Knowledge (XXG)

Vertex separator

Source 📝

230: 855: 364: 117: 1094: 429: 398: 170: 966:. Instead of using a row or column of a grid graph, George partitions the graph into four pieces by using the union of a row and a column as a separator. 488:. More precisely, there is always exactly one or exactly two vertices, which amount to such a separator, depending on whether the tree is 103: 449: 218: 1127: 1075: 110: 206: 81: 1146: 453: 36: 292:
is odd, there is a single central column, and otherwise there are two columns equally close to the center. Choosing
288:
is odd, there is a single central row, and otherwise there are two rows equally close to the center; similarly, if
66: 945: 504: 816: 1063: 41: 939: 187: 91: 339: 1035: 1107: 714: 51: 407: 1051: 379: 71: 27: 149: 1123: 1071: 86: 1089: 1115: 1043: 1011: 904: 198: 61: 452:
On the left a centered tree, on the right a bicentered one. The numbers show each node's
1039: 1085: 1023: 431:
the removal of which partitions it into two connected components, each of size at most
1140: 935: 503:, but that property is most useful for applications in computer science, such as the 493: 489: 138: 626:. The following is a well-known result characterizing the minimal separators: 332:(as in the illustration), then choosing a central column will give a separator 238: 131: 46: 531:-separator, that is, a vertex subset that separates two nonadjacent vertices 460: 229: 56: 448: 300:
from the graph, partitions the graph into two smaller connected subgraphs
884: 883:. It follows from the definition that the predecessor relation yields a 1055: 1015: 781:. More rigorously, the predecessor relation is defined as follows: Let 142: 1119: 1047: 1004:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
447: 16:
Set of graph nodes which separate a given pair of nodes if removed
470:
consisting of a single vertex, the removal of which partitions
376:
then choosing a central row will give a separator with at most
1026:(1973), "Nested dissection of a regular finite element mesh", 594:
of nonadjacent vertices. Notice that this is different from
499:
As opposed to these examples, not all vertex separators are
474:
into two or more connected components, each of size at most
296:
to be any of these central rows or columns, and removing
903:
proved that the predecessor relation gives rise to a
819: 410: 382: 342: 152: 1002:
Escalante, F. (1972). "Schnittverbände in Graphen".
849: 423: 392: 358: 164: 400:vertices. Thus, every grid graph has a separator 938:, a graph in which every minimal separator is a 1095:Journal für die reine und angewandte Mathematik 111: 8: 1114:. Frontiers of Computer Science. Springer. 1068:Algorithmic Graph Theory and Perfect Graphs 582:if it is a minimal separator for some pair 118: 104: 18: 900: 838: 827: 818: 459:To give another class of examples, every 411: 409: 383: 381: 349: 341: 151: 986: 850:{\displaystyle S\sqsubseteq _{a,b}^{G}T} 228: 956: 26: 975: 963: 263:. For instance, in the illustration, 7: 640:is minimal if and only if the graph 614:-separator for any pair of vertices 598:which says that no proper subset of 1112:Graph Separators, with Applications 680:is both adjacent to some vertex in 1028:SIAM Journal on Numerical Analysis 14: 359:{\displaystyle r\leq {\sqrt {n}}} 1090:"Sur les assemblages de lignes" 658:, has two connected components 907:when restricted to the set of 1: 233:A separator for a grid graph. 424:{\displaystyle {\sqrt {n}},} 308:, each of which has at most 82:Strongly connected component 393:{\displaystyle {\sqrt {n}}} 366:vertices, and similarly if 1163: 899:-separators. Furthermore, 249:columns; the total number 165:{\displaystyle S\subset V} 129: 67:K-connectivity certificate 1110:; Heath, Lenwood (2002). 717:: For two fixed vertices 713:-separators also form an 676:such that each vertex in 1064:Golumbic, Martin Charles 946:k-vertex-connected graph 871:, every path connecting 505:planar separator theorem 130:Not to be confused with 650:, obtained by removing 562:if no proper subset of 851: 689:and to some vertex in 596:minimal separating set 456: 425: 394: 360: 234: 166: 42:Algebraic connectivity 852: 765:, if every path from 745:can be regarded as a 451: 426: 395: 361: 232: 167: 817: 809:is a predecessor of 408: 380: 340: 219:connected components 150: 1040:1973SJNA...10..345G 843: 715:algebraic structure 632:A vertex separator 52:Rank (graph theory) 1147:Graph connectivity 1070:, Academic Press, 1016:10.1007/BF02996932 887:on the set of all 847: 823: 574:. More generally, 511:Minimal separators 457: 421: 390: 356: 235: 186:) for nonadjacent 162: 72:Pixel connectivity 28:Graph connectivity 22:Relevant topics on 1108:Rosenberg, Arnold 725:of a given graph 580:minimal separator 416: 388: 354: 128: 127: 87:Biconnected graph 1154: 1133: 1103: 1080: 1058: 1019: 990: 984: 978: 973: 967: 961: 925: 921: 905:complete lattice 901:Escalante (1972) 898: 882: 878: 874: 870: 856: 854: 853: 848: 842: 837: 812: 808: 804: 800: 788: 784: 780: 777:before it meets 776: 772: 768: 764: 760: 744: 740: 728: 724: 720: 712: 697: 688: 679: 675: 666: 657: 653: 649: 639: 635: 625: 613: 601: 593: 577: 573: 569: 565: 557: 542: 538: 534: 530: 518: 487: 486: 485: 481: 473: 469: 466:has a separator 465: 444: 443: 442: 438: 430: 428: 427: 422: 417: 412: 404:of size at most 403: 399: 397: 396: 391: 389: 384: 375: 365: 363: 362: 357: 355: 350: 335: 331: 321: 320: 319: 315: 307: 303: 299: 295: 291: 287: 283: 276: 269: 262: 252: 248: 244: 216: 212: 204: 196: 192: 176:vertex separator 173: 171: 169: 168: 163: 120: 113: 106: 77:Vertex separator 19: 1162: 1161: 1157: 1156: 1155: 1153: 1152: 1151: 1137: 1136: 1130: 1120:10.1007/b115747 1106: 1086:Jordan, Camille 1084: 1078: 1062: 1048:10.1137/0710032 1024:George, J. Alan 1022: 1001: 998: 993: 987:Golumbic (1980) 985: 981: 974: 970: 962: 958: 954: 932: 923: 922:-separators in 911: 888: 880: 876: 872: 858: 815: 814: 810: 806: 802: 801:-separators in 790: 786: 782: 778: 774: 770: 766: 762: 750: 742: 730: 726: 722: 718: 702: 696: 690: 687: 681: 677: 674: 668: 665: 659: 655: 651: 641: 637: 633: 615: 603: 599: 583: 575: 571: 567: 563: 547: 540: 536: 532: 520: 516: 513: 483: 477: 476: 475: 471: 467: 463: 440: 434: 433: 432: 406: 405: 401: 378: 377: 367: 338: 337: 333: 323: 317: 311: 310: 309: 305: 301: 297: 293: 289: 285: 278: 271: 264: 254: 253:of vertices is 250: 246: 242: 227: 214: 210: 202: 194: 190: 148: 147: 145: 135: 124: 62:St-connectivity 17: 12: 11: 5: 1160: 1158: 1150: 1149: 1139: 1138: 1135: 1134: 1128: 1104: 1082: 1076: 1060: 1034:(2): 345–363, 1020: 997: 994: 992: 991: 979: 968: 955: 953: 950: 949: 948: 943: 931: 928: 857:, if for each 846: 841: 836: 833: 830: 826: 822: 694: 685: 672: 663: 512: 509: 420: 415: 387: 353: 348: 345: 226: 223: 217:into distinct 184:separating set 161: 158: 155: 126: 125: 123: 122: 115: 108: 100: 97: 96: 95: 94: 89: 84: 79: 74: 69: 64: 59: 54: 49: 44: 39: 31: 30: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1159: 1148: 1145: 1144: 1142: 1131: 1129:0-306-46464-0 1125: 1121: 1117: 1113: 1109: 1105: 1102:(2): 185–190. 1101: 1098:(in French). 1097: 1096: 1091: 1087: 1083: 1079: 1077:0-12-289260-7 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1000: 999: 995: 988: 983: 980: 977: 976:Jordan (1869) 972: 969: 965: 964:George (1973) 960: 957: 951: 947: 944: 941: 937: 936:Chordal graph 934: 933: 929: 927: 919: 915: 910: 906: 902: 896: 892: 886: 869: 865: 861: 844: 839: 834: 831: 828: 824: 820: 813:, in symbols 798: 794: 758: 754: 748: 738: 734: 716: 710: 706: 699: 693: 684: 671: 662: 648: 644: 631: 627: 623: 619: 611: 607: 602:is a minimal 597: 591: 587: 581: 561: 555: 551: 546: 528: 524: 510: 508: 506: 502: 497: 495: 491: 480: 462: 455: 454:eccentricity. 450: 446: 437: 418: 413: 385: 374: 370: 351: 346: 343: 330: 326: 322:vertices. If 314: 281: 274: 267: 261: 257: 240: 231: 224: 222: 220: 208: 200: 189: 185: 181: 177: 159: 156: 153: 144: 140: 133: 121: 116: 114: 109: 107: 102: 101: 99: 98: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 53: 50: 48: 45: 43: 40: 38: 35: 34: 33: 32: 29: 25: 21: 20: 1111: 1099: 1093: 1067: 1031: 1027: 1007: 1003: 982: 971: 959: 917: 913: 908: 894: 890: 867: 863: 859: 796: 792: 756: 752: 746: 736: 732: 708: 704: 701:The minimal 700: 691: 682: 669: 660: 646: 642: 629: 628: 621: 617: 609: 605: 595: 589: 585: 579: 578:is called a 559: 553: 549: 544: 526: 522: 514: 500: 498: 478: 458: 435: 372: 368: 328: 324: 312: 279: 272: 265: 259: 255: 236: 183: 179: 175: 139:graph theory 136: 76: 37:Connectivity 1010:: 199–220. 761:-separator 749:of another 747:predecessor 741:-separator 237:Consider a 141:, a vertex 996:References 566:separates 494:bicentered 239:grid graph 209:separates 180:vertex cut 132:cut vertex 47:Cycle rank 825:⊑ 560:separator 461:free tree 347:≤ 245:rows and 205:from the 157:⊂ 57:SPQR tree 1141:Category 1088:(1869). 1066:(1980), 930:See also 885:preorder 501:balanced 490:centered 225:Examples 188:vertices 1056:2156361 1036:Bibcode 909:minimal 805:. Then 789:be two 545:minimal 539:. Then 482:⁄ 439:⁄ 316:⁄ 199:removal 197:if the 172:⁠ 146:⁠ 1126:  1074:  1054:  940:clique 879:meets 773:meets 630:Lemma. 519:be an 277:, and 143:subset 92:Bridge 1052:JSTOR 952:Notes 729:, an 654:from 543:is a 336:with 284:. If 241:with 207:graph 174:is a 1124:ISBN 1072:ISBN 785:and 721:and 667:and 570:and 535:and 515:Let 304:and 282:= 40 213:and 193:and 178:(or 1116:doi 1044:doi 1012:doi 875:to 769:to 636:in 496:. 492:or 275:= 8 268:= 5 201:of 137:In 1143:: 1122:. 1100:70 1092:. 1050:, 1042:, 1032:10 1030:, 1008:38 1006:. 926:. 866:\ 862:∈ 698:. 645:– 507:. 445:. 371:≤ 327:≤ 270:, 258:× 221:. 182:, 1132:. 1118:: 1081:. 1059:. 1046:: 1038:: 1018:. 1014:: 989:. 942:. 924:G 920:) 918:b 916:, 914:a 912:( 897:) 895:b 893:, 891:a 889:( 881:T 877:b 873:x 868:T 864:S 860:x 845:T 840:G 835:b 832:, 829:a 821:S 811:T 807:S 803:G 799:) 797:b 795:, 793:a 791:( 787:T 783:S 779:T 775:S 771:b 767:a 763:T 759:) 757:b 755:, 753:a 751:( 743:S 739:) 737:b 735:, 733:a 731:( 727:G 723:b 719:a 711:) 709:b 707:, 705:a 703:( 695:2 692:C 686:1 683:C 678:S 673:2 670:C 664:1 661:C 656:G 652:S 647:S 643:G 638:G 634:S 624:) 622:v 620:, 618:u 616:( 612:) 610:v 608:, 606:u 604:( 600:S 592:) 590:b 588:, 586:a 584:( 576:S 572:b 568:a 564:S 558:- 556:) 554:b 552:, 550:a 548:( 541:S 537:b 533:a 529:) 527:b 525:, 523:a 521:( 517:S 484:2 479:n 472:T 468:S 464:T 441:2 436:n 419:, 414:n 402:S 386:n 373:r 369:c 352:n 344:r 334:S 329:c 325:r 318:2 313:n 306:B 302:A 298:S 294:S 290:c 286:r 280:n 273:c 266:r 260:c 256:r 251:n 247:c 243:r 215:b 211:a 203:S 195:b 191:a 160:V 154:S 134:. 119:e 112:t 105:v

Index

Graph connectivity
Connectivity
Algebraic connectivity
Cycle rank
Rank (graph theory)
SPQR tree
St-connectivity
K-connectivity certificate
Pixel connectivity
Vertex separator
Strongly connected component
Biconnected graph
Bridge
v
t
e
cut vertex
graph theory
subset
vertices
removal
graph
connected components

grid graph

eccentricity.
free tree
centered
bicentered

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.