: 627: 617: 616: 597: 587: 586: 531: 527: 524:Nucleosynthesis 516: 515: 494: 486: 485: 435: 427: 426: 400: 398:Nuclear fission 390: 389: 363:Proton emission 292: 282: 281: 247: 239: 238: 140: 127: 116: 115: 91: 23:Nuclear physics 17: 12: 11: 5: 4242: 4240: 4232: 4231: 4226: 4221: 4211: 4210: 4207: 4206: 4204:0-801 8-6860-2 4189: 4179: 4166: 4165:External links 4163: 4161: 4160: 4131: 4105: 4085: 4053: 4030: 4023: 4003: 3988: 3981: 3956: 3921: 3888: 3853: 3838:Sacks (2004). 3830: 3795: 3769: 3762: 3742: 3689: 3634: 3611: 3605:978-0486482385 3604: 3579: 3558: 3552:0-801 8-6860-2 3551: 3517: 3515: 3512: 3510: 3509: 3504: 3499: 3497:Stable nuclide 3494: 3489: 3484: 3479: 3474: 3468: 3466: 3463: 3374:chain reaction 3351:decay products 3347: 3346: 3329: 3328: 3322: 3319: 3305: 3292: 3288: 3281: 3278: 3262: 3258: 3244: 3240: 3233: 3230: 3214: 3210: 3196: 3192: 3185: 3182: 3168: 3158: 3152: 3148: 3142: 3139: 3128: 3127: 3118: 3114: 3100: 3096: 3089: 3086: 3070: 3066: 3052: 3048: 3041: 3038: 3024: 3011: 3007: 3000: 2997: 2983: 2970: 2966: 2959: 2956: 2942: 2937: 2931: 2927: 2921: 2918: 2907: 2906: 2899: 2884: 2880: 2876: 2873: 2869: 2862: 2859: 2845: 2830: 2826: 2822: 2819: 2815: 2809: 2806: 2789: 2785: 2771: 2767: 2752: 2748: 2732: 2728: 2714: 2710: 2703: 2700: 2686: 2671: 2667: 2663: 2660: 2656: 2650: 2647: 2636: 2635: 2630: 2629: 2586: 2583: 2575:neutron number 2544:binding energy 2524:atomic nucleus 2500:Main article: 2497: 2494: 2484:of one of the 2458:prompt neutron 2353: 2350: 2342: 2341: 2336: 2327: 2317: 2303: 2293: 2282: 2267: 2263: 2247: 2239: 2223: 2222: 2216: 2208: 2198: 2190: 2180: 2166: 2156: 2145: 2119: 2118: 2112: 2102: 2092: 2084: 2074: 2060: 2050: 2039: 1983: 1979: 1975: 1971: 1948: 1944: 1940: 1936: 1927: 1923: 1919: 1913: 1909: 1903: 1900: 1897: 1894: 1890: 1886: 1859: 1856: 1853: 1850: 1847: 1844: 1822: 1818: 1795: 1791: 1768: 1764: 1741: 1737: 1723: 1716: 1715: 1704: 1701: 1698: 1695: 1692: 1689: 1686: 1681: 1675: 1671: 1667: 1664: 1661: 1658: 1655: 1647: 1643: 1639: 1632: 1628: 1624: 1620: 1614: 1610: 1602: 1598: 1594: 1589: 1585: 1581: 1577: 1571: 1567: 1563: 1560: 1555: 1551: 1547: 1542: 1538: 1523:potential well 1507:binding energy 1492: 1488: 1465: 1461: 1438: 1434: 1422: 1421: 1406: 1402: 1396: 1392: 1386: 1381: 1377: 1373: 1370: 1365: 1361: 1357: 1354: 1351: 1330: 1327: 1277:potential well 1257:central forces 1244: 1241: 1240: 1239: 1235: 1228: 1226: 1222: 1215: 1213: 1209: 1202: 1151:binding energy 1127: 1126: 1120: 1110: 1100: 1092: 1082: 1073: 1063: 1054: 1000:neutron number 979: 976: 918:single protons 874:nuclear valley 856: 855: 853: 852: 845: 838: 830: 827: 826: 825: 824: 811: 794: 793: 790: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 628: 623: 622: 619: 618: 615: 614: 609: 604: 598: 593: 592: 589: 588: 585: 584: 583: 582: 577: 572: 563: 562: 561: 560: 555: 550: 539: 538: 536:Nuclear fusion 532: 522: 521: 518: 517: 514: 513: 508: 507: 506: 495: 492: 491: 488: 487: 484: 483: 482: 481: 476: 466: 465: 464: 459: 449: 448: 447: 436: 433: 432: 429: 428: 425: 424: 419: 418: 417: 407: 401: 396: 395: 392: 391: 388: 387: 382: 377: 372: 366: 365: 360: 355: 350: 345: 344: 343: 338: 328: 323: 322: 321: 316: 315: 314: 299: 293: 288: 287: 284: 283: 280: 279: 277:Stable nuclide 274: 269: 264: 259: 254: 252:Binding energy 248: 245: 244: 241: 240: 237: 236: 235: 234: 224: 219: 214: 208: 207: 193: 192: 185: 184: 168: 167: 155: 154: 142: 141: 128: 122: 121: 118: 117: 114: 113: 108: 103: 98: 92: 87: 86: 83: 82: 81: 80: 75: 70: 65: 63:Nuclear matter 60: 59: 58: 53: 43: 35: 34: 26: 25: 15: 13: 10: 9: 6: 4: 3: 2: 4241: 4230: 4227: 4225: 4224:Radioactivity 4222: 4220: 4217: 4216: 4214: 4205: 4201: 4197: 4193: 4190: 4187: 4183: 4180: 4177: 4173: 4169: 4168: 4164: 4157: 4142: 4135: 4132: 4119: 4115: 4109: 4106: 4098: 4097: 4089: 4086: 4076:on 2014-03-19 4072: 4065: 4064: 4057: 4054: 4040: 4034: 4031: 4026: 4020: 4016: 4015: 4007: 4004: 3999: 3992: 3989: 3984: 3978: 3974: 3970: 3963: 3961: 3957: 3952: 3948: 3944: 3940: 3937:(7): 653–58. 3936: 3932: 3925: 3922: 3906: 3899: 3892: 3889: 3884: 3880: 3876: 3872: 3868: 3864: 3857: 3854: 3849: 3845: 3841: 3834: 3831: 3826: 3822: 3818: 3814: 3810: 3806: 3799: 3796: 3784: 3780: 3773: 3770: 3765: 3763:9780309104081 3759: 3755: 3754: 3746: 3743: 3738: 3734: 3730: 3726: 3722: 3718: 3713: 3708: 3705:(4): 044603. 3704: 3700: 3693: 3690: 3685: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3645: 3638: 3635: 3622: 3615: 3612: 3607: 3601: 3597: 3590: 3588: 3586: 3584: 3580: 3570: 3569: 3562: 3559: 3554: 3548: 3544: 3543: 3535: 3533: 3531: 3529: 3527: 3525: 3523: 3519: 3513: 3508: 3505: 3503: 3500: 3498: 3495: 3493: 3492:Cluster decay 3490: 3488: 3485: 3483: 3480: 3478: 3475: 3473: 3470: 3469: 3464: 3462: 3460: 3459:an experiment 3456: 3452: 3447: 3446:antineutrinos 3442: 3440: 3436: 3432: 3428: 3424: 3420: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3367: 3358: 3354: 3352: 3320: 3317: 3303: 3290: 3286: 3279: 3276: 3260: 3256: 3242: 3238: 3231: 3228: 3212: 3208: 3194: 3190: 3183: 3180: 3166: 3156: 3150: 3146: 3140: 3137: 3116: 3112: 3098: 3094: 3087: 3084: 3068: 3064: 3050: 3046: 3039: 3036: 3022: 3009: 3005: 2998: 2995: 2981: 2968: 2964: 2957: 2954: 2940: 2935: 2929: 2925: 2919: 2916: 2897: 2882: 2878: 2874: 2871: 2867: 2860: 2857: 2843: 2828: 2824: 2820: 2817: 2813: 2807: 2804: 2787: 2783: 2769: 2765: 2750: 2746: 2730: 2726: 2712: 2708: 2701: 2698: 2684: 2669: 2665: 2661: 2658: 2654: 2648: 2645: 2620: 2619: 2618: 2616: 2612: 2602: 2598: 2596: 2592: 2584: 2582: 2580: 2576: 2572: 2571:proton number 2568: 2564: 2560: 2556: 2552: 2551:magic numbers 2547: 2545: 2541: 2540:energy levels 2537: 2533: 2529: 2528:energy levels 2525: 2521: 2517: 2513: 2512:magic numbers 2509: 2503: 2495: 2493: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2450: 2448: 2444: 2440: 2428: 2423: 2413: 2408: 2406: 2401: 2397: 2393: 2389: 2385: 2381: 2376: 2372: 2367: 2363: 2359: 2351: 2349: 2347: 2307: 2277: 2276: 2275: 2272: 2261: 2257: 2245: 2237: 2231: 2227: 2170: 2140: 2139: 2138: 2136: 2135:atomic number 2132: 2064: 2034: 2033: 2032: 2029: 2027: 2023: 2019: 2015: 2006: 2001: 1997: 1981: 1977: 1973: 1969: 1946: 1942: 1938: 1934: 1925: 1921: 1917: 1911: 1907: 1901: 1898: 1895: 1892: 1888: 1884: 1871: 1854: 1851: 1848: 1842: 1820: 1816: 1793: 1789: 1766: 1762: 1739: 1735: 1721: 1699: 1696: 1693: 1687: 1684: 1679: 1673: 1665: 1662: 1659: 1656: 1645: 1641: 1637: 1630: 1626: 1622: 1618: 1612: 1608: 1600: 1596: 1592: 1587: 1583: 1579: 1575: 1569: 1565: 1561: 1558: 1553: 1549: 1545: 1540: 1536: 1528: 1527: 1526: 1524: 1520: 1516: 1512: 1508: 1505:is the total 1490: 1486: 1463: 1459: 1436: 1432: 1404: 1400: 1394: 1390: 1384: 1379: 1375: 1371: 1368: 1363: 1359: 1355: 1352: 1349: 1342: 1341: 1340: 1336: 1328: 1326: 1324: 1319: 1317: 1313: 1309: 1306: =  1305: 1301: 1297: 1293: 1289: 1288:Coulomb force 1285: 1280: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1253:nuclear force 1250: 1242: 1232: 1227: 1224:to be stable. 1219: 1214: 1206: 1201: 1199: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1143: 1140: 1139:decay product 1136: 1132: 1049: 1048: 1047: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 992:atomic number 989: 985: 984:nuclear force 977: 975: 973: 969: 966:" atomic and 965: 961: 956: 954: 950: 945: 943: 939: 935: 931: 927: 926:atomic number 923: 919: 915: 911: 907: 903: 902:stable nuclei 899: 895: 891: 890:radioactivity 887: 883: 879: 878:energy valley 875: 871: 867: 863: 851: 846: 844: 839: 837: 832: 831: 829: 828: 822: 812: 809: 804: 798: 797: 796: 795: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 629: 626: 621: 620: 613: 610: 608: 605: 603: 600: 599: 596: 591: 590: 581: 578: 576: 573: 571: 568: 567: 565: 564: 559: 556: 554: 551: 549: 546: 545: 541: 540: 537: 534: 533: 530: 525: 520: 519: 512: 509: 505: 504:by cosmic ray 502: 501: 500: 497: 496: 490: 489: 480: 477: 475: 472: 471: 470: 467: 463: 460: 458: 455: 454: 453: 450: 446: 443: 442: 441: 438: 437: 431: 430: 423: 420: 416: 415:pair breaking 413: 412: 411: 408: 406: 403: 402: 399: 394: 393: 386: 383: 381: 380:Decay product 378: 376: 373: 371: 368: 367: 364: 361: 359: 356: 354: 353:Cluster decay 351: 349: 346: 342: 339: 337: 334: 333: 332: 329: 327: 324: 320: 317: 313: 310: 309: 308: 305: 304: 303: 300: 298: 295: 294: 291: 286: 285: 278: 275: 273: 270: 268: 265: 263: 260: 258: 255: 253: 250: 249: 243: 242: 233: 230: 229: 228: 225: 223: 220: 218: 215: 213: 210: 209: 206: 202: 198: 197:Mirror nuclei 195: 194: 190: 187: 186: 183: 182: 179: −  178: 173: 170: 169: 166: 165: 160: 157: 156: 153: 152: 147: 144: 143: 139: 138: 133: 130: 129: 125: 120: 119: 112: 109: 107: 104: 102: 99: 97: 94: 93: 90: 85: 84: 79: 76: 74: 71: 69: 68:Nuclear force 66: 64: 61: 57: 54: 52: 49: 48: 47: 44: 42: 39: 38: 37: 36: 32: 28: 27: 24: 20: 4195: 4155: 4150:February 20, 4148:. Retrieved 4134: 4122:. Retrieved 4118:HyperPhysics 4117: 4108: 4095: 4088: 4078:, retrieved 4071:the original 4062: 4056: 4045:. Retrieved 4033: 4013: 4006: 3997: 3991: 3968: 3934: 3930: 3924: 3914:30 September 3912:. Retrieved 3905:the original 3891: 3866: 3862: 3856: 3843: 3833: 3808: 3804: 3798: 3786:. Retrieved 3783:CERN Courier 3782: 3772: 3752: 3745: 3702: 3698: 3692: 3651: 3647: 3637: 3625:. Retrieved 3614: 3595: 3572:, retrieved 3567: 3561: 3541: 3443: 3438: 3434: 3433:+ 1), where 3430: 3426: 3422: 3418: 3413: 3409: 3405: 3401: 3393: 3389: 3363: 3348: 2608: 2591:decay chains 2588: 2569:" (both its 2567:doubly magic 2548: 2505: 2451: 2447:beryllium-12 2443:beryllium-13 2412:beryllium-13 2409: 2392:lutetium-151 2377: 2373: 2369: 2343: 2305: 2273: 2255: 2253: 2224: 2168: 2120: 2062: 2030: 2010: 1872: 1717: 1514: 1423: 1338: 1320: 1311: 1307: 1303: 1299: 1295: 1281: 1261:strong force 1246: 1195:decay chains 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1146: 1144: 1135:antineutrino 1128: 1023: 1019: 1015: 1011: 1003: 995: 981: 957: 953:Emilio Segrè 946: 881: 877: 873: 869: 865: 859: 422:Photofission 370:Decay energy 297:Alpha α 271: 204: 200: 180: 176: 163: 150: 136: 3477:Gamma decay 3472:Alpha decay 3378:uranium-235 2573:of 114 and 2470:fissionable 2414:(mean life 2396:thulium-147 2131:mass number 1720:mass defect 1519:mass defect 1040:nitrogen-14 1008:mass number 978:Description 727:Oppenheimer 405:Spontaneous 375:Decay chain 326:K/L capture 302:Beta β 172:Isodiaphers 96:Liquid drop 4213:Categories 4124:22 January 4080:2010-06-03 4047:2014-10-30 3574:2023-12-01 3514:References 2605:stability. 2585:Discussion 2563:unbihexium 2559:unbinilium 2510:with near 2482:beta decay 2346:α particle 1333:See also: 1187:supernovas 1036:beta decay 988:primordial 938:paraboloid 910:beta decay 757:Strassmann 747:Rutherford 625:Scientists 580:Artificial 575:Cosmogenic 570:Primordial 566:Nuclides: 543:Processes: 499:Spallation 4042:(webpage) 3811:: 33–48. 3737:119207807 3712:0802.3837 3304:α 3261:− 3257:β 3213:− 3209:β 3167:α 3157:μ 3117:− 3113:β 3069:− 3065:β 3023:α 2982:α 2941:α 2898:α 2875:× 2844:α 2821:× 2788:− 2784:β 2731:− 2727:β 2685:α 2662:× 2561:-304 and 2555:flerovium 2445:becoming 2435:10 s 2388:cobalt-53 2260:tellurium 2236:Tellurium 2014:Nickel-62 1896:≈ 1843:δ 1688:δ 1685:± 1660:− 1638:− 1593:− 1562:− 1385:− 1284:carbon-12 1273:dineutron 1265:deuterium 1191:reactions 1044:half-life 1032:carbon-14 1028:half-life 762:Świątecki 677:Pi. Curie 672:Fr. Curie 667:Ir. Curie 662:Cockcroft 637:Becquerel 558:Supernova 262:Drip line 257:p–n ratio 232:Borromean 111:Ab initio 4229:Isotopes 4188:(France) 3973:Elsevier 3848:Archived 3684:20055062 3676:17832968 3627:July 31, 3465:See also 3287:→ 3239:→ 3191:→ 3147:→ 3095:→ 3047:→ 3006:→ 2965:→ 2926:→ 2868:→ 2814:→ 2766:→ 2709:→ 2655:→ 2532:neutrons 2508:isotopes 2427:helium-5 2420:10  2313:X′ 2244:antimony 2176:X′ 2129:are the 2070:X′ 1269:diproton 898:neutrons 886:nuclides 821:Category 722:Oliphant 707:Lawrence 687:Davisson 657:Chadwick 553:Big Bang 440:electron 410:Products 331:Isomeric 222:Even/odd 199: – 174:– equal 161:– equal 159:Isotones 148:– equal 134:– equal 132:Isotopes 124:Nuclides 46:Nucleons 3939:Bibcode 3871:Bibcode 3863:Physics 3813:Bibcode 3788:13 July 3717:Bibcode 3656:Bibcode 3648:Science 3386:krypton 3366:fission 2536:protons 2474:fissile 2462:neutron 2439:isotope 2022:iron-56 2018:iron-58 2005:Iron-56 1316:calcium 1249:isospin 1193:called 1042:with a 894:protons 777:Thomson 767:Szilárd 737:Purcell 717:Meitner 652:N. Bohr 647:A. Bohr 632:Alvarez 548:Stellar 452:neutron 336:Gamma γ 189:Isomers 146:Isobars 41:Nucleus 4202:  4021:  3979:  3869:: 30. 3760:  3735:  3682:  3674:  3602:  3549:  3451:Reines 3429:− 1)/( 3382:barium 3294:  3246:  3198:  3154:  3102:  3054:  3013:  2972:  2933:  2888:  2834:  2773:  2716:  2675:  2557:-298, 2425:) and 2364:, and 2246:-125 ( 2238:-125 ( 2212:ν 2121:where 2107:ν 1424:where 1237:modes. 1115:ν 1006:. The 864:, the 819:  787:Wigner 782:Walton 772:Teller 702:Jensen 469:proton 212:Stable 4144:(PDF) 4100:(PDF) 4074:(PDF) 4067:(PDF) 3908:(PDF) 3901:(PDF) 3733:S2CID 3707:arXiv 3680:S2CID 3455:Cowan 2460:is a 1169:> 1038:into 964:magic 880:, or 752:Soddy 732:Proca 712:Mayer 692:Fermi 642:Bethe 217:Magic 4200:ISBN 4152:2015 4126:2007 4019:ISBN 3977:ISBN 3916:2015 3790:2016 3758:ISBN 3672:PMID 3629:2016 3600:ISBN 3547:ISBN 3453:and 3437:and 3425:to ( 3364:The 2930:1600 2593:and 2579:lead 2534:and 2456:, a 2394:and 2133:and 2125:and 1515:less 1451:and 1292:lead 1177:and 896:and 742:Rabi 697:Hahn 607:RHIC 227:Halo 4186:CEA 3947:doi 3879:doi 3821:doi 3725:doi 3664:doi 3652:203 3384:or 3321:206 3291:138 3280:210 3232:210 3184:210 3151:164 3141:214 3106:min 3088:214 3058:min 3040:214 3017:min 2999:218 2969:3.8 2958:222 2920:226 2872:7.7 2861:230 2818:2.4 2808:234 2777:min 2751:234 2702:234 2659:4.5 2649:238 2472:or 2452:In 2416:2.7 2400:GSI 1722:. E 1271:or 1185:or 932:or 920:or 888:to 860:In 612:LHC 526:and 4215:: 4154:. 4116:. 3971:. 3959:^ 3945:. 3935:63 3933:. 3877:. 3865:. 3846:. 3842:. 3819:. 3809:28 3807:. 3781:. 3731:. 3723:. 3715:. 3703:77 3701:. 3678:. 3670:. 3662:. 3650:. 3646:. 3582:^ 3521:^ 3318:82 3312:Pb 3277:84 3271:Po 3229:83 3223:Bi 3195:22 3181:82 3175:Pb 3138:84 3132:Po 3099:20 3085:83 3079:Bi 3051:27 3037:82 3031:Pb 2996:84 2990:Po 2955:86 2949:Rn 2917:88 2911:Ra 2879:10 2858:90 2852:Th 2825:10 2805:92 2747:91 2741:Pa 2713:24 2699:90 2693:Th 2666:10 2646:92 2617:: 2615:Pb 2597:. 2407:. 2360:, 2332:He 2322:+ 2308:-2 2298:→ 2268:52 2264:52 2248:51 2240:52 2203:+ 2185:+ 2171:−1 2161:→ 2097:+ 2079:+ 2065:+1 2055:→ 1996:. 1808:, 1781:, 1754:, 1157:= 1105:+ 1087:+ 1068:→ 1022:+ 1018:= 1010:, 1002:, 994:, 974:. 876:, 872:, 479:rp 445:2× 312:0v 307:2β 203:↔ 4128:. 4050:. 4027:. 3985:. 3953:. 3949:: 3941:: 3918:. 3885:. 3881:: 3873:: 3867:5 3827:. 3823:: 3815:: 3792:. 3766:. 3739:. 3727:: 3719:: 3709:: 3686:. 3666:: 3658:: 3631:. 3608:. 3555:. 3439:Z 3435:N 3431:Z 3427:N 3423:Z 3421:/ 3419:N 3414:Z 3412:/ 3410:N 3406:Z 3404:/ 3402:N 3394:Z 3392:/ 3390:N 3298:d 3250:d 3243:5 3202:y 3161:s 3010:3 2976:d 2936:y 2892:y 2883:4 2838:y 2829:5 2799:U 2770:1 2756:m 2720:d 2679:y 2670:9 2640:U 2611:U 2433:× 2431:7 2429:( 2422:s 2418:× 2328:2 2306:Z 2289:X 2284:Z 2262:( 2256:A 2217:e 2194:e 2169:Z 2152:X 2147:Z 2127:Z 2123:A 2113:e 2088:e 2063:Z 2046:X 2041:Z 2026:U 1982:3 1978:/ 1974:2 1970:A 1947:3 1943:/ 1939:2 1935:A 1926:A 1922:a 1918:2 1912:C 1908:a 1902:+ 1899:1 1893:Z 1889:/ 1885:N 1875:Z 1858:) 1855:Z 1852:, 1849:A 1846:( 1821:A 1817:a 1794:C 1790:a 1767:S 1763:a 1740:V 1736:a 1724:B 1703:) 1700:Z 1697:, 1694:A 1691:( 1680:A 1674:2 1670:) 1666:Z 1663:2 1657:A 1654:( 1646:A 1642:a 1631:3 1627:/ 1623:1 1619:A 1613:2 1609:Z 1601:C 1597:a 1588:3 1584:/ 1580:2 1576:A 1570:S 1566:a 1559:A 1554:V 1550:a 1546:= 1541:B 1537:E 1491:B 1487:E 1464:n 1460:m 1437:p 1433:m 1405:2 1401:c 1395:B 1391:E 1380:n 1376:m 1372:N 1369:+ 1364:p 1360:m 1356:Z 1353:= 1350:m 1312:Z 1308:N 1304:Z 1300:N 1296:Z 1179:Z 1175:N 1171:Z 1167:N 1163:Z 1159:N 1155:Z 1121:e 1096:e 1078:N 1074:7 1059:C 1055:6 1024:N 1020:Z 1016:A 1012:A 1004:N 996:Z 849:e 842:t 835:v 474:p 462:r 457:s 319:β 205:N 201:Z 181:Z 177:N 164:N 151:A 137:Z 56:n 51:p

Index

Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N
Isodiaphers
N − Z
Isomers
Mirror nuclei
Stable
Magic
Even/odd
Halo

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.