Knowledge (XXG)

Vitali covering lemma

Source 📝

80: 117: 2971: 2071: 4563: 2770: 572: 5235: 3108: 1918: 1792: 1569: 2427: 3213: 2762: 3835: 4367: 1407: 2450:. In a separable metric space, any pairwise disjoint collection of balls must be countable. In a non-separable space, the same argument shows a pairwise disjoint subfamily exists, but that family need not be countable. 2155: 3961:
in a specific way. The main differences between the Besicovitch covering theorem and the Vitali covering lemma are that on one hand, the disjointness requirement of Vitali is relaxed to the fact that the number
3547: 4245: 4180: 799: 2620:, each of which has a measure we can more easily compute, or has a special property one would like to exploit. Hence, if we compute the measure of this union, we will have an upper bound on the measure of 440: 5336: 4435: 431: 5662: 1297: 5083: 4111: 3762: 2966:{\displaystyle \lambda _{d}(E)\leq \lambda _{d}{\biggl (}\bigcup _{j\in J}B_{j}{\biggr )}\leq \lambda _{d}{\biggl (}\bigcup _{j\in J'}5B_{j}{\biggr )}\leq \sum _{j\in J'}\lambda _{d}(5B_{j}).} 2676: 1478: 4767: 915: 1050: 673: 4872: 5098: 4943: 1094: 719: 347: 3637: 2220: 1625: 1597: 1444: 5267: 4808: 2618: 158: 110: 1505: 4064: 3870: 3711: 3604: 3578: 3463: 3414: 3374: 3316: 3272: 992: 948: 1823: 4637: 2562: 2066:{\displaystyle \mathbf {H} _{n+1}=\{B\in \mathbf {F} _{n+1}:\ B\cap C=\emptyset ,\ \ \forall C\in \mathbf {G} _{0}\cup \mathbf {G} _{1}\cup \dots \cup \mathbf {G} _{n}\},} 1500: 1330: 5021: 1654: 839: 5804: 4423: 1209: 1155: 613: 1684: 229: 4973: 3767: 120:
On the top: a collection of balls; the green balls are the disjoint subcollection. On the bottom: the subcollection with three times the radius covers all the balls.
1236: 1121: 199: 290: 1339: 2986: 252: 1175: 2366: 4185: 4116: 2624:. However, it is difficult to compute the measure of the union of all these balls if they overlap. By the Vitali lemma, we may choose a subcollection 4277: 2526: 3119: 2681: 2102: 124:
There are two basic versions of the lemma, a finite version and an infinite version. Both lemmas can be proved in the general setting of a
3487: 5725: 724: 5851: 5777: 5610: 5569: 5594: 5279: 4558:{\displaystyle \sum _{j}\operatorname {diam} (U_{j})^{d}\leq C\sum _{j}\lambda _{d}(U_{j})\leq C\,\lambda _{d}(B)<+\infty } 4580:
The covering lemma can be used as intermediate step in the proof of the following basic form of the Vitali covering theorem.
5357:
The Vitali covering theorem is not valid in infinite-dimensional settings. The first result in this direction was given by
5645: 356: 5403: 3916: 1245: 5033: 4073: 3724: 5640: 1453: 5700: 4717: 5602: 3882:
has finite measure. This is obtained by applying the covering result in the finite measure case, for every integer
855: 2627: 567:{\displaystyle B_{1}\cup B_{2}\cup \dots \cup B_{n}\subseteq 3B_{j_{1}}\cup 3B_{j_{2}}\cup \dots \cup 3B_{j_{m}}.} 3957:
is assigned. Then, as in the Vitali covering lemma, a subcollection of these balls is selected in order to cover
997: 2168:
is a disjoint collection, and is thus countable since the given metric space is separable. Moreover, every ball
618: 5889: 4828: 3659:, the family of balls for the metric associated to the norm is another example. To the contrary, the family of 5230:{\displaystyle \lambda _{d}(Z)\leq \sum _{n>N}\lambda _{d}(5C_{n})=5^{d}\sum _{n>N}\lambda _{d}(C_{n}).} 5894: 5873: 4913: 5899: 1333: 28: 5390:). This result was strengthened in 2003 by Jaroslav Tišer: the Vitali covering theorem in fact fails for 1055: 678: 306: 3609: 2197: 1602: 1574: 1412: 5846: 5243: 4784: 4568:
which excludes the second possibility in the first assertion of the previous theorem. It follows that
2578: 134: 86: 5635: 4045: 3851: 3692: 3585: 3559: 3444: 3395: 3355: 3297: 3253: 2453:
The result may fail if the radii are not bounded: consider the family of all balls centered at 0 in
953: 920: 2529:. As in this proof, the Vitali lemma is frequently used when we are, for instance, considering the 1239: 4620: 2540: 1799: 1483: 1313: 4990: 1630: 804: 350: 202: 1787:{\displaystyle \mathbf {F} _{n}=\{B\in \mathbf {F} :2^{-n-1}R<{\text{rad}}(B)\leq 2^{-n}R\}.} 4395: 1180: 1126: 584: 5773: 5734: 5606: 5565: 4005: 2565: 79: 5394:
infinite-dimensional Gaussian measure on any (infinite-dimensional) separable Hilbert space.
208: 5860: 5831: 5813: 5791: 5750: 5712: 5681: 5671: 5624: 5583: 5362: 4948: 2534: 5827: 5787: 5746: 5708: 5620: 5579: 3103:{\displaystyle \sum _{j\in J'}\lambda _{d}(5B_{j})=5^{d}\sum _{j\in J'}\lambda _{d}(B_{j})} 2489:
instead of 5. Any constant larger than 3 gives a correct statement of the lemma, but not 3.
1214: 1099: 5864: 5842: 5835: 5823: 5795: 5783: 5754: 5742: 5716: 5704: 5692: 5685: 5628: 5616: 5587: 5575: 5369: 2980:-dimensional ball by a factor of five increases its volume by a factor of 5, we know that 577:
Without loss of generality, we assume that the collection of balls is not empty; that is,
163: 129: 48: 36: 1893: 257: 1564:{\displaystyle \bigcup _{B\in \mathbf {F} }B\subseteq \bigcup _{C\in \mathbf {G} }5\,C.} 234: 5657: 5653: 5557: 3474: 2422:{\displaystyle \bigcup _{B\in \mathbf {F} }B\subseteq \bigcup _{C\in \mathbf {G} }5\,C} 1160: 32: 116: 5883: 5769: 5372: 4572:
is covered, up to a Lebesgue-negligible set, by the selected disjoint subcollection.
434: 5358: 125: 39:. This lemma is an intermediate step, of independent interest, in the proof of the 5818: 5761: 5341:
Therefore, the term on the right side of the above inequality converges to 0 as
2447: 841:
be such ball with maximal radius (breaking ties arbitrarily), otherwise, we set
20: 3872:
is a collection of intervals that is a Vitali covering for a measurable subset
3830:{\displaystyle \lambda _{d}{\biggl (}E\setminus \bigcup _{j}U_{j}{\biggr )}=0.} 4362:{\displaystyle H^{s}(E)\leq \sum _{j}\mathrm {diam} (U_{j})^{s}+\varepsilon .} 4039: 5738: 16:
Combinatorial and geometric result used in measure theory of Euclidean spaces
5561: 4070:. Then there exists a (finite or countably infinite) disjoint subcollection 3208:{\displaystyle \lambda _{d}(E)\leq 5^{d}\sum _{j\in J'}\lambda _{d}(B_{j}).} 2757:{\textstyle \bigcup _{j\in J'}5B_{j}\supset \bigcup _{j\in J}B_{j}\supset E} 2443: 1402:{\displaystyle R:=\sup \,\{\mathrm {rad} (B):B\in \mathbf {F} \}<\infty } 2575:, which we know is contained in the union of a certain collection of balls 3721:. Then there exists a finite or countably infinite disjoint subcollection 353:
contained in an arbitrary metric space. Then there exists a subcollection
4008:
instead of Lebesgue measure. The following theorem applies in that case.
3327: 52: 5676: 4613:
are nondegenerate and have radius less than or equal to 1. By the
4372:
This theorem implies the result of Lebesgue given above. Indeed, when
3349:
have also been considered, as is shown in the relevant section below.
3345:, but measures other than the Lebesgue measure, and spaces other than 2150:{\displaystyle \mathbf {G} :=\bigcup _{n=0}^{\infty }\mathbf {G} _{n}} 5802:
Tišer, Jaroslav (2003), "Vitali covering theorem in Hilbert space",
5451: 3542:{\displaystyle \operatorname {diam} (V)^{d}\leq C\,\lambda _{d}(V)} 4240:{\displaystyle \sum _{j}\operatorname {diam} (U_{j})^{s}=\infty .} 115: 78: 44: 5723:
Preiss, David (1979), "Gaussian measures and covering theorems",
128:, typically these results are applied to the special case of the 4175:{\displaystyle H^{s}\left(E\setminus \bigcup _{j}U_{j}\right)=0} 794:{\displaystyle B_{j_{1}}\cup B_{j_{2}}\cup \dots \cup B_{j_{k}}} 5766:
Real analysis. Measure theory, integration, and Hilbert spaces
4609:
Without loss of generality, one can assume that all balls in
1299:, as needed. This completes the proof of the finite version. 5601:, Cambridge Tracts in Mathematics, vol. 85, Cambridge: 4098: 4051: 3857: 3749: 3698: 3615: 3591: 3565: 3450: 3401: 3361: 3341:
In the classical setting of Vitali, the negligible set is a
3303: 3259: 51:. The theorem states that it is possible to cover, up to a 3999: 3689:
be a measurable set with finite Lebesgue measure, and let
160:. In both theorems we will use the following notation: if 5847:"Sui gruppi di punti e sulle funzioni di variabili reali" 3992:; on the other hand, the selected balls do cover the set 3423: 5331:{\displaystyle \sum _{n}\lambda _{d}(C_{n})<\infty .} 4878:. But by the Vitali cover property, one can find a ball 4392:-dimensional Lebesgue measure. If a disjoint collection 615:
be the ball of largest radius. Inductively, assume that
4598:
of closed balls, there exists a disjoint subcollection
3416:
that are contained in Ω is also a Vitali covering for
2684: 1802: 858: 260: 166: 5282: 5246: 5101: 5036: 4993: 4951: 4916: 4831: 4787: 4720: 4623: 4438: 4398: 4280: 4262: > 0, we may choose this subcollection { 4188: 4119: 4076: 4048: 3878:
The theorem above remains true without assuming that
3854: 3770: 3727: 3695: 3612: 3588: 3562: 3490: 3447: 3398: 3358: 3300: 3256: 3122: 2989: 2773: 2630: 2581: 2543: 2525:
An application of the Vitali lemma is in proving the
2492:
Using a finer analysis, when the original collection
2369: 2200: 2105: 1921: 1687: 1633: 1605: 1577: 1508: 1486: 1456: 1415: 1342: 1316: 1248: 1217: 1183: 1163: 1129: 1102: 1058: 1000: 956: 923: 807: 727: 681: 621: 587: 443: 359: 309: 237: 211: 137: 89: 3971:
of the selected balls containing an arbitrary point
3582:
The family of cubes is an example of regular family
426:{\displaystyle B_{j_{1}},B_{j_{2}},\dots ,B_{j_{m}}} 5870:
On groups of points and functions of real variables
5663:
Annales Scientifiques de l'École Normale Supérieure
4000:
Vitali's covering theorem for the Hausdorff measure
3428:The next covering theorem for the Lebesgue measure 2457:; any disjoint subfamily consists of only one ball 5726:Commentatione Mathematicae Universitatis Carolinae 5330: 5261: 5229: 5077: 5015: 4967: 4937: 4866: 4802: 4761: 4631: 4617:, there exists a countable disjoint subcollection 4557: 4417: 4361: 4239: 4174: 4105: 4058: 4004:One may have a similar objective when considering 3864: 3829: 3756: 3705: 3631: 3598: 3572: 3541: 3457: 3424:Vitali's covering theorem for the Lebesgue measure 3408: 3368: 3310: 3266: 3207: 3102: 2965: 2756: 2670: 2612: 2556: 2421: 2214: 2149: 2065: 1817: 1786: 1648: 1619: 1591: 1563: 1494: 1472: 1438: 1401: 1324: 1292:{\displaystyle B_{i}\subset 3\,B_{j_{k}}\subset X} 1291: 1230: 1203: 1169: 1149: 1115: 1088: 1044: 986: 942: 909: 833: 793: 713: 667: 607: 566: 425: 341: 284: 246: 223: 193: 152: 104: 5805:Transactions of the American Mathematical Society 5078:{\displaystyle Z\subset \bigcup _{n>N}5C_{n}.} 4106:{\displaystyle \{U_{j}\}\subseteq {\mathcal {V}}} 3816: 3783: 3757:{\displaystyle \{U_{j}\}\subseteq {\mathcal {V}}} 3655: ≥ 1. If an arbitrary norm is given on 2902: 2861: 2841: 2808: 1864:, is defined inductively as follows. First, set 4602:which covers E up to a Lebesgue-negligible set. 4425:is regular and contained in a measurable region 2476: > 1, is used instead of 2 for defining 2355:we can conclude by the triangle inequality that 1473:{\displaystyle \mathbf {G} \subset \mathbf {F} } 1349: 5772:: Princeton University Press, pp. xx+402, 5554:Measure Theory and Fine Properties of Functions 5552:Evans, Lawrence C.; Gariepy, Ronald F. (1992), 5454:From the covering lemma to the covering theorem 5378:so that the Vitali covering theorem fails for ( 4576:From the covering lemma to the covering theorem 1450:. Then there exists a countable sub-collection 5658:"Sur l'intégration des fonctions discontinues" 4762:{\displaystyle \mathbf {G} _{r}=\{C_{n}\}_{n}} 3223:In the covering theorem, the aim is to cover, 2465:does not contain all the balls in this family. 910:{\textstyle X:=\bigcup _{k=1}^{m}3\,B_{j_{k}}} 5872:" is the paper containing the first proof of 5420: 5418: 4258:-dimensional Hausdorff measure, then for any 3278:is a collection of sets such that, for every 3235:by a disjoint subcollection extracted from a 8: 5510: 5468: 5438: 4750: 4736: 4594:and every Vitali cover of E by a collection 4412: 4399: 4090: 4077: 3844:is a special case of this theorem, in which 3741: 3728: 2671:{\displaystyle \left\{B_{j}:j\in J'\right\}} 2607: 2582: 2468:The constant 5 is not optimal. If the scale 2057: 1943: 1778: 1703: 1390: 1353: 1083: 1065: 1039: 1007: 5852:Atti dell'Accademia delle Scienze di Torino 4769:denote the subcollection of those balls in 4703:, centered at 0. It is enough to show that 4584: 4012: 3915:A somewhat related covering theorem is the 3675: 3643:such that the ratio of sides stays between 2429:immediately follows, completing the proof. 2164:satisfies the requirements of the theorem: 1045:{\displaystyle i\in \{j_{1},\dots ,j_{m}\}} 675:have been chosen. If there is some ball in 3384:is contained in an open set Ω ⊆  668:{\displaystyle B_{j_{1}},\dots ,B_{j_{k}}} 43:. The covering theorem is credited to the 5817: 5675: 5310: 5297: 5287: 5281: 5253: 5248: 5245: 5215: 5202: 5186: 5176: 5160: 5144: 5128: 5106: 5100: 5066: 5047: 5035: 5007: 4992: 4959: 4950: 4930: 4921: 4915: 4867:{\displaystyle K=\bigcup _{n\leq N}C_{n}} 4858: 4842: 4830: 4810:may be finite or countably infinite. Let 4794: 4789: 4786: 4753: 4743: 4727: 4722: 4719: 4624: 4622: 4531: 4526: 4511: 4498: 4488: 4472: 4462: 4443: 4437: 4406: 4397: 4344: 4334: 4313: 4307: 4285: 4279: 4222: 4212: 4193: 4187: 4155: 4145: 4124: 4118: 4097: 4096: 4084: 4075: 4050: 4049: 4047: 3856: 3855: 3853: 3815: 3814: 3808: 3798: 3782: 3781: 3775: 3769: 3748: 3747: 3735: 3726: 3713:be a regular family of closed subsets of 3697: 3696: 3694: 3614: 3613: 3611: 3590: 3589: 3587: 3564: 3563: 3561: 3524: 3519: 3507: 3489: 3449: 3448: 3446: 3400: 3399: 3397: 3360: 3359: 3357: 3302: 3301: 3299: 3258: 3257: 3255: 3193: 3180: 3159: 3149: 3127: 3121: 3091: 3078: 3057: 3047: 3031: 3015: 2994: 2988: 2951: 2935: 2914: 2901: 2900: 2894: 2870: 2860: 2859: 2853: 2840: 2839: 2833: 2817: 2807: 2806: 2800: 2778: 2772: 2742: 2726: 2713: 2689: 2683: 2640: 2629: 2589: 2580: 2548: 2542: 2442:, the initial collection of balls can be 2415: 2405: 2398: 2381: 2374: 2368: 2207: 2199: 2141: 2136: 2129: 2118: 2106: 2104: 2051: 2046: 2030: 2025: 2015: 2010: 1958: 1953: 1928: 1923: 1920: 1809: 1804: 1801: 1766: 1745: 1724: 1712: 1694: 1689: 1686: 1632: 1612: 1604: 1584: 1576: 1554: 1544: 1537: 1520: 1513: 1507: 1487: 1485: 1465: 1457: 1455: 1416: 1414: 1385: 1356: 1352: 1341: 1332:be an arbitrary collection of balls in a 1317: 1315: 1275: 1270: 1265: 1253: 1247: 1222: 1216: 1193: 1188: 1182: 1162: 1139: 1134: 1128: 1107: 1101: 1057: 1033: 1014: 999: 955: 928: 922: 899: 894: 889: 880: 869: 857: 817: 812: 806: 783: 778: 757: 752: 737: 732: 726: 705: 686: 680: 657: 652: 631: 626: 620: 597: 592: 586: 553: 548: 524: 519: 501: 496: 480: 461: 448: 442: 415: 410: 389: 384: 369: 364: 358: 333: 314: 308: 259: 236: 210: 165: 144: 140: 139: 136: 96: 92: 91: 88: 5506: 5493: 4707:is Lebesgue-negligible, for every given 4683:that are not contained in any ball from 3876:of the real line having finite measure. 3438: 3352:The following observation is useful: if 2086:be a maximal disjoint subcollection of 849:and terminate the inductive definition. 5768:, Princeton Lectures in Analysis, III, 5414: 4138: 3791: 1885:be a maximal disjoint subcollection of 1052:. Otherwise, there necessarily is some 5697:Theory of functions of a real variable 5523: 5480: 5425: 5273:, and these balls are disjoint we see 3841: 2976:Now, since increasing the radius of a 63:by a disjoint family extracted from a 5536: 4938:{\displaystyle C_{i}\in \mathbf {G} } 4614: 2512:, defined in the above proof, covers 7: 4026:-dimensional Hausdorff measure, let 2485:, the final value is 1 + 2 2263:intersects a ball from the union of 5556:, Studies in Advanced Mathematics, 5345:goes to infinity, which shows that 4615:infinite form of the covering lemma 4429:with finite Lebesgue measure, then 2527:Hardy–Littlewood maximal inequality 2508:, one shows that the subcollection 1089:{\displaystyle k\in \{1,\dots ,m\}} 5509:), with some notation taken from ( 5322: 4825:does not belong to the closed set 4552: 4323: 4320: 4317: 4314: 4231: 4066:a Vitali class of closed sets for 3988:depending only upon the dimension 3886: ≥ 0, to the portion of 3290: > 0, there is a set 2130: 2000: 1988: 1502:are pairwise disjoint, and satisfy 1423: 1420: 1417: 1396: 1363: 1360: 1357: 1308:Theorem (Infinite Covering Lemma). 714:{\displaystyle B_{1},\dots ,B_{n}} 342:{\displaystyle B_{1},\dots ,B_{n}} 14: 4388:coincides with a multiple of the 3632:{\displaystyle {\mathcal {V}}(m)} 3388:, then the subcollection of sets 2215:{\displaystyle B\in \mathbf {F} } 1620:{\displaystyle C\in \mathbf {G} } 1592:{\displaystyle B\in \mathbf {F} } 1439:{\displaystyle \mathrm {rad} (B)} 1157:. We choose the minimal possible 5262:{\displaystyle \mathbf {G} _{r}} 5249: 4931: 4803:{\displaystyle \mathbf {G} _{r}} 4790: 4723: 4625: 3227:a "negligible set", a given set 2678:which is disjoint and such that 2613:{\displaystyle \{B_{j}:j\in J\}} 2516:up to a Lebesgue-negligible set. 2406: 2382: 2343:must have a radius larger than 2 2208: 2137: 2107: 2047: 2026: 2011: 1954: 1924: 1892:(such a subcollection exists by 1805: 1713: 1690: 1613: 1585: 1545: 1521: 1488: 1466: 1458: 1386: 1318: 1211:is at least as large as that of 301:Theorem (Finite Covering Lemma). 153:{\displaystyle \mathbb {R} ^{d}} 105:{\displaystyle \mathbb {R} ^{1}} 4671: > 0 be given, and let 3890:contained in the open annulus Ω 3334:is non-zero and less than  1446:denotes the radius of the ball 5701:Frederick Ungar Publishing Co. 5316: 5303: 5221: 5208: 5166: 5150: 5118: 5112: 4543: 4537: 4517: 4504: 4469: 4455: 4341: 4327: 4297: 4291: 4219: 4205: 4059:{\displaystyle {\mathcal {V}}} 3865:{\displaystyle {\mathcal {V}}} 3717:that is a Vitali covering for 3706:{\displaystyle {\mathcal {V}}} 3626: 3620: 3599:{\displaystyle {\mathcal {V}}} 3573:{\displaystyle {\mathcal {V}}} 3536: 3530: 3504: 3497: 3458:{\displaystyle {\mathcal {V}}} 3409:{\displaystyle {\mathcal {V}}} 3369:{\displaystyle {\mathcal {V}}} 3311:{\displaystyle {\mathcal {V}}} 3267:{\displaystyle {\mathcal {V}}} 3199: 3186: 3139: 3133: 3097: 3084: 3037: 3021: 2957: 2941: 2790: 2784: 2521:Applications and method of use 1756: 1750: 1433: 1427: 1373: 1367: 987:{\displaystyle i=1,2,\dots ,n} 943:{\displaystyle B_{i}\subset X} 279: 264: 188: 176: 83:Visualization of the lemma in 1: 5819:10.1090/S0002-9947-03-03296-3 5812:(8): 3277–3289 (electronic), 5505:The proof given is based on ( 5437:The proof given is based on ( 5368:on an (infinite-dimensional) 3477:) if there exists a constant 2323:that belongs to the union of 2194:Indeed, if we are given some 1818:{\textstyle \mathbf {F} _{n}} 5599:The geometry of fractal sets 5404:Besicovitch covering theorem 4632:{\displaystyle \mathbf {G} } 3917:Besicovitch covering theorem 2557:{\displaystyle \lambda _{d}} 2259: > 0 and means that 1495:{\displaystyle \mathbf {G} } 1325:{\displaystyle \mathbf {F} } 1177:and note that the radius of 349:be any finite collection of 5641:Encyclopedia of Mathematics 5483:allowed a negligible error. 5353:Infinite-dimensional spaces 5016:{\displaystyle z\in 5C_{i}} 4983:are disjoint, we must have 1649:{\displaystyle B\subset 5C} 834:{\displaystyle B_{j_{k+1}}} 29:combinatorial and geometric 5916: 5764:; Shakarchi, Rami (2005), 5603:Cambridge University Press 3996:of all the given centers. 2351:is less than or equal to 2 1662:Consider the partition of 917:. It remains to show that 5349:is negligible as needed. 4675:denote the set of points 4418:{\displaystyle \{U_{j}\}} 3979:is bounded by a constant 3465:of measurable subsets of 3376:is a Vitali covering for 1204:{\displaystyle B_{j_{k}}} 1150:{\displaystyle B_{j_{k}}} 608:{\displaystyle B_{j_{1}}} 433:of these balls which are 5511:Evans & Gariepy 1992 5469:Evans & Gariepy 1992 5439:Evans & Gariepy 1992 5361:in 1979: there exists a 4380:, the Hausdorff measure 1912:have been selected, let 31:result commonly used in 5874:Vitali covering theorem 5240:But since the balls of 3840:The original result of 3343:Lebesgue negligible set 3219:Vitali covering theorem 2347:. Since the radius of 1480:such that the balls of 224:{\displaystyle c\geq 0} 53:Lebesgue-negligible set 41:Vitali covering theorem 5458:section of this entry. 5332: 5263: 5231: 5079: 5017: 4969: 4968:{\displaystyle 5C_{i}} 4939: 4868: 4804: 4763: 4633: 4590:For every subset E of 4559: 4419: 4363: 4241: 4176: 4107: 4060: 3866: 3831: 3758: 3707: 3633: 3600: 3574: 3543: 3459: 3410: 3370: 3312: 3268: 3209: 3104: 2967: 2758: 2672: 2614: 2558: 2423: 2363:as claimed. From this 2306:intersects a ball in 2216: 2151: 2134: 2067: 1825:consists of the balls 1819: 1788: 1679: ≥ 0, defined by 1650: 1621: 1593: 1565: 1496: 1474: 1440: 1403: 1334:separable metric space 1326: 1293: 1232: 1205: 1171: 1151: 1117: 1090: 1046: 988: 944: 911: 885: 835: 795: 721:that is disjoint from 715: 669: 609: 568: 427: 343: 286: 248: 225: 195: 154: 121: 113: 106: 5868:(Title translation) " 5564:, pp. viii+268, 5333: 5264: 5232: 5088:This gives for every 5080: 5018: 4970: 4940: 4910:intersects some ball 4902:. By the property of 4898:), and disjoint from 4874:by the definition of 4869: 4805: 4764: 4643:such that every ball 4634: 4560: 4420: 4364: 4242: 4177: 4108: 4061: 3867: 3832: 3759: 3708: 3634: 3601: 3575: 3544: 3460: 3411: 3371: 3313: 3269: 3210: 3105: 2968: 2759: 2673: 2615: 2559: 2424: 2293:and by maximality of 2217: 2152: 2114: 2068: 1829:whose radius is in (2 1820: 1789: 1651: 1622: 1594: 1566: 1497: 1475: 1441: 1404: 1327: 1294: 1233: 1231:{\displaystyle B_{i}} 1206: 1172: 1152: 1118: 1116:{\displaystyle B_{i}} 1091: 1047: 989: 945: 912: 865: 836: 796: 716: 670: 610: 569: 428: 344: 287: 249: 226: 196: 194:{\textstyle B=B(x,r)} 155: 119: 107: 82: 75:Vitali covering lemma 25:Vitali covering lemma 5605:, pp. xiv+162, 5595:Falconer, Kenneth J. 5280: 5244: 5099: 5034: 4991: 4949: 4945:and is contained in 4914: 4829: 4785: 4718: 4663: ⊂ 5  4621: 4436: 4396: 4278: 4186: 4117: 4074: 4046: 3950:and positive radius 3852: 3768: 3725: 3693: 3610: 3586: 3560: 3488: 3445: 3396: 3356: 3298: 3254: 3120: 2987: 2771: 2682: 2628: 2579: 2541: 2367: 2198: 2188: ⊂ 5  2103: 2096:. The subcollection 1919: 1800: 1685: 1666:into subcollections 1631: 1603: 1575: 1506: 1484: 1454: 1413: 1340: 1314: 1246: 1215: 1181: 1161: 1127: 1100: 1056: 998: 954: 921: 856: 805: 725: 679: 619: 585: 441: 357: 307: 285:{\textstyle B(x,cr)} 258: 235: 209: 164: 135: 87: 4818:be fixed. For each 4588: —  4016: —  3931:, a Euclidean ball 3679: —  3606:, as is the family 2246:does not belong to 2225:there must be some 1571:And moreover, each 1240:triangle inequality 994:. This is clear if 5677:10.24033/asens.624 5328: 5292: 5259: 5227: 5197: 5139: 5075: 5058: 5013: 4965: 4935: 4864: 4853: 4800: 4759: 4687:and belong to the 4651:intersects a ball 4629: 4586: 4555: 4493: 4448: 4415: 4359: 4312: 4237: 4198: 4172: 4150: 4103: 4056: 4014: 3862: 3827: 3803: 3754: 3703: 3677: 3629: 3596: 3570: 3556:in the collection 3539: 3455: 3406: 3366: 3308: 3294:in the collection 3264: 3205: 3175: 3100: 3073: 3010: 2963: 2930: 2886: 2828: 2754: 2737: 2705: 2668: 2610: 2554: 2419: 2411: 2387: 2319:intersects a ball 2212: 2176:intersects a ball 2147: 2063: 1815: 1784: 1646: 1617: 1589: 1561: 1550: 1526: 1492: 1470: 1436: 1399: 1322: 1289: 1242:then implies that 1228: 1201: 1167: 1147: 1113: 1086: 1042: 984: 940: 907: 831: 791: 711: 665: 605: 581: > 0. Let 564: 423: 339: 282: 247:{\displaystyle cB} 244: 221: 191: 150: 122: 114: 102: 5283: 5269:are contained in 5182: 5124: 5043: 4838: 4484: 4439: 4303: 4189: 4141: 4113:such that either 4006:Hausdorff measure 3794: 3651:, for some fixed 3639:of rectangles in 3473:(in the sense of 3155: 3053: 2990: 2910: 2866: 2813: 2722: 2685: 2394: 2370: 1999: 1996: 1975: 1896:). Assuming that 1748: 1533: 1509: 1170:{\displaystyle k} 55:, a given subset 5907: 5867: 5843:Vitali, Giuseppe 5838: 5821: 5798: 5757: 5719: 5688: 5679: 5649: 5636:"Vitali theorem" 5631: 5590: 5540: 5533: 5527: 5520: 5514: 5503: 5497: 5490: 5484: 5478: 5472: 5465: 5459: 5448: 5442: 5441:, section 1.5.1) 5435: 5429: 5422: 5363:Gaussian measure 5337: 5335: 5334: 5329: 5315: 5314: 5302: 5301: 5291: 5268: 5266: 5265: 5260: 5258: 5257: 5252: 5236: 5234: 5233: 5228: 5220: 5219: 5207: 5206: 5196: 5181: 5180: 5165: 5164: 5149: 5148: 5138: 5111: 5110: 5084: 5082: 5081: 5076: 5071: 5070: 5057: 5022: 5020: 5019: 5014: 5012: 5011: 4974: 4972: 4971: 4966: 4964: 4963: 4944: 4942: 4941: 4936: 4934: 4926: 4925: 4873: 4871: 4870: 4865: 4863: 4862: 4852: 4809: 4807: 4806: 4801: 4799: 4798: 4793: 4768: 4766: 4765: 4760: 4758: 4757: 4748: 4747: 4732: 4731: 4726: 4638: 4636: 4635: 4630: 4628: 4589: 4564: 4562: 4561: 4556: 4536: 4535: 4516: 4515: 4503: 4502: 4492: 4477: 4476: 4467: 4466: 4447: 4424: 4422: 4421: 4416: 4411: 4410: 4368: 4366: 4365: 4360: 4349: 4348: 4339: 4338: 4326: 4311: 4290: 4289: 4250:Furthermore, if 4246: 4244: 4243: 4238: 4227: 4226: 4217: 4216: 4197: 4181: 4179: 4178: 4173: 4165: 4161: 4160: 4159: 4149: 4129: 4128: 4112: 4110: 4109: 4104: 4102: 4101: 4089: 4088: 4065: 4063: 4062: 4057: 4055: 4054: 4017: 3919:. To each point 3871: 3869: 3868: 3863: 3861: 3860: 3836: 3834: 3833: 3828: 3820: 3819: 3813: 3812: 3802: 3787: 3786: 3780: 3779: 3763: 3761: 3760: 3755: 3753: 3752: 3740: 3739: 3712: 3710: 3709: 3704: 3702: 3701: 3680: 3638: 3636: 3635: 3630: 3619: 3618: 3605: 3603: 3602: 3597: 3595: 3594: 3579: 3577: 3576: 3571: 3569: 3568: 3548: 3546: 3545: 3540: 3529: 3528: 3512: 3511: 3464: 3462: 3461: 3456: 3454: 3453: 3415: 3413: 3412: 3407: 3405: 3404: 3375: 3373: 3372: 3367: 3365: 3364: 3317: 3315: 3314: 3309: 3307: 3306: 3273: 3271: 3270: 3265: 3263: 3262: 3214: 3212: 3211: 3206: 3198: 3197: 3185: 3184: 3174: 3173: 3154: 3153: 3132: 3131: 3109: 3107: 3106: 3101: 3096: 3095: 3083: 3082: 3072: 3071: 3052: 3051: 3036: 3035: 3020: 3019: 3009: 3008: 2972: 2970: 2969: 2964: 2956: 2955: 2940: 2939: 2929: 2928: 2906: 2905: 2899: 2898: 2885: 2884: 2865: 2864: 2858: 2857: 2845: 2844: 2838: 2837: 2827: 2812: 2811: 2805: 2804: 2783: 2782: 2763: 2761: 2760: 2755: 2747: 2746: 2736: 2718: 2717: 2704: 2703: 2677: 2675: 2674: 2669: 2667: 2663: 2662: 2645: 2644: 2619: 2617: 2616: 2611: 2594: 2593: 2563: 2561: 2560: 2555: 2553: 2552: 2535:Lebesgue measure 2440:infinite version 2428: 2426: 2425: 2420: 2410: 2409: 2386: 2385: 2315:. In any case, 2255:, which implies 2221: 2219: 2218: 2213: 2211: 2156: 2154: 2153: 2148: 2146: 2145: 2140: 2133: 2128: 2110: 2072: 2070: 2069: 2064: 2056: 2055: 2050: 2035: 2034: 2029: 2020: 2019: 2014: 1997: 1994: 1973: 1969: 1968: 1957: 1939: 1938: 1927: 1824: 1822: 1821: 1816: 1814: 1813: 1808: 1793: 1791: 1790: 1785: 1774: 1773: 1749: 1746: 1738: 1737: 1716: 1699: 1698: 1693: 1655: 1653: 1652: 1647: 1626: 1624: 1623: 1618: 1616: 1599:intersects some 1598: 1596: 1595: 1590: 1588: 1570: 1568: 1567: 1562: 1549: 1548: 1525: 1524: 1501: 1499: 1498: 1493: 1491: 1479: 1477: 1476: 1471: 1469: 1461: 1445: 1443: 1442: 1437: 1426: 1408: 1406: 1405: 1400: 1389: 1366: 1331: 1329: 1328: 1323: 1321: 1303:Infinite version 1298: 1296: 1295: 1290: 1282: 1281: 1280: 1279: 1258: 1257: 1237: 1235: 1234: 1229: 1227: 1226: 1210: 1208: 1207: 1202: 1200: 1199: 1198: 1197: 1176: 1174: 1173: 1168: 1156: 1154: 1153: 1148: 1146: 1145: 1144: 1143: 1122: 1120: 1119: 1114: 1112: 1111: 1095: 1093: 1092: 1087: 1051: 1049: 1048: 1043: 1038: 1037: 1019: 1018: 993: 991: 990: 985: 949: 947: 946: 941: 933: 932: 916: 914: 913: 908: 906: 905: 904: 903: 884: 879: 840: 838: 837: 832: 830: 829: 828: 827: 800: 798: 797: 792: 790: 789: 788: 787: 764: 763: 762: 761: 744: 743: 742: 741: 720: 718: 717: 712: 710: 709: 691: 690: 674: 672: 671: 666: 664: 663: 662: 661: 638: 637: 636: 635: 614: 612: 611: 606: 604: 603: 602: 601: 573: 571: 570: 565: 560: 559: 558: 557: 531: 530: 529: 528: 508: 507: 506: 505: 485: 484: 466: 465: 453: 452: 432: 430: 429: 424: 422: 421: 420: 419: 396: 395: 394: 393: 376: 375: 374: 373: 348: 346: 345: 340: 338: 337: 319: 318: 291: 289: 288: 283: 253: 251: 250: 245: 231:, we will write 230: 228: 227: 222: 200: 198: 197: 192: 159: 157: 156: 151: 149: 148: 143: 111: 109: 108: 103: 101: 100: 95: 37:Euclidean spaces 5915: 5914: 5910: 5909: 5908: 5906: 5905: 5904: 5890:Covering lemmas 5880: 5879: 5841: 5801: 5780: 5762:Stein, Elias M. 5760: 5722: 5703:, p. 277, 5691: 5654:Lebesgue, Henri 5652: 5634: 5613: 5593: 5572: 5551: 5548: 5543: 5534: 5530: 5521: 5517: 5504: 5500: 5491: 5487: 5479: 5475: 5466: 5462: 5449: 5445: 5436: 5432: 5423: 5416: 5412: 5400: 5355: 5306: 5293: 5278: 5277: 5247: 5242: 5241: 5211: 5198: 5172: 5156: 5140: 5102: 5097: 5096: 5092:the inequality 5062: 5032: 5031: 5003: 4989: 4988: 4955: 4947: 4946: 4917: 4912: 4911: 4890:, contained in 4854: 4827: 4826: 4788: 4783: 4782: 4749: 4739: 4721: 4716: 4715: 4619: 4618: 4604: 4587: 4578: 4527: 4507: 4494: 4468: 4458: 4434: 4433: 4402: 4394: 4393: 4340: 4330: 4281: 4276: 4275: 4270: 4248: 4218: 4208: 4184: 4183: 4151: 4134: 4130: 4120: 4115: 4114: 4080: 4072: 4071: 4044: 4043: 4015: 4002: 3987: 3970: 3955: 3944: 3895: 3877: 3850: 3849: 3838: 3804: 3771: 3766: 3765: 3731: 3723: 3722: 3691: 3690: 3678: 3608: 3607: 3584: 3583: 3581: 3558: 3557: 3520: 3503: 3486: 3485: 3443: 3442: 3441:. A collection 3439:Lebesgue (1910) 3436: 3426: 3394: 3393: 3354: 3353: 3296: 3295: 3252: 3251: 3249:Vitali covering 3237:Vitali covering 3221: 3189: 3176: 3166: 3145: 3123: 3118: 3117: 3087: 3074: 3064: 3043: 3027: 3011: 3001: 2985: 2984: 2947: 2931: 2921: 2890: 2877: 2849: 2829: 2796: 2774: 2769: 2768: 2738: 2709: 2696: 2680: 2679: 2655: 2636: 2635: 2631: 2626: 2625: 2585: 2577: 2576: 2544: 2539: 2538: 2523: 2498:Vitali covering 2484: 2365: 2364: 2359: ⊂ 5  2339:. Such a ball 2338: 2329: 2314: 2301: 2292: 2279: 2269: 2254: 2241: 2196: 2195: 2193: 2135: 2101: 2100: 2095: 2085: 2045: 2024: 2009: 1952: 1922: 1917: 1916: 1911: 1902: 1891: 1884: 1877: 1870: 1863: 1854: 1845: 1837:]. A sequence 1803: 1798: 1797: 1762: 1720: 1688: 1683: 1682: 1674: 1629: 1628: 1601: 1600: 1573: 1572: 1504: 1503: 1482: 1481: 1452: 1451: 1411: 1410: 1338: 1337: 1312: 1311: 1305: 1271: 1266: 1249: 1244: 1243: 1218: 1213: 1212: 1189: 1184: 1179: 1178: 1159: 1158: 1135: 1130: 1125: 1124: 1103: 1098: 1097: 1054: 1053: 1029: 1010: 996: 995: 952: 951: 924: 919: 918: 895: 890: 854: 853: 813: 808: 803: 802: 779: 774: 753: 748: 733: 728: 723: 722: 701: 682: 677: 676: 653: 648: 627: 622: 617: 616: 593: 588: 583: 582: 549: 544: 520: 515: 497: 492: 476: 457: 444: 439: 438: 411: 406: 385: 380: 365: 360: 355: 354: 329: 310: 305: 304: 298: 256: 255: 233: 232: 207: 206: 162: 161: 138: 133: 132: 130:Euclidean space 90: 85: 84: 77: 65:Vitali covering 49:Giuseppe Vitali 17: 12: 11: 5: 5913: 5911: 5903: 5902: 5897: 5895:Measure theory 5892: 5882: 5881: 5878: 5877: 5855:(in Italian), 5839: 5799: 5778: 5758: 5720: 5693:Natanson, I. P 5689: 5650: 5632: 5611: 5591: 5570: 5558:Boca Raton, FL 5547: 5544: 5542: 5541: 5528: 5515: 5498: 5485: 5473: 5460: 5443: 5430: 5413: 5411: 5408: 5407: 5406: 5399: 5396: 5354: 5351: 5339: 5338: 5327: 5324: 5321: 5318: 5313: 5309: 5305: 5300: 5296: 5290: 5286: 5256: 5251: 5238: 5237: 5226: 5223: 5218: 5214: 5210: 5205: 5201: 5195: 5192: 5189: 5185: 5179: 5175: 5171: 5168: 5163: 5159: 5155: 5152: 5147: 5143: 5137: 5134: 5131: 5127: 5123: 5120: 5117: 5114: 5109: 5105: 5086: 5085: 5074: 5069: 5065: 5061: 5056: 5053: 5050: 5046: 5042: 5039: 5027:and therefore 5010: 5006: 5002: 4999: 4996: 4975:. But because 4962: 4958: 4954: 4933: 4929: 4924: 4920: 4861: 4857: 4851: 4848: 4845: 4841: 4837: 4834: 4797: 4792: 4756: 4752: 4746: 4742: 4738: 4735: 4730: 4725: 4627: 4582: 4577: 4574: 4566: 4565: 4554: 4551: 4548: 4545: 4542: 4539: 4534: 4530: 4525: 4522: 4519: 4514: 4510: 4506: 4501: 4497: 4491: 4487: 4483: 4480: 4475: 4471: 4465: 4461: 4457: 4454: 4451: 4446: 4442: 4414: 4409: 4405: 4401: 4370: 4369: 4358: 4355: 4352: 4347: 4343: 4337: 4333: 4329: 4325: 4322: 4319: 4316: 4310: 4306: 4302: 4299: 4296: 4293: 4288: 4284: 4266: 4236: 4233: 4230: 4225: 4221: 4215: 4211: 4207: 4204: 4201: 4196: 4192: 4171: 4168: 4164: 4158: 4154: 4148: 4144: 4140: 4137: 4133: 4127: 4123: 4100: 4095: 4092: 4087: 4083: 4079: 4053: 4010: 4001: 3998: 3983: 3966: 3953: 3946:) with center 3942: 3891: 3859: 3848: = 1 and 3826: 3823: 3818: 3811: 3807: 3801: 3797: 3793: 3790: 3785: 3778: 3774: 3751: 3746: 3743: 3738: 3734: 3730: 3700: 3673: 3663:rectangles in 3628: 3625: 3622: 3617: 3593: 3567: 3552:for every set 3550: 3549: 3538: 3535: 3532: 3527: 3523: 3518: 3515: 3510: 3506: 3502: 3499: 3496: 3493: 3471:regular family 3452: 3432: 3425: 3422: 3403: 3363: 3305: 3261: 3220: 3217: 3216: 3215: 3204: 3201: 3196: 3192: 3188: 3183: 3179: 3172: 3169: 3165: 3162: 3158: 3152: 3148: 3144: 3141: 3138: 3135: 3130: 3126: 3111: 3110: 3099: 3094: 3090: 3086: 3081: 3077: 3070: 3067: 3063: 3060: 3056: 3050: 3046: 3042: 3039: 3034: 3030: 3026: 3023: 3018: 3014: 3007: 3004: 3000: 2997: 2993: 2974: 2973: 2962: 2959: 2954: 2950: 2946: 2943: 2938: 2934: 2927: 2924: 2920: 2917: 2913: 2909: 2904: 2897: 2893: 2889: 2883: 2880: 2876: 2873: 2869: 2863: 2856: 2852: 2848: 2843: 2836: 2832: 2826: 2823: 2820: 2816: 2810: 2803: 2799: 2795: 2792: 2789: 2786: 2781: 2777: 2753: 2750: 2745: 2741: 2735: 2732: 2729: 2725: 2721: 2716: 2712: 2708: 2702: 2699: 2695: 2692: 2688: 2666: 2661: 2658: 2654: 2651: 2648: 2643: 2639: 2634: 2609: 2606: 2603: 2600: 2597: 2592: 2588: 2584: 2551: 2547: 2522: 2519: 2518: 2517: 2490: 2480: 2466: 2451: 2418: 2414: 2408: 2404: 2401: 2397: 2393: 2390: 2384: 2380: 2377: 2373: 2334: 2327: 2310: 2297: 2288: 2274: 2267: 2250: 2237: 2210: 2206: 2203: 2158: 2157: 2144: 2139: 2132: 2127: 2124: 2121: 2117: 2113: 2109: 2090: 2080: 2074: 2073: 2062: 2059: 2054: 2049: 2044: 2041: 2038: 2033: 2028: 2023: 2018: 2013: 2008: 2005: 2002: 1993: 1990: 1987: 1984: 1981: 1978: 1972: 1967: 1964: 1961: 1956: 1951: 1948: 1945: 1942: 1937: 1934: 1931: 1926: 1907: 1900: 1889: 1882: 1875: 1868: 1859: 1850: 1841: 1812: 1807: 1783: 1780: 1777: 1772: 1769: 1765: 1761: 1758: 1755: 1752: 1744: 1741: 1736: 1733: 1730: 1727: 1723: 1719: 1715: 1711: 1708: 1705: 1702: 1697: 1692: 1670: 1645: 1642: 1639: 1636: 1615: 1611: 1608: 1587: 1583: 1580: 1560: 1557: 1553: 1547: 1543: 1540: 1536: 1532: 1529: 1523: 1519: 1516: 1512: 1490: 1468: 1464: 1460: 1435: 1432: 1429: 1425: 1422: 1419: 1398: 1395: 1392: 1388: 1384: 1381: 1378: 1375: 1372: 1369: 1365: 1362: 1359: 1355: 1351: 1348: 1345: 1320: 1304: 1301: 1288: 1285: 1278: 1274: 1269: 1264: 1261: 1256: 1252: 1225: 1221: 1196: 1192: 1187: 1166: 1142: 1138: 1133: 1110: 1106: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1041: 1036: 1032: 1028: 1025: 1022: 1017: 1013: 1009: 1006: 1003: 983: 980: 977: 974: 971: 968: 965: 962: 959: 939: 936: 931: 927: 902: 898: 893: 888: 883: 878: 875: 872: 868: 864: 861: 826: 823: 820: 816: 811: 786: 782: 777: 773: 770: 767: 760: 756: 751: 747: 740: 736: 731: 708: 704: 700: 697: 694: 689: 685: 660: 656: 651: 647: 644: 641: 634: 630: 625: 600: 596: 591: 563: 556: 552: 547: 543: 540: 537: 534: 527: 523: 518: 514: 511: 504: 500: 495: 491: 488: 483: 479: 475: 472: 469: 464: 460: 456: 451: 447: 418: 414: 409: 405: 402: 399: 392: 388: 383: 379: 372: 368: 363: 336: 332: 328: 325: 322: 317: 313: 297: 296:Finite version 294: 281: 278: 275: 272: 269: 266: 263: 243: 240: 220: 217: 214: 190: 187: 184: 181: 178: 175: 172: 169: 147: 142: 99: 94: 76: 73: 47:mathematician 33:measure theory 15: 13: 10: 9: 6: 4: 3: 2: 5912: 5901: 5900:Real analysis 5898: 5896: 5893: 5891: 5888: 5887: 5885: 5875: 5871: 5866: 5862: 5858: 5854: 5853: 5848: 5844: 5840: 5837: 5833: 5829: 5825: 5820: 5815: 5811: 5807: 5806: 5800: 5797: 5793: 5789: 5785: 5781: 5779:0-691-11386-6 5775: 5771: 5770:Princeton, NJ 5767: 5763: 5759: 5756: 5752: 5748: 5744: 5740: 5736: 5732: 5728: 5727: 5721: 5718: 5714: 5710: 5706: 5702: 5698: 5694: 5690: 5687: 5683: 5678: 5673: 5669: 5665: 5664: 5659: 5655: 5651: 5647: 5643: 5642: 5637: 5633: 5630: 5626: 5622: 5618: 5614: 5612:0-521-25694-1 5608: 5604: 5600: 5596: 5592: 5589: 5585: 5581: 5577: 5573: 5571:0-8493-7157-0 5567: 5563: 5559: 5555: 5550: 5549: 5545: 5538: 5532: 5529: 5525: 5519: 5516: 5512: 5508: 5507:Natanson 1955 5502: 5499: 5495: 5494:Falconer 1986 5489: 5486: 5482: 5481:Vitali (1908) 5477: 5474: 5470: 5464: 5461: 5457: 5455: 5447: 5444: 5440: 5434: 5431: 5427: 5421: 5419: 5415: 5409: 5405: 5402: 5401: 5397: 5395: 5393: 5389: 5385: 5382:, Borel( 5381: 5377: 5374: 5373:Hilbert space 5371: 5367: 5364: 5360: 5352: 5350: 5348: 5344: 5325: 5319: 5311: 5307: 5298: 5294: 5288: 5284: 5276: 5275: 5274: 5272: 5254: 5224: 5216: 5212: 5203: 5199: 5193: 5190: 5187: 5183: 5177: 5173: 5169: 5161: 5157: 5153: 5145: 5141: 5135: 5132: 5129: 5125: 5121: 5115: 5107: 5103: 5095: 5094: 5093: 5091: 5072: 5067: 5063: 5059: 5054: 5051: 5048: 5044: 5040: 5037: 5030: 5029: 5028: 5026: 5008: 5004: 5000: 4997: 4994: 4986: 4982: 4978: 4960: 4956: 4952: 4927: 4922: 4918: 4909: 4905: 4901: 4897: 4893: 4889: 4885: 4881: 4877: 4859: 4855: 4849: 4846: 4843: 4839: 4835: 4832: 4824: 4821: 4817: 4813: 4795: 4781:). Note that 4780: 4776: 4772: 4754: 4744: 4740: 4733: 4728: 4712: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4670: 4666: 4662: 4658: 4654: 4650: 4646: 4642: 4616: 4612: 4608: 4603: 4601: 4597: 4593: 4581: 4575: 4573: 4571: 4549: 4546: 4540: 4532: 4528: 4523: 4520: 4512: 4508: 4499: 4495: 4489: 4485: 4481: 4478: 4473: 4463: 4459: 4452: 4449: 4444: 4440: 4432: 4431: 4430: 4428: 4407: 4403: 4391: 4387: 4383: 4379: 4375: 4356: 4353: 4350: 4345: 4335: 4331: 4308: 4304: 4300: 4294: 4286: 4282: 4274: 4273: 4272: 4269: 4265: 4261: 4257: 4253: 4247: 4234: 4228: 4223: 4213: 4209: 4202: 4199: 4194: 4190: 4169: 4166: 4162: 4156: 4152: 4146: 4142: 4135: 4131: 4125: 4121: 4093: 4085: 4081: 4069: 4041: 4037: 4033: 4030: ⊆  4029: 4025: 4021: 4009: 4007: 3997: 3995: 3991: 3986: 3982: 3978: 3975: ∈  3974: 3969: 3965: 3960: 3956: 3949: 3945: 3938: 3934: 3930: 3927: ⊆  3926: 3922: 3918: 3913: 3911: 3907: 3903: 3899: 3894: 3889: 3885: 3881: 3875: 3847: 3843: 3842:Vitali (1908) 3837: 3824: 3821: 3809: 3805: 3799: 3795: 3788: 3776: 3772: 3744: 3736: 3732: 3720: 3716: 3688: 3685: ⊆  3684: 3672: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3623: 3555: 3533: 3525: 3521: 3516: 3513: 3508: 3500: 3494: 3491: 3484: 3483: 3482: 3480: 3476: 3472: 3468: 3440: 3435: 3431: 3421: 3419: 3391: 3387: 3383: 3379: 3350: 3348: 3344: 3339: 3337: 3333: 3329: 3325: 3322: ∈  3321: 3293: 3289: 3285: 3282: ∈  3281: 3277: 3250: 3246: 3242: 3238: 3234: 3231: ⊆  3230: 3226: 3218: 3202: 3194: 3190: 3181: 3177: 3170: 3167: 3163: 3160: 3156: 3150: 3146: 3142: 3136: 3128: 3124: 3116: 3115: 3114: 3092: 3088: 3079: 3075: 3068: 3065: 3061: 3058: 3054: 3048: 3044: 3040: 3032: 3028: 3024: 3016: 3012: 3005: 3002: 2998: 2995: 2991: 2983: 2982: 2981: 2979: 2960: 2952: 2948: 2944: 2936: 2932: 2925: 2922: 2918: 2915: 2911: 2907: 2895: 2891: 2887: 2881: 2878: 2874: 2871: 2867: 2854: 2850: 2846: 2834: 2830: 2824: 2821: 2818: 2814: 2801: 2797: 2793: 2787: 2779: 2775: 2767: 2766: 2765: 2764:. Therefore, 2751: 2748: 2743: 2739: 2733: 2730: 2727: 2723: 2719: 2714: 2710: 2706: 2700: 2697: 2693: 2690: 2686: 2664: 2659: 2656: 2652: 2649: 2646: 2641: 2637: 2632: 2623: 2604: 2601: 2598: 2595: 2590: 2586: 2574: 2570: 2567: 2549: 2545: 2536: 2533:-dimensional 2532: 2528: 2520: 2515: 2511: 2507: 2503: 2499: 2495: 2491: 2488: 2483: 2479: 2475: 2471: 2467: 2464: 2461:, and 5  2460: 2456: 2452: 2449: 2445: 2441: 2437: 2436: 2435: 2434: 2430: 2416: 2412: 2402: 2399: 2395: 2391: 2388: 2378: 2375: 2371: 2362: 2358: 2354: 2350: 2346: 2342: 2337: 2333: 2326: 2322: 2318: 2313: 2309: 2305: 2300: 2296: 2291: 2287: 2283: 2277: 2273: 2266: 2262: 2258: 2253: 2249: 2245: 2240: 2236: 2232: 2229:be such that 2228: 2224: 2204: 2201: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2163: 2142: 2125: 2122: 2119: 2115: 2111: 2099: 2098: 2097: 2093: 2089: 2083: 2079: 2060: 2052: 2042: 2039: 2036: 2031: 2021: 2016: 2006: 2003: 1991: 1985: 1982: 1979: 1976: 1970: 1965: 1962: 1959: 1949: 1946: 1940: 1935: 1932: 1929: 1915: 1914: 1913: 1910: 1906: 1899: 1895: 1888: 1881: 1874: 1867: 1862: 1858: 1853: 1849: 1844: 1840: 1836: 1832: 1828: 1810: 1794: 1781: 1775: 1770: 1767: 1763: 1759: 1753: 1742: 1739: 1734: 1731: 1728: 1725: 1721: 1717: 1709: 1706: 1700: 1695: 1680: 1678: 1673: 1669: 1665: 1661: 1657: 1643: 1640: 1637: 1634: 1609: 1606: 1581: 1578: 1558: 1555: 1551: 1541: 1538: 1534: 1530: 1527: 1517: 1514: 1510: 1462: 1449: 1430: 1393: 1382: 1379: 1376: 1370: 1346: 1343: 1335: 1309: 1302: 1300: 1286: 1283: 1276: 1272: 1267: 1262: 1259: 1254: 1250: 1241: 1223: 1219: 1194: 1190: 1185: 1164: 1140: 1136: 1131: 1108: 1104: 1080: 1077: 1074: 1071: 1068: 1062: 1059: 1034: 1030: 1026: 1023: 1020: 1015: 1011: 1004: 1001: 981: 978: 975: 972: 969: 966: 963: 960: 957: 937: 934: 929: 925: 900: 896: 891: 886: 881: 876: 873: 870: 866: 862: 859: 850: 848: 844: 824: 821: 818: 814: 809: 784: 780: 775: 771: 768: 765: 758: 754: 749: 745: 738: 734: 729: 706: 702: 698: 695: 692: 687: 683: 658: 654: 649: 645: 642: 639: 632: 628: 623: 598: 594: 589: 580: 576: 561: 554: 550: 545: 541: 538: 535: 532: 525: 521: 516: 512: 509: 502: 498: 493: 489: 486: 481: 477: 473: 470: 467: 462: 458: 454: 449: 445: 436: 416: 412: 407: 403: 400: 397: 390: 386: 381: 377: 370: 366: 361: 352: 334: 330: 326: 323: 320: 315: 311: 302: 295: 293: 276: 273: 270: 267: 261: 254:for the ball 241: 238: 218: 215: 212: 204: 185: 182: 179: 173: 170: 167: 145: 131: 127: 118: 97: 81: 74: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 5869: 5856: 5850: 5809: 5803: 5765: 5733:(1): 95–99, 5730: 5724: 5699:, New York: 5696: 5667: 5661: 5639: 5598: 5553: 5531: 5518: 5501: 5488: 5476: 5463: 5453: 5446: 5433: 5391: 5387: 5383: 5379: 5375: 5365: 5359:David Preiss 5356: 5346: 5342: 5340: 5270: 5239: 5089: 5087: 5024: 4984: 4980: 4976: 4907: 4903: 4899: 4895: 4891: 4887: 4883: 4879: 4875: 4822: 4819: 4815: 4811: 4778: 4774: 4770: 4713: 4708: 4704: 4700: 4699:) of radius 4696: 4692: 4688: 4684: 4680: 4676: 4672: 4668: 4664: 4660: 4656: 4652: 4648: 4644: 4640: 4610: 4606: 4605: 4599: 4595: 4591: 4583: 4579: 4569: 4567: 4426: 4389: 4385: 4381: 4377: 4373: 4371: 4271:} such that 4267: 4263: 4259: 4255: 4251: 4249: 4067: 4035: 4031: 4027: 4023: 4019: 4011: 4003: 3993: 3989: 3984: 3980: 3976: 3972: 3967: 3963: 3958: 3951: 3947: 3940: 3936: 3932: 3928: 3924: 3923:of a subset 3920: 3914: 3909: 3908:| < 3905: 3904: < | 3901: 3897: 3892: 3887: 3883: 3879: 3873: 3845: 3839: 3718: 3714: 3686: 3682: 3674: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3553: 3551: 3478: 3470: 3466: 3433: 3429: 3427: 3417: 3389: 3385: 3381: 3377: 3351: 3346: 3342: 3340: 3335: 3331: 3323: 3319: 3291: 3287: 3283: 3279: 3275: 3248: 3245:Vitali class 3244: 3240: 3236: 3232: 3228: 3224: 3222: 3112: 2977: 2975: 2621: 2572: 2568: 2530: 2524: 2513: 2509: 2505: 2501: 2500:of a subset 2497: 2493: 2486: 2481: 2477: 2473: 2469: 2462: 2458: 2454: 2439: 2432: 2431: 2360: 2356: 2352: 2348: 2344: 2340: 2335: 2331: 2324: 2320: 2316: 2311: 2307: 2303: 2298: 2294: 2289: 2285: 2281: 2275: 2271: 2264: 2260: 2256: 2251: 2247: 2243: 2238: 2234: 2230: 2226: 2222: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2159: 2091: 2087: 2081: 2077: 2075: 1908: 1904: 1897: 1894:Zorn's lemma 1886: 1879: 1872: 1865: 1860: 1856: 1851: 1847: 1842: 1838: 1834: 1830: 1826: 1795: 1681: 1676: 1671: 1667: 1663: 1659: 1658: 1447: 1307: 1306: 851: 846: 842: 578: 574: 437:and satisfy 300: 299: 126:metric space 123: 68: 64: 60: 56: 40: 24: 18: 5670:: 361–450, 5524:Preiss 1979 5426:Vitali 1908 4906:, the ball 4886:containing 4254:has finite 2448:uncountable 2233:belongs to 1123:intersects 21:mathematics 5884:Categories 5865:39.0101.05 5836:1042.28014 5796:1081.28001 5755:0386.28015 5717:0064.29102 5686:41.0457.01 5629:0587.28004 5588:0804.28001 5546:References 5537:Tišer 2003 4773:that meet 4659:for which 4040:measurable 3900:such that 3896:of points 3764:such that 3481:such that 3437:is due to 3318:such that 3243: : a 2242:. Either 2184:such that 1336:such that 1096:such that 950:for every 5859:: 75–92, 5845:(1908) , 5739:0010-2628 5646:EMS Press 5562:CRC Press 5370:separable 5323:∞ 5295:λ 5285:∑ 5200:λ 5184:∑ 5142:λ 5126:∑ 5122:≤ 5104:λ 5045:⋃ 5041:⊂ 5025:i > N, 5023:for some 4998:∈ 4985:i > N. 4928:∈ 4847:≤ 4840:⋃ 4553:∞ 4529:λ 4521:≤ 4496:λ 4486:∑ 4479:≤ 4453:⁡ 4441:∑ 4354:ε 4305:∑ 4301:≤ 4232:∞ 4203:⁡ 4191:∑ 4143:⋃ 4139:∖ 4094:⊆ 3796:⋃ 3792:∖ 3773:λ 3745:⊆ 3671:regular. 3522:λ 3514:≤ 3495:⁡ 3239:for  3178:λ 3164:∈ 3157:∑ 3143:≤ 3125:λ 3113:and thus 3076:λ 3062:∈ 3055:∑ 3013:λ 2999:∈ 2992:∑ 2933:λ 2919:∈ 2912:∑ 2908:≤ 2875:∈ 2868:⋃ 2851:λ 2847:≤ 2822:∈ 2815:⋃ 2798:λ 2794:≤ 2776:λ 2749:⊃ 2731:∈ 2724:⋃ 2720:⊃ 2694:∈ 2687:⋃ 2653:∈ 2602:∈ 2546:λ 2444:countable 2403:∈ 2396:⋃ 2392:⊆ 2379:∈ 2372:⋃ 2205:∈ 2131:∞ 2116:⋃ 2043:∪ 2040:⋯ 2037:∪ 2022:∪ 2007:∈ 2001:∀ 1989:∅ 1980:∩ 1950:∈ 1796:That is, 1768:− 1760:≤ 1732:− 1726:− 1710:∈ 1638:⊂ 1610:∈ 1582:∈ 1542:∈ 1535:⋃ 1531:⊆ 1518:∈ 1511:⋃ 1463:⊂ 1397:∞ 1383:∈ 1284:⊂ 1260:⊂ 1075:… 1063:∈ 1024:… 1005:∈ 976:… 935:⊂ 867:⋃ 845: := 772:∪ 769:⋯ 766:∪ 746:∪ 696:… 643:… 539:∪ 536:⋯ 533:∪ 510:∪ 487:⊆ 474:∪ 471:⋯ 468:∪ 455:∪ 401:… 324:… 216:≥ 5695:(1955), 5656:(1910), 5597:(1986), 5450:See the 5398:See also 5386:),  4882: ∈ 4814: ∈ 4679: ∈ 4655: ∈ 4647: ∈ 4376: = 4042:set and 3475:Lebesgue 3328:diameter 3326:and the 3171:′ 3069:′ 3006:′ 2926:′ 2882:′ 2701:′ 2660:′ 2571: ⊂ 2284: ∈ 2180: ∈ 2172: ∈ 2076:and let 1878:and let 1871: = 1855: ⊂ 852:Now set 435:disjoint 5828:1974687 5788:2129625 5747:0526149 5709:0067952 5648:, 2001 5621:0867284 5580:1158660 4585:Theorem 4022:denote 4013:Theorem 3939:,  3676:Theorem 3380:and if 2564:, of a 2438:In the 2433:Remarks 2330:, ..., 2270:, ..., 1846:, with 45:Italian 5863:  5834:  5826:  5794:  5786:  5776:  5753:  5745:  5737:  5715:  5707:  5684:  5627:  5619:  5609:  5586:  5578:  5568:  5271:B(r+2) 4667:. Let 4607:Proof: 4034:be an 1998:  1995:  1974:  1660:Proof: 1409:where 1238:. The 801:, let 575:Proof: 23:, the 5467:See ( 5410:Notes 5392:every 4691:ball 3469:is a 3225:up to 2496:is a 2280:, or 1903:,..., 1627:with 351:balls 201:is a 27:is a 5774:ISBN 5735:ISSN 5607:ISBN 5566:ISBN 5320:< 5191:> 5133:> 5052:> 4979:and 4714:Let 4689:open 4547:< 4450:diam 4200:diam 4018:Let 3912:+1. 3681:Let 3647:and 3492:diam 3286:and 3274:for 1743:< 1394:< 1310:Let 303:Let 205:and 203:ball 5861:JFM 5832:Zbl 5814:doi 5810:355 5792:Zbl 5751:Zbl 5713:Zbl 5682:JFM 5672:doi 5625:Zbl 5584:Zbl 4987:So 4639:of 4384:on 4182:or 3669:not 3667:is 3661:all 3392:in 3330:of 3247:or 2566:set 2504:of 2446:or 2160:of 1833:, 2 1747:rad 1350:sup 67:of 59:of 35:of 19:In 5886:: 5857:43 5849:, 5830:, 5824:MR 5822:, 5808:, 5790:, 5784:MR 5782:, 5749:, 5743:MR 5741:, 5731:20 5729:, 5711:, 5705:MR 5680:, 5668:27 5666:, 5660:, 5644:, 5638:, 5623:, 5617:MR 5615:, 5582:, 5576:MR 5574:, 5560:: 5539:). 5526:). 5513:). 5496:). 5471:). 5428:). 5417:^ 4820:N, 4711:. 3825:0. 3420:. 3338:. 2537:, 2472:, 2361:C, 2353:R, 2302:, 2278:−1 2112::= 2094:+1 2084:+1 1675:, 1656:. 1347::= 863::= 292:. 71:. 5876:. 5816:: 5674:: 5535:( 5522:( 5492:( 5456:" 5452:" 5424:( 5388:γ 5384:H 5380:H 5376:H 5366:γ 5347:Z 5343:N 5326:. 5317:) 5312:n 5308:C 5304:( 5299:d 5289:n 5255:r 5250:G 5225:. 5222:) 5217:n 5213:C 5209:( 5204:d 5194:N 5188:n 5178:d 5174:5 5170:= 5167:) 5162:n 5158:C 5154:5 5151:( 5146:d 5136:N 5130:n 5119:) 5116:Z 5113:( 5108:d 5090:N 5073:. 5068:n 5064:C 5060:5 5055:N 5049:n 5038:Z 5009:i 5005:C 5001:5 4995:z 4981:B 4977:K 4961:i 4957:C 4953:5 4932:G 4923:i 4919:C 4908:B 4904:G 4900:K 4896:r 4894:( 4892:B 4888:z 4884:F 4880:B 4876:Z 4860:n 4856:C 4850:N 4844:n 4836:= 4833:K 4823:z 4816:Z 4812:z 4796:r 4791:G 4779:r 4777:( 4775:B 4771:G 4755:n 4751:} 4745:n 4741:C 4737:{ 4734:= 4729:r 4724:G 4709:r 4705:Z 4701:r 4697:r 4695:( 4693:B 4685:G 4681:E 4677:z 4673:Z 4669:r 4665:C 4661:B 4657:G 4653:C 4649:F 4645:B 4641:F 4626:G 4611:F 4600:G 4596:F 4592:R 4570:E 4550:+ 4544:) 4541:B 4538:( 4533:d 4524:C 4518:) 4513:j 4509:U 4505:( 4500:d 4490:j 4482:C 4474:d 4470:) 4464:j 4460:U 4456:( 4445:j 4427:B 4413:} 4408:j 4404:U 4400:{ 4390:d 4386:R 4382:H 4378:d 4374:s 4357:. 4351:+ 4346:s 4342:) 4336:j 4332:U 4328:( 4324:m 4321:a 4318:i 4315:d 4309:j 4298:) 4295:E 4292:( 4287:s 4283:H 4268:j 4264:U 4260:ε 4256:s 4252:E 4235:. 4229:= 4224:s 4220:) 4214:j 4210:U 4206:( 4195:j 4170:0 4167:= 4163:) 4157:j 4153:U 4147:j 4136:E 4132:( 4126:s 4122:H 4099:V 4091:} 4086:j 4082:U 4078:{ 4068:E 4052:V 4038:- 4036:H 4032:R 4028:E 4024:s 4020:H 3994:A 3990:d 3985:d 3981:B 3977:R 3973:x 3968:x 3964:N 3959:A 3954:a 3952:r 3948:a 3943:a 3941:r 3937:a 3935:( 3933:B 3929:R 3925:A 3921:a 3910:n 3906:x 3902:n 3898:x 3893:n 3888:E 3884:n 3880:E 3874:E 3858:V 3846:d 3822:= 3817:) 3810:j 3806:U 3800:j 3789:E 3784:( 3777:d 3750:V 3742:} 3737:j 3733:U 3729:{ 3719:E 3715:R 3699:V 3687:R 3683:E 3665:R 3657:R 3653:m 3649:m 3645:m 3641:R 3627:) 3624:m 3621:( 3616:V 3592:V 3580:. 3566:V 3554:V 3537:) 3534:V 3531:( 3526:d 3517:C 3509:d 3505:) 3501:V 3498:( 3479:C 3467:R 3451:V 3434:d 3430:λ 3418:E 3402:V 3390:U 3386:R 3382:E 3378:E 3362:V 3347:R 3336:δ 3332:U 3324:U 3320:x 3304:V 3292:U 3288:δ 3284:E 3280:x 3276:E 3260:V 3241:E 3233:R 3229:E 3203:. 3200:) 3195:j 3191:B 3187:( 3182:d 3168:J 3161:j 3151:d 3147:5 3140:) 3137:E 3134:( 3129:d 3098:) 3093:j 3089:B 3085:( 3080:d 3066:J 3059:j 3049:d 3045:5 3041:= 3038:) 3033:j 3029:B 3025:5 3022:( 3017:d 3003:J 2996:j 2978:d 2961:. 2958:) 2953:j 2949:B 2945:5 2942:( 2937:d 2923:J 2916:j 2903:) 2896:j 2892:B 2888:5 2879:J 2872:j 2862:( 2855:d 2842:) 2835:j 2831:B 2825:J 2819:j 2809:( 2802:d 2791:) 2788:E 2785:( 2780:d 2752:E 2744:j 2740:B 2734:J 2728:j 2715:j 2711:B 2707:5 2698:J 2691:j 2665:} 2657:J 2650:j 2647:: 2642:j 2638:B 2633:{ 2622:E 2608:} 2605:J 2599:j 2596:: 2591:j 2587:B 2583:{ 2573:R 2569:E 2550:d 2531:d 2514:E 2510:G 2506:R 2502:E 2494:F 2487:c 2482:n 2478:F 2474:c 2470:c 2463:B 2459:B 2455:R 2417:C 2413:5 2407:G 2400:C 2389:B 2383:F 2376:B 2357:B 2349:B 2345:R 2341:C 2336:n 2332:G 2328:0 2325:G 2321:C 2317:B 2312:n 2308:G 2304:B 2299:n 2295:G 2290:n 2286:H 2282:B 2276:n 2272:G 2268:0 2265:G 2261:B 2257:n 2252:n 2248:H 2244:B 2239:n 2235:F 2231:B 2227:n 2223:, 2209:F 2202:B 2192:. 2190:C 2186:B 2182:G 2178:C 2174:F 2170:B 2166:G 2162:F 2143:n 2138:G 2126:0 2123:= 2120:n 2108:G 2092:n 2088:H 2082:n 2078:G 2061:, 2058:} 2053:n 2048:G 2032:1 2027:G 2017:0 2012:G 2004:C 1992:, 1986:= 1983:C 1977:B 1971:: 1966:1 1963:+ 1960:n 1955:F 1947:B 1944:{ 1941:= 1936:1 1933:+ 1930:n 1925:H 1909:n 1905:G 1901:0 1898:G 1890:0 1887:H 1883:0 1880:G 1876:0 1873:F 1869:0 1866:H 1861:n 1857:F 1852:n 1848:G 1843:n 1839:G 1835:R 1831:R 1827:B 1811:n 1806:F 1782:. 1779:} 1776:R 1771:n 1764:2 1757:) 1754:B 1751:( 1740:R 1735:1 1729:n 1722:2 1718:: 1714:F 1707:B 1704:{ 1701:= 1696:n 1691:F 1677:n 1672:n 1668:F 1664:F 1644:C 1641:5 1635:B 1614:G 1607:C 1586:F 1579:B 1559:. 1556:C 1552:5 1546:G 1539:C 1528:B 1522:F 1515:B 1489:G 1467:F 1459:G 1448:B 1434:) 1431:B 1428:( 1424:d 1421:a 1418:r 1391:} 1387:F 1380:B 1377:: 1374:) 1371:B 1368:( 1364:d 1361:a 1358:r 1354:{ 1344:R 1319:F 1287:X 1277:k 1273:j 1268:B 1263:3 1255:i 1251:B 1224:i 1220:B 1195:k 1191:j 1186:B 1165:k 1141:k 1137:j 1132:B 1109:i 1105:B 1084:} 1081:m 1078:, 1072:, 1069:1 1066:{ 1060:k 1040:} 1035:m 1031:j 1027:, 1021:, 1016:1 1012:j 1008:{ 1002:i 982:n 979:, 973:, 970:2 967:, 964:1 961:= 958:i 938:X 930:i 926:B 901:k 897:j 892:B 887:3 882:m 877:1 874:= 871:k 860:X 847:k 843:m 825:1 822:+ 819:k 815:j 810:B 785:k 781:j 776:B 759:2 755:j 750:B 739:1 735:j 730:B 707:n 703:B 699:, 693:, 688:1 684:B 659:k 655:j 650:B 646:, 640:, 633:1 629:j 624:B 599:1 595:j 590:B 579:n 562:. 555:m 551:j 546:B 542:3 526:2 522:j 517:B 513:3 503:1 499:j 494:B 490:3 482:n 478:B 463:2 459:B 450:1 446:B 417:m 413:j 408:B 404:, 398:, 391:2 387:j 382:B 378:, 371:1 367:j 362:B 335:n 331:B 327:, 321:, 316:1 312:B 280:) 277:r 274:c 271:, 268:x 265:( 262:B 242:B 239:c 219:0 213:c 189:) 186:r 183:, 180:x 177:( 174:B 171:= 168:B 146:d 141:R 112:. 98:1 93:R 69:E 61:R 57:E

Index

mathematics
combinatorial and geometric
measure theory
Euclidean spaces
Italian
Giuseppe Vitali
Lebesgue-negligible set


metric space
Euclidean space
ball
balls
disjoint
triangle inequality
separable metric space
Zorn's lemma
countable
uncountable
Hardy–Littlewood maximal inequality
Lebesgue measure
set
diameter
Lebesgue (1910)
Lebesgue
Vitali (1908)
Besicovitch covering theorem
Hausdorff measure
measurable
infinite form of the covering lemma

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.