Knowledge (XXG)

Vilama (caldera)

Source đź“ť

792:
densely welded ignimbrites with poorly preserved pumice and lithic fragments. The ignimbrite deposit inside the caldera shows evidence of flow forms and alteration by vapour interactions. Outside of the caldera, the ignimbrite is formed by two different cooling units with distinct characteristics. The lower cooling unit is massive, poorly welded and contains lithics and pumices; the content of these varies at different sites and there are several different types of pumices. The thickness of the lower cooling unit varies between 7 metres (23 ft) to exceeding 110 metres (360 ft), and pre-existent topography has controlled the emplacement of the unit; it crops out mainly in valleys. The upper cooling unit is thicker and covers a larger surface than the lower unit, although part of the latter may be buried beneath the upper cooling unit. The upper cooling unit was emplaced on a flat surface as a uniform deposit with thicknesses ranging from 18 metres (59 ft) in its southern sector to 60 metres (200 ft) north. The upper cooling unit is itself subdivided into a basal and an upper section; the basal section is strongly welded sometimes to the point of being
680: 43: 76: 588:-Miocene age predating the formation of the Vilama caldera include the 9.7–9.8 million years old Granada ignimbrite, the 10.25 ± 0.12 million years old Lagunillas ignimbrite, the 9.8 ± 0.7 million years old Ojo de Perico lavas and other volcanic units. Later volcanic activity from other volcanoes in the region led to the emplacement of extraneous volcanic rocks in the Vilama caldera, such as the Bonanza, Cienago and Panizos ignimbrites and the Loromayu lavas. In terms of tectonics, during the 36: 814:
exposed and the shape of the caldera where large parts of the ignimbrite ponded is poorly known, but may range from between 1,200–1,800 cubic kilometres (290–430 cu mi) to 2,100 cubic kilometres (500 cu mi), with most of it being contained within the caldera. Based on such sizes, the caldera-forming eruption is considered to be a
808:
The Vilama ignimbrite also includes other ignimbrites that were formerly considered to be separate ignimbrites, such as the Capaderos ignimbrite, Ceja Grande ignimbrite, Tobas Coruto, Tobas Lagunillas 1, Tobas Lagunillas 2, Tobas Lagunillas 3, Tobas Loromayu 1, Tobas Lupi Gera and Toloma ignimbrite.
518:
The volcanic history of the Altiplano-Puna volcanic complex is poorly known, due to the overlap and burial of older volcanic centres beneath younger ones, difficulties in separating different ignimbrites, the lack of erosion resulting in poor exposure of the units and the challenges of accessing the
852:
Volcanic activity continued at Vilama after the caldera collapse, driven by a relatively quick recovery of the magmatic system after the formation of the caldera, and resulted in the formation of the resurgent dome. Among the products of this volcanism are the 5–8.1 ± 0.6 million year old northerly
804:
fragments, whereas the upper section is poorly welded and light brown to pink in colour, with columnar jointing. A transitional area separates the 1–50 metres (3 ft 3 in â€“ 164 ft 1 in) thick upper unit with moderate quantities of lithics and fiamme from the lower unit. The
791:
Inside the caldera, the Vilama ignimbrite was emplaced as several flow units which are usually 10–20-metre (33–66 ft) thick; some units reach thicknesses of 40–50 metres (130–160 ft). These units together are at least 400–700 metres (1,300–2,300 ft) thick and form a uniform layer of
743:
The Vilama caldera is the source of the Vilama ignimbrite, which covers a surface of more than 4,000 square kilometres (1,500 sq mi) and was erupted concurrently with the collapse and formation of the caldera. The eruption occurred between 8.4–8.5 million years ago, but with substantial
320:
The Vilama caldera is between 15–18 kilometres (9.3–11.2 mi) and 35–40 kilometres (22–25 mi) wide. Younger volcanic rocks have almost entirely obscured its margins, with the exception of a 250–400-metre (820–1,310 ft) high escarpment on the western side of the caldera. The caldera
813:
and petrologic traits, and together they establish an ignimbrite field elongated towards the south and northwest away from the caldera. The outcrops cover an area of 4,000 square kilometres (1,500 sq mi). The total volume of the ignimbrite is difficult to constrain as much of it is not
169:
The Vilama caldera was originally estimated to have a size of 40 by 65 kilometres (25 mi Ă— 40 mi) but the size was later revised to be between 15–18 kilometres (9.3–11.2 mi) and 35–40 kilometres (22–25 mi) and is almost entirely buried beneath younger volcanoes that have
185:
of 8 about 8.4–8.5 million years ago. A large amount of the Vilama ignimbrite is inside the caldera depression, while the part outside of the caldera covers a surface area exceeding 4,000 square kilometres (1,500 sq mi). The total volume of the ignimbrite is about 1,200–1,800 cubic
876:
that is unrelated to Vilama. According to this older theory of caldera history, the Granada ignimbrite was the first stage of caldera formation, with the second stage generating the Vilama ignimbrite proper. This theory also envisaged two later stages of activity, the first linked to the
186:
kilometres (290–430 cu mi), possibly as much as 2,100 cubic kilometres (500 cu mi). Another large ignimbrite, the Sifon ignimbrite, may also have been erupted by Vilama, while the Granada ignimbrite was later attributed to a separate volcano.
853:
Khastor domes and stratovolcano, the 6–8.4 ± 0.6 million year old eastern centres (Cerro Alcoak, Cerro Salle, Bayo dome and the Vilama and Toloma lavas) and the less than 8.4 million years old Mesada Negra lavas on the resurgent dome. The Vitichi domes are of
422:
volcanic complex. One nested caldera associated with the Bonanza ignimbrite was identified as well, the 20-by-40-kilometre (12 mi Ă— 25 mi) Coruto caldera which is situated southwest of the redefined extent of the Vilama caldera.
760:
roof and subsequent onset of vigorous fountaining of ignimbrites through vents formed in the magma chamber roof; similar eruption conditions have been inferred for other Altiplano-Puna ignimbrites. The eruption may have taken the form of a
2127:
Salisbury, M. J.; Jicha, B. R.; de Silva, S. L.; Singer, B. S.; Jimenez, N. C.; Ort, M. H. (1 May 2011). "40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province".
2157:
De Silva, Shanaka; Zandt, George; Trumbull, Robert; Viramonte, José G.; Salas, Guido; Jiménez, Néstor (2006). "Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: a thermomechanical perspective".
662:
composition, the chemistry and petrography of the ignimbrites varies between separate units and outcrops. It has been inferred that before the eruption the magma was 760–810 Â°C (1,400–1,490 Â°F) hot. A mixing between
2195:
Soler, M.M.; Caffe, P.J; Coira, B.L.; Onoe, A.T.; Kay, S. Mahlburg (July 2007). "Geology of the Vilama caldera: A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene".
1940:
Caffe, P.J.; Soler, M.M.; Coira, B.L.; Onoe, A.T.; Cordani, U.G. (June 2008). "The Granada ignimbrite: A compound pyroclastic unit and its relationship with Upper Miocene caldera volcanism in the northern Puna".
687:
The region has a dry climate with irregular rainfall (300 millimetres per year (12 in/year)), temperatures between 3–6 Â°C (37–43 Â°F) and high diurnal temperature variations. Vegetation consists of
519:
remote region. Chronological correlations indicate that volcanic activity commenced 10 million years ago and increased 8 million years ago; the onset of volcanic activity was likely triggered by the entry of
2097:
Kay, Suzanne Mahlburg; Coira, Beatriz L.; Caffe, Pablo J.; Chen, Chang-Hwa (December 2010). "Regional chemical diversity, crustal and mantle sources and evolution of central Andean Puna plateau ignimbrites".
848:
intrusion. Additionally, it has been proposed that the 1,000 cubic kilometres (240 cu mi) Sifon ignimbrite, which was erupted 8.33 ± 0.06 million years ago, may originate in the Vilama caldera.
1875:
Comeau, Matthew J.; Unsworth, Martyn J.; Ticona, Faustino; Sunagua, Mayel (March 2015). "Magnetotelluric images of magma distribution beneath Volcán Uturuncu, Bolivia: Implications for magma dynamics".
241:
is one of the four volcanic belts along the Andes. The Central Volcanic Zone is home to more than a thousand volcanoes, of which 44 were active after glacial times. Many of these are part of the main
805:
two cooling units may have formed under different eruption conditions: High fountains may be the source of the lower cooling unit and lower and less stable fountains that of the upper cooling unit.
358:, the last of which gives the caldera its name. Several younger volcanic centres are found around the caldera and may be located above its margin, such as the Khastor domes and stratovolcano, the 2060:
Francis, P. W.; Hawkesworth, C. J. (1 September 1994). "Late Cenozoic rates of magmatic activity in the Central Andes and their relationships to continental crust formation and thickening".
418:, coinciding with the Vilama depression. Vents were localized on the eastern margin beneath the Cerro Caucani, Cerro SolterĂ­o, Campanario and Coyaguayma volcanoes, which in turn make up the 218:
which is the tripoint between Argentina, Bolivia and Chile there. The region is largely uninhabited owing to its harsh climate, however several archeological sites have been found and
872:
Originally, the Granada ignimbrite was also considered to be a product of an earlier eruption of the Vilama caldera; later research indicated that it has its own eruptive centre at
809:
The inclusion of these volcanic products into the Vilama ignimbrite was based on the similarity between their characteristics and those of the actual Vilama ignimbrite, including
1819:
Petrinovic, Iván A.; Grosse, Pablo; Guzmán, Silvina; Caffe, Pablo Jorge (2017). "Evolución del Volcanísmo Cenozoico en la Puna Argentina". In Muruaga, C.M.; Grosse, P. (eds.).
380:
volcanoes, the Cerros Conventos-Niño-Coyamboy chain, Vitichi and Cerro Bayo domes and the 5,678 metres (18,629 ft) high Vilama stratovolcano. These edifices are mostly
1852: 1736:"Geochronological imaging of an episodically constructed subvolcanic batholith: U-Pb in zircon chronochemistry of the Altiplano-Puna Volcanic Complex of the Central Andes" 884:
volcanics and the Salle and Ceja Grande ignimbrites, while the fourth produced the Bonanza ignimbrite from the Coruto caldera as well as additional volcanoes including
1847: 547:
is viewed as a sign that volcanic activity in the Altiplano-Puna volcanic complex is still ongoing. Seismic imaging shows the existence of a partially molten
325:
surrounded by a 400–800-metre (1,300–2,600 ft) deep moat. This moat, which is missing on the eastern side of the caldera, contains several lakes such as
265:
and frequently reach heights of above 6,000 metres (20,000 ft). The Central Volcanic Zone is also the site of a number of large calderas, such as
719:
being typical members. The volcanically dominated terrain is free of vegetation, with most life occurring close to waterbodies (including the grasses
527:
had broken off. Between 8-4 million years ago large scale eruptions occurred, such as these at Cerro Panizos, CoranzulĂ­, Vilama, Cerro Guacha and
756:
and thus resulting in spurious age data. Based on the characteristics of the ignimbrite, the eruption was likely triggered by the failure of the
2234: 2024: 1830: 1791: 1775:
Soler, M.M.; Singer, Silvia; Tomlinson, A.J.; Somoza, Ruben; Raposo, Irene; Matthews, S; Perez de Arce, C; Blanco, N; Vilas, J.F. (2005).
784:
with sizes reaching about 3–5 millimetres (0.12–0.20 in) of length. Detailed descriptions of the ignimbrite were provided by Soler
995:"¿Mineros quebradeños o altiplánicos?: La circulación de metales y minerales en el extremo noroccidental de Argentina (1280 - 1535 AD)" 540: 994: 869:
imaging of the area has identified a low electrical conductivity anomaly beneath the caldera, which may be a solidified magma body.
2008:
Textures, Structures and Processes of Volcanic Successions: Examples from Southern Central Andes (Northwestern Argentina, 22º–28ºS)
35: 91: 486: 151: 679: 2259: 1734:
Kern, Jamie M.; de Silva, Shanaka L.; Schmitt, Axel K.; Kaiser, Jason F.; Iriarte, A. Rodrigo; Economos, Rita (August 2016).
266: 1988:
COIRA, B.; CAFFE, P.; RAMÍREZ, A.; CHAYLE, W.; DÍAZ, A.; ROSAS, S.; PÉREZ, A.; PÉREZ, B.; OROZCO, O.; MARTÍNEZ, M. (2004).
387:
The caldera was at first considered to be 40 by 65 kilometres (25 mi Ă— 40 mi) in width with a centre around
671:
melts has been suggested to be the source of the magma for both Vilama and other Altiplano-Puna volcanic complex systems.
302: 1996:(in Spanish). Buenos Aires: Instituto de GeologĂ­a y Recursos Minerales, Servicio GeolĂłgico Minero Argentino. – via 1483: 1070: 2254: 1822:
Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán
84: 1776: 531:. Volcanic activity decreased by the Pleistocene, during which activity occurred within the La Pacana caldera and at 509:
southwest of Vilama; the Vilama, Coruto and Guacha calderas have been designed the "Eduardo Avaroa caldera complex" (
819: 638:
and opaque components. These minerals more generally also form the primary mineral phases of the ignimbrite, while
390: 182: 1071:"Redefinición estratigráfica de la ignimbrita pululus (Puna norte): implicancias volcanológicas y metalogenéticas" 2269: 801: 769: 706: 2264: 2225:
Coira, Beatriz; Mahlburg Kay, Suzanne; Caffe, Pablo J. (2008). "Magmatismo NeĂłgeno TardĂ­o de la Puna norte".
298: 1972:"Sistema de calderas anidadas del Cenozoico superior: Vilama-Coruto puna ( Argentina) Altiplano (Bolivia)" 862: 290: 234: 230: 466: 238: 226: 143: 727: 566: 2205: 2167: 2137: 2107: 2069: 1950: 1885: 1747: 721: 326: 254: 181:
Vilama is the source of the enormous Vilama ignimbrite, which was emplaced during an eruption with a
711: 834: 559: 474: 439: 310: 270: 75: 844:
southeast of Vilama is actually a section of the Vilama ignimbrite, which was later uplifted by a
768:
The ignimbrite is often welded and displays joint features. It is rich in crystals but has little
384:
centres that are considered to be the expression of post-collapse volcanism at the Vilama system.
359: 2183: 2085: 2030: 573: 370: 2044:"La caldera Vilama y el complejo caldérico Eduardo Avaroa, Puna Argentina - Altiplano Boliviano" 497:
and is one of the largest such ignimbrite provinces in the world. These centres mainly erupted
170:
grown along the margin of the caldera; volcanic activity on these volcanoes continued into the
2230: 2020: 1826: 1787: 1002: 443: 2213: 2175: 2145: 2115: 2077: 2012: 1958: 1893: 1755: 1117: 973: 762: 664: 348: 866: 668: 552: 258: 203: 353: 2209: 2171: 2141: 2111: 2073: 1954: 1889: 1751: 885: 651: 532: 451: 331: 322: 286: 274: 215: 175: 2248: 2217: 2187: 2119: 2089: 2043: 2034: 2006: 1989: 1971: 815: 810: 757: 609: 502: 489:
centered around the Chile-Bolivia-Argentina tripoint, which was mainly active in the
455: 337: 278: 246: 978: 683:
View from the Laguna Vilama to the Vilama stratovolcano, showing a typical landscape
2051: 1997: 1979: 1820: 1105: 878: 873: 839: 823: 506: 462: 419: 342: 282: 242: 163: 2179: 958: 1962: 959:"AproximaciĂłn a la arqueologĂ­a de la frontera tripartita Bolivia-Chile-Argentina" 364: 858: 628: 558:
The pre-caldera terrain at Vilama is formed by various sedimentary and volcanic
524: 494: 446:. Volcanism associated with subduction in the region has been ongoing since the 432: 171: 375: 214:. The volcano straddles the border between Bolivia and Argentina, northeast of 2016: 1254: 1252: 1250: 1248: 793: 781: 647: 621: 613: 577: 570: 536: 482: 262: 159: 2081: 1308: 1306: 1006: 405: 392: 174:. Several lakes also developed on the floor of the caldera, which contains a 106: 93: 605: 585: 563: 528: 470: 314: 294: 207: 195: 139: 2011:. Springer Earth System Sciences. Cham: Springer International Publishing. 1069:
Fracchia, Diego; Polo, Liza; Caffe, Pablo J.; Coira, Beatriz (March 2010).
162:
that were active since about 8 million years ago, sometimes in the form of
1121: 1482:
Maidana, Nora I.; Seeligmann, Claudia; Morales, Marcelo (December 2009).
854: 732: 639: 632: 625: 589: 581: 544: 520: 447: 306: 250: 219: 1517: 1515: 1513: 1760: 1735: 1106:"Periglacial phenomena in the high mountains of northwestern Argentina" 845: 753: 697: 643: 617: 593: 498: 490: 478: 435: 381: 199: 155: 135: 131: 128: 1990:"Hoja GeolĂłgica 2366-I / 2166-III, Mina Pirquitas. Provincia de Jujuy" 321:
contains a 30-by-10-kilometre (18.6 mi Ă— 6.2 mi) large
2149: 1897: 1848:"Centro volcánico Vilama, un volcán cuaternario en la Puna Argentina" 1359: 1357: 797: 777: 773: 716: 702: 692: 655: 635: 142:. Straddling the border between the two countries, it is part of the 67: 1609: 1607: 1605: 1544: 1542: 1429: 1427: 1414: 1412: 1410: 1408: 1175: 1173: 1171: 1169: 1167: 1165: 1152: 1150: 1148: 1146: 833:
2010 further proposed that the "Pululus ignimbrite" which forms the
765:, an unusual occurrence for Altiplano-Puna caldera collapse events. 731:). A number of mammals and birds are found in the region, including 501:
magmas. Among the Altiplano-Puna volcanic complex volcanoes are the
1293: 1291: 1133: 1131: 1047: 1045: 1020: 1018: 1016: 913: 911: 909: 907: 905: 903: 1484:"Bacillariophyceae del complejo lagunar Vilama (Jujuy, Argentina)" 881: 749: 689: 678: 659: 548: 211: 147: 2042:
Coira, B; Soler, Miguel M.; Caffe, Pablo; Onoe, Artur T. (2005).
658:
are accessory phases. Probably as a consequence of heterogeneous
604:
The Vilama ignimbrite is made out of dacite, which belongs to a
584:
while later units only sporadically crop out. Volcanic units of
596:
with an average elevation of about 4 kilometres (2.5 mi).
1457: 1324: 222:
from Vilama has been found throughout northwestern Argentina.
1721: 1596: 1336: 1258: 865:
yielding dates of 1.2 ± 0.1 and 900,000 ± 30,000 years ago.
469:
the back-arc region has been volcanically active since the
1970:
Coira, B; Caffe, Pablo; Diaz, Alba; Ramirez, Alba (1996).
857:
age. At Cerro Vilama volcanic activity continued into the
744:
scatter of the radiometric dates which according to Soler
1777:"Detecting a major ignimbrite event in the central Andes" 1504: 1469: 1215: 1091: 2227:
GeologĂ­a y recursos naturales de la provincia de Jujuy
1521: 1387: 1312: 1282: 592:
the region was substantially uplifted, forming a high
2005:
Coira, Beatriz L.L.; Cisterna, Clara Eugenia (2021).
1922: 1910: 1227: 2229:. AsociaciĂłn GeolĂłgica Argentina. pp. 313–321. 431:
Off the western coast of South America, the oceanic
1709: 1685: 1673: 1661: 1649: 1637: 1625: 1613: 1584: 1548: 1533: 1433: 1418: 1399: 1375: 1363: 1297: 1239: 1203: 1191: 1179: 1156: 1137: 1024: 941: 917: 83: 66: 61: 23: 1853:National Scientific and Technical Research Council 1051: 1036: 580:sediments are the most important component of the 473:, generating volcanic edifices ranging from small 2055:(in Spanish). 16th Argentine Geological Congress. 1560: 1445: 1348: 1270: 929: 2160:Geological Society, London, Special Publications 1983:(in Spanish). 12th Bolivian Geological Congress. 1856:(in Spanish). 17th Argentine Geological Congress 2198:Journal of Volcanology and Geothermal Research 2100:Journal of Volcanology and Geothermal Research 1064: 1062: 1060: 458:which drive the activity in the volcanic arc. 194:The Vilama caldera lies on the border between 1806: 1697: 1572: 952: 950: 555:beneath the Altiplano-Puna volcanic complex. 510: 8: 1488:BoletĂ­n de la Sociedad Argentina de Botánica 1075:Revista de la AsociaciĂłn GeolĂłgica Argentina 535:, with the most recent eruptions formed the 993:Angiorama, Carlos Ignacio (December 2006). 1784:GĂ©odynamique andine : rĂ©sumĂ©s Ă©tendus 523:magma in the crust after a portion of the 74: 20: 1759: 977: 150:. Vilama is remote and forms part of the 1943:Journal of South American Earth Sciences 146:, one of the four volcanic belts in the 899: 454:causes melts to form in the abovelying 2130:Geological Society of America Bulletin 42: 7: 1522:Coira, Mahlburg Kay & Caffe 2008 1388:Coira, Mahlburg Kay & Caffe 2008 1313:Coira, Mahlburg Kay & Caffe 2008 1283:Coira, Mahlburg Kay & Caffe 2008 72:5,340 m (17,520 ft)  1846:Fracchia, D.Y.; Coira, B. (2008). 1825:. AsociaciĂłn GeolĂłgica Argentina. 957:Nielsen, Axel E (September 2004). 822:of 8 and Vilama caldera is thus a 541:Cerro Chascon-Runtu Jarita complex 14: 2062:Journal of the Geological Society 780:. The entire ignimbrite contains 543:. Ongoing surface deformation at 512:Complejo CaldĂ©rico Eduardo Avaroa 16:Mountain in Bolivia and Argentina 2218:10.1016/j.jvolgeores.2007.04.002 2120:10.1016/j.jvolgeores.2010.08.013 1110:South African Journal of Science 485:. The latter form the so-called 210:, a high plateau in the Central 41: 34: 979:10.4067/S0717-73562004000400026 612:suite. The ignimbrite contains 487:Altiplano-Puna volcanic complex 450:. Dehydration of the downgoing 152:Altiplano-Puna volcanic complex 1052:Francis & Hawkesworth 1994 1037:Francis & Hawkesworth 1994 999:Intersecciones en AntropologĂ­a 1: 2180:10.1144/GSL.SP.2006.269.01.04 303:Negra Muerta volcanic complex 1963:10.1016/j.jsames.2007.10.004 505:northeast of Vilama and the 190:Geography and geomorphology 2286: 820:volcanic explosivity index 748:2007 may be due to excess 229:, which together with the 183:volcanic explosivity index 2017:10.1007/978-3-030-52010-6 1807:Coira & Cisterna 2021 1786:. IRD. pp. 677–678. 1698:Coira & Cisterna 2021 1573:Coira & Cisterna 2021 1104:Ahumada, Ana Lia (2002). 28: 2082:10.1144/gsjgs.151.5.0845 863:potassium-argon dating 684: 675:Climate and vegetation 511: 235:Southern Volcanic Zone 231:Northern Volcanic Zone 225:Vilama is part of the 154:, a province of large 2260:Calderas of Argentina 1722:Salisbury et al. 2011 1597:Salisbury et al. 2011 1337:Salisbury et al. 2011 1259:Salisbury et al. 2011 682: 475:monogenetic volcanoes 467:Central Volcanic Zone 239:Austral Volcanic Zone 227:Central Volcanic Zone 144:Central Volcanic Zone 1925:, pp. 993, 994. 1458:De Silva et al. 2006 1325:De Silva et al. 2006 1315:, pp. 313, 314. 255:Nevados de Payachata 245:, which consists of 2255:Calderas of Bolivia 2210:2007JVGR..164...27S 2172:2006GSLSP.269...47D 2142:2011GSAB..123..821S 2112:2010JVGR..198...81K 2074:1994JGSoc.151..845F 1955:2008JSAES..25..464C 1890:2015Geo....43..243C 1752:2016Geosp..12.1054K 440:South America Plate 402: /  311:Wheelwright caldera 103: /  1761:10.1130/GES01258.1 1712:, pp. 46, 47. 1664:, pp. 37, 38. 1640:, pp. 36, 37. 1378:, pp. 44, 45. 685: 62:Highest point 2236:978-987-22403-2-5 2026:978-3-030-52009-0 1923:Coira et al. 1996 1911:Coira et al. 1996 1832:978-987-42-6666-8 1793:978-2-7099-1575-5 1710:Soler et al. 2007 1686:Soler et al. 2007 1674:Soler et al. 2007 1662:Soler et al. 2007 1650:Soler et al. 2007 1638:Soler et al. 2007 1626:Soler et al. 2007 1614:Soler et al. 2007 1585:Soler et al. 2007 1549:Soler et al. 2007 1534:Soler et al. 2007 1505:COIRA et al. 2004 1470:COIRA et al. 2004 1434:Soler et al. 2007 1419:Soler et al. 2007 1400:Soler et al. 2007 1376:Soler et al. 2007 1364:Caffe et al. 2008 1298:Coira et al. 2005 1240:Coira et al. 2005 1228:Coira et al. 1996 1216:COIRA et al. 2004 1204:Caffe et al. 2008 1192:Caffe et al. 2008 1180:Soler et al. 2007 1157:Soler et al. 2007 1138:Coira et al. 2005 1092:COIRA et al. 2004 1025:Soler et al. 2007 942:Soler et al. 2007 918:Soler et al. 2007 461:East of the main 444:Peru-Chile Trench 406:22.600°S 66.850°W 122: 121: 107:22.400°S 66.950°W 2277: 2270:Miocene calderas 2240: 2221: 2191: 2153: 2150:10.1130/B30280.1 2136:(5–6): 821–840. 2123: 2093: 2056: 2048: 2038: 2001: 1984: 1976: 1966: 1926: 1920: 1914: 1908: 1902: 1901: 1898:10.1130/G36258.1 1872: 1866: 1865: 1863: 1861: 1843: 1837: 1836: 1816: 1810: 1804: 1798: 1797: 1781: 1772: 1766: 1765: 1763: 1746:(4): 1054–1077. 1731: 1725: 1719: 1713: 1707: 1701: 1695: 1689: 1683: 1677: 1671: 1665: 1659: 1653: 1647: 1641: 1635: 1629: 1623: 1617: 1611: 1600: 1594: 1588: 1582: 1576: 1570: 1564: 1558: 1552: 1546: 1537: 1531: 1525: 1519: 1508: 1507:, pp. 5, 6. 1502: 1496: 1495: 1479: 1473: 1467: 1461: 1455: 1449: 1443: 1437: 1431: 1422: 1416: 1403: 1397: 1391: 1385: 1379: 1373: 1367: 1361: 1352: 1346: 1340: 1334: 1328: 1322: 1316: 1310: 1301: 1295: 1286: 1280: 1274: 1268: 1262: 1256: 1243: 1237: 1231: 1225: 1219: 1213: 1207: 1201: 1195: 1189: 1183: 1177: 1160: 1154: 1141: 1135: 1126: 1125: 1101: 1095: 1089: 1083: 1082: 1066: 1055: 1049: 1040: 1034: 1028: 1022: 1011: 1010: 990: 984: 983: 981: 966:Chungará (Arica) 963: 954: 945: 939: 933: 927: 921: 915: 843: 776:content and few 763:Plinian eruption 739:Eruption history 728:Werneria pygmaea 567:Acoite Formation 514: 417: 416: 414: 413: 412: 411:-22.600; -66.850 407: 403: 400: 399: 398: 395: 379: 368: 357: 349:Laguna de Vilama 346: 335: 118: 117: 115: 114: 113: 112:-22.400; -66.950 108: 104: 101: 100: 99: 96: 79: 78: 45: 44: 38: 21: 2285: 2284: 2280: 2279: 2278: 2276: 2275: 2274: 2265:VEI-8 volcanoes 2245: 2244: 2243: 2237: 2224: 2194: 2156: 2126: 2106:(1–2): 81–111. 2096: 2059: 2046: 2041: 2027: 2004: 1987: 1974: 1969: 1939: 1935: 1930: 1929: 1921: 1917: 1909: 1905: 1874: 1873: 1869: 1859: 1857: 1845: 1844: 1840: 1833: 1818: 1817: 1813: 1805: 1801: 1794: 1779: 1774: 1773: 1769: 1733: 1732: 1728: 1720: 1716: 1708: 1704: 1696: 1692: 1684: 1680: 1672: 1668: 1660: 1656: 1648: 1644: 1636: 1632: 1624: 1620: 1612: 1603: 1595: 1591: 1583: 1579: 1571: 1567: 1561:Kay et al. 2010 1559: 1555: 1547: 1540: 1532: 1528: 1520: 1511: 1503: 1499: 1494:(3–4): 257–271. 1481: 1480: 1476: 1468: 1464: 1456: 1452: 1446:Kay et al. 2010 1444: 1440: 1432: 1425: 1417: 1406: 1398: 1394: 1386: 1382: 1374: 1370: 1362: 1355: 1349:Kay et al. 2010 1347: 1343: 1335: 1331: 1323: 1319: 1311: 1304: 1296: 1289: 1281: 1277: 1271:Kay et al. 2010 1269: 1265: 1257: 1246: 1238: 1234: 1226: 1222: 1214: 1210: 1202: 1198: 1190: 1186: 1178: 1163: 1155: 1144: 1136: 1129: 1103: 1102: 1098: 1090: 1086: 1081:(1–2): 271–281. 1068: 1067: 1058: 1050: 1043: 1035: 1031: 1023: 1014: 992: 991: 987: 961: 956: 955: 948: 940: 936: 930:Kay et al. 2010 928: 924: 916: 901: 896: 867:Magnetotelluric 837: 741: 722:Oxychloe andina 677: 602: 429: 410: 408: 404: 401: 396: 393: 391: 389: 388: 373: 362: 351: 340: 329: 327:Laguna Chojllas 299:Aguas Calientes 259:Ojos del Salado 247:stratovolcanoes 192: 158:and associated 111: 109: 105: 102: 97: 94: 92: 90: 89: 73: 57: 56: 55: 54: 53: 52: 51: 50: 46: 17: 12: 11: 5: 2283: 2281: 2273: 2272: 2267: 2262: 2257: 2247: 2246: 2242: 2241: 2235: 2222: 2204:(1–2): 27–53. 2192: 2154: 2124: 2094: 2068:(5): 845–854. 2057: 2039: 2025: 2002: 1985: 1967: 1949:(4): 464–484. 1936: 1934: 1931: 1928: 1927: 1915: 1913:, p. 992. 1903: 1884:(3): 243–246. 1867: 1838: 1831: 1811: 1799: 1792: 1767: 1726: 1724:, p. 827. 1714: 1702: 1690: 1678: 1666: 1654: 1642: 1630: 1618: 1601: 1599:, p. 833. 1589: 1577: 1565: 1553: 1538: 1526: 1524:, p. 315. 1509: 1497: 1474: 1462: 1450: 1438: 1423: 1404: 1392: 1390:, p. 314. 1380: 1368: 1366:, p. 465. 1353: 1341: 1339:, p. 835. 1329: 1317: 1302: 1287: 1285:, p. 313. 1275: 1263: 1261:, p. 822. 1244: 1232: 1230:, p. 997. 1220: 1208: 1206:, p. 470. 1196: 1194:, p. 467. 1184: 1161: 1142: 1127: 1122:10520/EJC97455 1116:(3): 166–170. 1096: 1094:, p. 113. 1084: 1056: 1054:, p. 847. 1041: 1039:, p. 846. 1029: 1012: 1001:(7): 147–161. 985: 946: 934: 922: 898: 897: 895: 892: 886:Cerro Zapaleri 752:contaminating 740: 737: 712:Prosopis ferox 676: 673: 652:titanium oxide 616:consisting of 601: 598: 562:, such as the 428: 425: 323:resurgent dome 287:Purico complex 275:Pastos Grandes 216:Cerro Zapaleri 191: 188: 176:resurgent dome 164:supervolcanoes 120: 119: 87: 81: 80: 70: 64: 63: 59: 58: 49:Vilama caldera 48: 47: 40: 39: 33: 32: 31: 30: 29: 26: 25: 24:Vilama caldera 15: 13: 10: 9: 6: 4: 3: 2: 2282: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2252: 2250: 2238: 2232: 2228: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2058: 2054: 2053: 2045: 2040: 2036: 2032: 2028: 2022: 2018: 2014: 2010: 2009: 2003: 1999: 1995: 1991: 1986: 1982: 1981: 1973: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1938: 1937: 1932: 1924: 1919: 1916: 1912: 1907: 1904: 1899: 1895: 1891: 1887: 1883: 1879: 1871: 1868: 1855: 1854: 1849: 1842: 1839: 1834: 1828: 1824: 1823: 1815: 1812: 1809:, p. 16. 1808: 1803: 1800: 1795: 1789: 1785: 1778: 1771: 1768: 1762: 1757: 1753: 1749: 1745: 1741: 1737: 1730: 1727: 1723: 1718: 1715: 1711: 1706: 1703: 1700:, p. 12. 1699: 1694: 1691: 1688:, p. 42. 1687: 1682: 1679: 1676:, p. 32. 1675: 1670: 1667: 1663: 1658: 1655: 1652:, p. 37. 1651: 1646: 1643: 1639: 1634: 1631: 1628:, p. 36. 1627: 1622: 1619: 1616:, p. 35. 1615: 1610: 1608: 1606: 1602: 1598: 1593: 1590: 1587:, p. 30. 1586: 1581: 1578: 1574: 1569: 1566: 1563:, p. 88. 1562: 1557: 1554: 1551:, p. 49. 1550: 1545: 1543: 1539: 1536:, p. 41. 1535: 1530: 1527: 1523: 1518: 1516: 1514: 1510: 1506: 1501: 1498: 1493: 1489: 1485: 1478: 1475: 1471: 1466: 1463: 1460:, p. 51. 1459: 1454: 1451: 1448:, p. 85. 1447: 1442: 1439: 1436:, p. 38. 1435: 1430: 1428: 1424: 1421:, p. 33. 1420: 1415: 1413: 1411: 1409: 1405: 1402:, p. 39. 1401: 1396: 1393: 1389: 1384: 1381: 1377: 1372: 1369: 1365: 1360: 1358: 1354: 1351:, p. 84. 1350: 1345: 1342: 1338: 1333: 1330: 1327:, p. 57. 1326: 1321: 1318: 1314: 1309: 1307: 1303: 1299: 1294: 1292: 1288: 1284: 1279: 1276: 1273:, p. 81. 1272: 1267: 1264: 1260: 1255: 1253: 1251: 1249: 1245: 1241: 1236: 1233: 1229: 1224: 1221: 1218:, p. 78. 1217: 1212: 1209: 1205: 1200: 1197: 1193: 1188: 1185: 1182:, p. 28. 1181: 1176: 1174: 1172: 1170: 1168: 1166: 1162: 1159:, p. 45. 1158: 1153: 1151: 1149: 1147: 1143: 1139: 1134: 1132: 1128: 1123: 1119: 1115: 1111: 1107: 1100: 1097: 1093: 1088: 1085: 1080: 1076: 1072: 1065: 1063: 1061: 1057: 1053: 1048: 1046: 1042: 1038: 1033: 1030: 1027:, p. 29. 1026: 1021: 1019: 1017: 1013: 1008: 1004: 1000: 996: 989: 986: 980: 975: 971: 967: 960: 953: 951: 947: 944:, p. 34. 943: 938: 935: 932:, p. 83. 931: 926: 923: 920:, p. 44. 919: 914: 912: 910: 908: 906: 904: 900: 893: 891: 889: 887: 883: 880: 875: 870: 868: 864: 860: 856: 850: 847: 841: 836: 835:Cerro Pululos 832: 827: 825: 821: 817: 816:supereruption 812: 811:paleomagnetic 806: 803: 799: 795: 789: 787: 783: 779: 775: 771: 766: 764: 759: 758:magma chamber 755: 751: 747: 738: 736: 734: 730: 729: 724: 723: 718: 714: 713: 708: 704: 700: 699: 694: 691: 681: 674: 672: 670: 666: 661: 657: 653: 649: 645: 641: 637: 634: 630: 627: 623: 619: 615: 611: 610:calc-alkaline 607: 599: 597: 595: 591: 587: 583: 579: 575: 572: 568: 565: 561: 556: 554: 550: 546: 542: 539:dome and the 538: 534: 530: 526: 522: 516: 513: 508: 504: 503:Cerro Panizos 500: 496: 492: 488: 484: 480: 476: 472: 468: 464: 459: 457: 456:asthenosphere 453: 449: 445: 441: 437: 434: 426: 424: 421: 415: 385: 383: 377: 372: 366: 361: 355: 350: 344: 339: 338:Laguna Coruto 333: 328: 324: 318: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 279:Cerro Panizos 276: 272: 268: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 223: 221: 217: 213: 209: 205: 201: 197: 189: 187: 184: 179: 177: 173: 167: 165: 161: 157: 153: 149: 145: 141: 137: 133: 130: 126: 116: 88: 86: 82: 77: 71: 69: 65: 60: 37: 27: 22: 19: 2226: 2201: 2197: 2166:(1): 47–63. 2163: 2159: 2133: 2129: 2103: 2099: 2065: 2061: 2052:ResearchGate 2050: 2007: 1998:ResearchGate 1993: 1980:ResearchGate 1978: 1946: 1942: 1918: 1906: 1881: 1877: 1870: 1858:. Retrieved 1851: 1841: 1821: 1814: 1802: 1783: 1770: 1743: 1739: 1729: 1717: 1705: 1693: 1681: 1669: 1657: 1645: 1633: 1621: 1592: 1580: 1575:, p. 7. 1568: 1556: 1529: 1500: 1491: 1487: 1477: 1472:, p. 3. 1465: 1453: 1441: 1395: 1383: 1371: 1344: 1332: 1320: 1300:, p. 6. 1278: 1266: 1242:, p. 4. 1235: 1223: 1211: 1199: 1187: 1140:, p. 2. 1113: 1109: 1099: 1087: 1078: 1074: 1032: 998: 988: 969: 965: 937: 925: 890: 879:Cerro Morado 874:Abra Granada 871: 851: 830: 828: 824:supervolcano 807: 790: 785: 767: 745: 742: 726: 720: 710: 696: 686: 667:derived and 603: 557: 551:body in the 533:Cerro Purico 517: 507:Cerro Guacha 463:volcanic arc 460: 438:beneath the 430: 420:Abra Granada 386: 360:Cerro Alcoak 319: 283:Cerro Guacha 243:volcanic arc 224: 193: 180: 168: 124: 123: 18: 1994:BoletĂ­n 269 859:Pleistocene 838: [ 794:vitrophyric 782:phenocrysts 629:plagioclase 614:phenocrysts 600:Composition 574:Salta Group 525:lithosphere 495:Pleistocene 483:ignimbrites 481:with their 433:Nazca Plate 409: / 374: [ 371:Cerro Salle 363: [ 352: [ 341: [ 330: [ 267:Los Frailes 172:Pleistocene 160:ignimbrites 110: / 85:Coordinates 2249:Categories 894:References 735:at lakes. 648:iron oxide 622:hornblende 578:Ordovician 571:Cretaceous 560:formations 537:Cerro Chao 2188:129924955 2090:129179678 2035:221767857 1860:8 January 1740:Geosphere 1007:1850-373X 829:Fracchia 796:with few 774:pumiceous 733:flamingos 606:potassium 586:Oligocene 564:Paleozoic 529:La Pacana 477:to large 471:Oligocene 315:Incapillo 295:La Pacana 291:CoranzulĂ­ 271:Kari-Kari 208:Altiplano 196:Argentina 140:Argentina 68:Elevation 855:Pliocene 754:biotites 640:allanite 633:pyroxene 626:andesine 590:Cenozoic 582:basement 569:and the 545:Uturunku 521:basaltic 479:calderas 448:Jurassic 436:subducts 251:Coropuna 249:such as 220:obsidian 156:calderas 2206:Bibcode 2168:Bibcode 2138:Bibcode 2108:Bibcode 2070:Bibcode 1951:Bibcode 1933:Sources 1886:Bibcode 1878:Geology 1748:Bibcode 861:, with 846:dacitic 818:with a 698:Festuca 695:, with 669:crustal 644:apatite 618:biotite 594:plateau 499:dacitic 491:Miocene 465:of the 442:in the 427:Geology 397:66°51′W 394:22°36′S 382:dacitic 263:OllagĂĽe 202:in the 200:Bolivia 136:Bolivia 132:caldera 129:Miocene 98:66°57′W 95:22°24′S 2233:  2186:  2088:  2033:  2023:  1829:  1790:  1005:  831:et al. 802:lithic 798:fiamme 788:2007. 786:et al. 778:fiamme 770:lithic 746:et al. 717:yareta 703:quenoa 693:steppe 665:mantle 656:zircon 636:quartz 608:-rich 253:, the 125:Vilama 2184:S2CID 2086:S2CID 2047:(PDF) 2031:S2CID 1975:(PDF) 1780:(PDF) 962:(PDF) 882:mafic 842:] 750:argon 690:shrub 660:magma 553:crust 549:magma 378:] 367:] 356:] 345:] 334:] 307:Galán 212:Andes 148:Andes 127:is a 2231:ISBN 2021:ISBN 1862:2018 1827:ISBN 1788:ISBN 1003:ISSN 800:and 772:and 725:and 715:and 707:tola 654:and 452:slab 369:and 347:and 313:and 261:and 237:and 204:Puna 198:and 138:and 2214:doi 2202:164 2176:doi 2164:269 2146:doi 2134:123 2116:doi 2104:198 2078:doi 2066:151 2013:doi 1959:doi 1894:doi 1756:doi 1118:hdl 974:doi 515:). 493:to 134:in 2251:: 2212:. 2200:. 2182:. 2174:. 2162:. 2144:. 2132:. 2114:. 2102:. 2084:. 2076:. 2064:. 2049:. 2029:. 2019:. 1992:. 1977:. 1957:. 1947:25 1945:. 1892:. 1882:43 1880:. 1850:. 1782:. 1754:. 1744:12 1742:. 1738:. 1604:^ 1541:^ 1512:^ 1492:44 1490:. 1486:. 1426:^ 1407:^ 1356:^ 1305:^ 1290:^ 1247:^ 1164:^ 1145:^ 1130:^ 1114:98 1112:. 1108:. 1079:66 1077:. 1073:. 1059:^ 1044:^ 1015:^ 997:. 972:. 970:36 968:. 964:. 949:^ 902:^ 888:. 840:sv 826:. 709:, 705:, 701:, 650:, 646:, 642:, 631:, 624:, 620:, 576:; 376:sv 365:sv 354:es 343:es 336:, 332:es 317:. 309:, 305:, 301:, 297:, 293:, 289:, 285:, 281:, 277:, 273:, 269:, 257:, 233:, 178:. 166:. 2239:. 2220:. 2216:: 2208:: 2190:. 2178:: 2170:: 2152:. 2148:: 2140:: 2122:. 2118:: 2110:: 2092:. 2080:: 2072:: 2037:. 2015:: 2000:. 1965:. 1961:: 1953:: 1900:. 1896:: 1888:: 1864:. 1835:. 1796:. 1764:. 1758:: 1750:: 1124:. 1120:: 1009:. 982:. 976:: 206:-

Index

Vilama caldera is located in Bolivia
Elevation
Edit this on Wikidata
Coordinates
22°24′S 66°57′W / 22.400°S 66.950°W / -22.400; -66.950
Miocene
caldera
Bolivia
Argentina
Central Volcanic Zone
Andes
Altiplano-Puna volcanic complex
calderas
ignimbrites
supervolcanoes
Pleistocene
resurgent dome
volcanic explosivity index
Argentina
Bolivia
Puna
Altiplano
Andes
Cerro Zapaleri
obsidian
Central Volcanic Zone
Northern Volcanic Zone
Southern Volcanic Zone
Austral Volcanic Zone
volcanic arc

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑