Knowledge (XXG)

Weakly interacting massive particle

Source 📝

382:. For sufficiently high temperatures, such as those existing in the early Universe, the dark matter particle and its antiparticle would have been both forming from and annihilating into lighter particles. As the Universe expanded and cooled, the average thermal energy of these lighter particles decreased and eventually became insufficient to form a dark matter particle-antiparticle pair. The annihilation of the dark matter particle-antiparticle pairs, however, would have continued, and the number density of dark matter particles would have begun to decrease exponentially. Eventually, however, the number density would become so low that the dark matter particle and antiparticle interaction would cease, and the number of dark matter particles would remain (roughly) constant as the Universe continued to expand. Particles with a larger interaction cross section would continue to annihilate for a longer period of time, and thus would have a smaller number density when the annihilation interaction ceases. Based on the current estimated abundance of dark matter in the Universe, if the dark matter particle is such a relic particle, the interaction cross section governing the particle-antiparticle annihilation can be no larger than the cross section for the weak interaction. If this model is correct, the dark matter particle would have the properties of the WIMP. 4612: 682:(CCDs) to detect light Dark Matter. The CCDs act as both the detector target and the readout instrumentation. WIMP interactions with the bulk of the CCD can induce the creation of electron-hole pairs, which are then collected and readout by the CCDs. In order to decrease the noise and achieve detection of single electrons, the experiments make use of a type of CCD known as the Skipper CCD, which allows for averaging over repeated measurements of the same collected charge. 474: 4684: 4572: 729:, a smaller detector using a single germanium puck, designed to sense WIMPs with smaller masses, reported hundreds of detection events in 56 days. They observed an annual modulation in the event rate that could indicate light dark matter. However a dark matter origin for the CoGeNT events has been refuted by more recent analyses, in favour of an explanation in terms of a background from surface events. 4648: 3980: 4672: 4584: 4624: 4660: 4636: 419:-LAT gamma ray telescope and the VERITAS ground-based gamma ray observatory. Although the annihilation of WIMPs into Standard Model particles also predicts the production of high-energy neutrinos, their interaction rate is thought to be too low to reliably detect a dark matter signal at present. Future observations from the 466:
remains possible that these models are either incorrect or only explain part of the dark matter phenomenon. Thus, even with the multiple experiments dedicated to providing indirect evidence for the existence of cold dark matter, direct detection measurements are also necessary to solidify the theory of WIMPs.
638:
advantage of the bubble detector technique is that the detector is almost insensitive to background radiation. The detector sensitivity can be adjusted by changing the temperature, typically operated between 15 °C and 55 °C. There is another similar experiment using this technique in Europe called
740:
collaboration (a merging of KIMS and DM-Ice groups) published their results on replicating the DAMA/LIBRA signal in December 2018 in journal Nature; their conclusion was that "this result rules out WIMP–nucleon interactions as the cause of the annual modulation observed by the DAMA collaboration". In
707:
experiments, as shown in figure 2. With 370 kilograms of xenon LUX is more sensitive than XENON or CDMS. First results from October 2013 report that no signals were seen, appearing to refute results obtained from less sensitive instruments. and this was confirmed after the final data run ended in May
762:
The 2020s should see the emergence of several multi-tonne mass direct detection experiments, which will probe WIMP-nucleus cross sections orders of magnitude smaller than the current state-of-the-art sensitivity. Examples of such next-generation experiments are LUX-ZEPLIN (LZ) and XENONnT, which are
341:
Because of their lack of electromagnetic interaction with normal matter, WIMPs would be invisible through normal electromagnetic observations. Because of their large mass, they would be relatively slow moving and therefore "cold". Their relatively low velocities would be insufficient to overcome the
766:
Such multi-tonne experiments will also face a new background in the form of neutrinos, which will limit their ability to probe the WIMP parameter space beyond a certain point, known as the neutrino floor. However, although its name may imply a hard limit, the neutrino floor represents the region of
732:
Annual modulation is one of the predicted signatures of a WIMP signal, and on this basis the DAMA collaboration has claimed a positive detection. Other groups, however, have not confirmed this result. The CDMS data made public in May 2004 exclude the entire DAMA signal region given certain standard
645:
PICASSO reports results (November 2009) for spin-dependent WIMP interactions on F, for masses of 24 Gev new stringent limits have been obtained on the spin-dependent cross section of 13.9 pb (90% CL). The obtained limits restrict recent interpretations of the DAMA/LIBRA annual modulation effect in
465:
refers to the observation of the effects of a WIMP-nucleus collision as the dark matter passes through a detector in an Earth laboratory. While most WIMP models indicate that a large enough number of WIMPs must be captured in large celestial bodies for indirect detection experiments to succeed, it
694:
Figure 2: Plot showing the parameter space of dark matter particle mass and interaction cross section with nucleons. The LUX and SuperCDMS limits exclude the parameter space above the labelled curves. The CoGeNT and CRESST-II regions indicate regions which were previously thought to correspond to
2164:
Abramoff, Orr; Barak, Liron; Bloch, Itay M.; Chaplinsky, Luke; Crisler, Michael; Dawa; Drlica-Wagner, Alex; Essig, Rouven; Estrada, Juan; Etzion, Erez; Fernandez, Guillermo (2019-04-24). "SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype
637:
at a time, the detector can stay active for much longer periods. When enough energy is deposited in a droplet by ionizing radiation, the superheated droplet becomes a gas bubble. The bubble development is accompanied by an acoustic shock wave that is picked up by piezo-electric sensors. The main
469:
Although most WIMPs encountering the Sun or the Earth are expected to pass through without any effect, it is hoped that a large number of dark matter WIMPs crossing a sufficiently large detector will interact often enough to be seen—at least a few events per year. The general strategy of current
1905:
Behnke, E.; Behnke, J.; Brice, S. J.; Broemmelsiek, D.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Fustin, D.; Hall, J.; Hinnefeld, J. H.; Hu, M.; Levine, I.; Ramberg, E.; Shepherd, T.; Sonnenschein, A.; Szydagis, M. (10 January 2011). "Improved Limits on Spin-Dependent WIMP-Proton
370:
A decade after the dark matter problem was established in the 1970s, WIMPs were suggested as a potential solution to the issue. Although the existence of WIMPs in nature is still hypothetical, it would resolve a number of astrophysical and cosmological problems related to dark matter. There is
745:
both failed to replicate the DAMA/LIBRA signal and in August 2022 COSINE-100 applied an analysis method similar to one used by DAMA/LIBRA and found a similar annual modulation suggesting the signal could be just a statistical artifact supporting a hypothesis first put forward in 2020.
401:
refers to the observation of annihilation or decay products of WIMPs far away from Earth. Indirect detection efforts typically focus on locations where WIMP dark matter is thought to accumulate the most: in the centers of galaxies and galaxy clusters, as well as in the smaller
415:. The spectrum and intensity of a gamma ray signal depends on the annihilation products, and must be computed on a model-by-model basis. Experiments that have placed bounds on WIMP annihilation, via the non-observation of an annihilation signal, include the 427:
Another type of indirect WIMP signal could come from the Sun. Halo WIMPs may, as they pass through the Sun, interact with solar protons, helium nuclei as well as heavier elements. If a WIMP loses enough energy in such an interaction to fall below the local
3607:
LUX-ZEPLIN Collaboration; Aalbers, J.; Akerib, D. S.; Akerlof, C. W.; Al Musalhi, A. K.; Alder, F.; Alqahtani, A.; Alsum, S. K.; Amarasinghe, C. S.; Ames, A.; Anderson, T. J.; Angelides, N.; Araújo, H. M.; Armstrong, J. E.; Arthurs, M. (2023-07-28).
559:
used xenon to exclude WIMPs at higher sensitivity, with the most stringent limits to date provided by the XENON1T detector, utilizing 3.5 tons of liquid xenon. Even larger multi-ton liquid xenon detectors have been approved for construction from the
767:
parameter space beyond which experimental sensitivity can only improve at best as the square root of exposure (the product of detector mass and running time). For WIMP masses below 10 GeV the dominant source of neutrino background is from the
162: 501:. A layer of metal (aluminium and tungsten) at the surfaces is used to detect a WIMP passing through the crystal. This design hopes to detect vibrations in the crystal matrix generated by an atom being "kicked" by a WIMP. The tungsten 3541:
XENON Collaboration; Aprile, E.; Abe, K.; Agostini, F.; Ahmed Maouloud, S.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. R.; Antochi, V. C.; Antón Martin, D.; Arneodo, F.; Baudis, L.; Baxter, A. L.; Bazyk, M. (2023-07-28).
371:
consensus today among astronomers that most of the mass in the Universe is indeed dark. Simulations of a universe full of cold dark matter produce galaxy distributions that are roughly similar to what is observed. By contrast,
423:
observatory in Antarctica may be able to differentiate WIMP-produced neutrinos from standard astrophysical neutrinos; however, by 2014, only 37 cosmological neutrinos had been observed, making such a distinction impossible.
695:
dark matter signals, but which were later explained with mundane sources. The DAMA and CDMS-Si data remain unexplained, and these regions indicate the preferred parameter space if these anomalies are due to dark matter.
406:
of the Milky Way. These are particularly useful since they tend to contain very little baryonic matter, reducing the expected background from standard astrophysical processes. Typical indirect searches look for excess
396:
Because WIMPs may only interact through gravitational and weak forces, they would be extremely difficult to detect. However, there are many experiments underway to attempt to detect WIMPs both directly and indirectly.
470:
attempts to detect WIMPs is to find very sensitive systems that can be scaled to large volumes. This follows the lessons learned from the history of the discovery, and (by now routine) detection, of the neutrino.
2098:
DAMIC Collaboration; Aguilar-Arevalo, A.; Amidei, D.; Baxter, D.; Cancelo, G.; Cervantes Vergara, B. A.; Chavarria, A. E.; Darragh-Ford, E.; de Mello Neto, J. R. T.; D’Olivo, J. C.; Estrada, J. (2019-10-31).
432:, it would theoretically not have enough energy to escape the gravitational pull of the Sun and would remain gravitationally bound. As more and more WIMPs thermalize inside the Sun, they would begin to 4194: 514: 3027:
Adhikari, G.; Carlin, N.; Choi, J. J.; Choi, S.; Ezeribe, A. C.; Franca, L. E.; Ha, C.; Hahn, I. S.; Hollick, S. J.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W. G.; Kauer, M.; Kim, B. H. (2023).
2928:
Adhikari, Govinda; de Souza, Estella B.; Carlin, Nelson; Choi, Jae Jin; Choi, Seonho; Djamal, Mitra; Ezeribe, Anthony C.; França, Luis E.; Ha, Chang Hyon; Hahn, In Sik; Jeon, Eunju (2021-11-12).
622:
as the active mass. PICASSO is predominantly sensitive to spin-dependent interactions of WIMPs with the fluorine atoms in the Freon. COUPP, a similar experiment using trifluoroiodomethane(CF
63:, but also non-vanishing in strength. Many WIMP candidates are expected to have been produced thermally in the early Universe, similarly to the particles of the Standard Model according to 1477:
Ackermann, M.; et al. (The Fermi-LAT Collaboration) (2014). "Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope".
1131:
Klapdor-Kleingrothaus, H. V. (1998). "Double beta decay and dark matter search – window to new physics now, and in future (GENIUS)". In Klapdor-Kleingrothaus, V.; Paes, H. (eds.).
1467:
The Millennium Run used more than 10 billion particles to trace the evolution of the matter distribution in a cubic region of the Universe over 2 billion light-years on a side.
3264:
Billard, J.; Strigari, L.; Figueroa-Feliciano, E. (2014). "Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments".
4279: 4259: 85: 2863:
Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; de Solórzano, A. Ortiz; Puimedón, J.; Salinas, A. (2021-05-27).
2849: 868: 3798:
Del Nobile, Eugenio; Gelmini, Graciela B.; Gondolo, Paolo; Huh, Ji-Haeng (2015). "Update on the Halo-independent Comparison of Direct Dark Matter Detection Data".
4249: 660: 629:
A bubble detector is a radiation sensitive device that uses small droplets of superheated liquid that are suspended in a gel matrix. It uses the principle of a
354:. These names were deliberately chosen for contrast, with MACHOs named later than WIMPs. In contrast to WIMPs, there are no known stable particles within the 3370:
Meng, Yue; Wang, Zhou; Tao, Yi; Abdukerim, Abdusalam; Bo, Zihao; Chen, Wei; Chen, Xun; Chen, Yunhua; Cheng, Chen; Cheng, Yunshan; Cui, Xiangyi (2021-12-23).
2549:
C. E. Aalseth; et al. (CoGeNT collaboration) (2011). "Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector".
711:
Historically there have been four anomalous sets of data from different direct detection experiments, two of which have now been explained with backgrounds (
4174: 1644:
Ferrer, F.; Krauss, L. M.; Profumo, S. (2006). "Indirect detection of light neutralino dark matter in the next-to-minimal supersymmetric standard model".
444:
detector in Japan. The number of neutrino events detected per day at these detectors depends on the properties of the WIMP, as well as on the mass of the
4709: 238:
of particle physics, although none of the large number of new particles in supersymmetry have been observed. WIMP-like particles are also predicted by
4432: 1967: 206:
extensions of the Standard Model of particle physics readily predict a new particle with these properties, this apparent coincidence is known as the "
691: 4437: 4412: 578:– Instead of a liquid noble gas, an in principle simpler approach is the use of a scintillating crystal such as NaI(Tl). This approach is taken by 699:
There are currently no confirmed detections of dark matter from direct detection experiments, with the strongest exclusion limits coming from the
1583:
Aartsen, M. G.; et al. (IceCube Collaboration) (2014). "Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data".
3853: 3317:
Davis, Jonathan H. (2015). "Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor".
678:
The DAMIC (DArk Matter In CCDs) and SENSEI (Sub Electron Noise Skipper CCD Experimental Instrument) collaborations employ the use of scientific
448:. Similar experiments are underway to attempt to detect neutrinos from WIMP annihilations within the Earth and from within the galactic center. 4611: 3859: 755: 671:
readout plane that allows it to be reconstructed in three dimensions and determine the origin direction. DMTPC is a similar experiment with CF
4029: 3904: 3696: 1233: 776: 733:
assumptions about the properties of the WIMPs and the dark matter halo, and this has been followed by many other experiments (see Figure 2).
411:, which are predicted both as final-state products of annihilation, or are produced as charged particles interact with ambient radiation via 4387: 4117: 723:). In February 2010, researchers at CDMS announced that they had observed two events that may have been caused by WIMP-nucleus collisions. 667:
target, that allows WIMP recoils to travel several millimetres, leaving a track of charged particles. This charged track is drifted to an
342:
mutual gravitational attraction, and as a result, WIMPs would tend to clump together. WIMPs are considered one of the main candidates for
4244: 556: 548: 497:
relies on multiple very cold germanium and silicon crystals. The crystals (each about the size of a hockey puck) are cooled to about 50
2611: 2290: 1411:
Conroy, Charlie; Wechsler, Risa H.; Kravtsov, Andrey V. (2006). "Modeling Luminosity-Dependent Galaxy Clustering Through Cosmic Time".
4269: 763:
multi-tonne liquid xenon experiments, followed by DARWIN, another proposed liquid xenon direct detection experiment of 50–100 tonnes.
700: 2234: 4224: 3733: 544: 391: 4009: 893: 614:(Project In Canada to Search for Supersymmetric Objects) experiment is a direct dark matter search experiment that is located at 273: 4724: 4417: 4407: 4392: 4329: 457: 416: 358:
of particle physics that have the properties of MACHOs. The particles that have little interaction with normal matter, such as
4714: 4537: 758:
Upper limits for WIMP-nucleon elastic cross sections from selected experiments as reported by the LZ experiment in July 2023.
4402: 2633:
Davis, Jonathan H.; McCabe, Christopher; Boehm, Celine (2014). "Quantifying the evidence for Dark Matter in CoGeNT data".
2437: 4602: 4729: 4422: 4339: 4289: 4169: 4164: 4149: 3959: 3846:(S. Eidelman et al. (Particle Data Group), Physical Letters B 592, 1 (2004) Appendix : OMITTED FROM SUMMARY TABLE). 840: 720: 704: 597: 490: 347: 2788:
COSINE-100 Collaboration (2018). "An experiment to search for dark-matter interactions using sodium iodide detectors".
210:", and a stable supersymmetric partner has long been a prime WIMP candidate. However, in the early 2010s, results from 4377: 4264: 4204: 4184: 4107: 2412: 852: 737: 601: 1047: 187:
in nearby galaxies and galaxy clusters; direct detection experiments designed to measure the collision of WIMPs with
4397: 2686:
Drukier, Andrzej K.; Freese, Katherine; Spergel, David N. (15 June 1986). "Detecting cold dark-matter candidates".
535:
material, so that light pulses are generated by the moving atom and detected, often with PMTs. Experiments such as
412: 378:
WIMPs fit the model of a relic dark matter particle from the early Universe, when all particles were in a state of
440:. These neutrinos may then travel to the Earth to be detected in one of the many neutrino telescopes, such as the 4102: 3897: 281: 239: 1530:
Grube, Jeffrey; VERITAS Collaboration (2012). "VERITAS Limits on Dark Matter Annihilation from Dwarf Galaxies".
626:
I), published limits for mass above 20 GeV in 2011. The two experiments merged into PICO collaboration in 2012.
4122: 3964: 375:
would smear out the large-scale structure of galaxies and thus is not considered a viable cosmological model.
3003: 663:(DRIFT) collaboration is attempting to utilize the predicted directionality of the WIMP signal. DRIFT uses a 4087: 4039: 878: 656: 502: 323: 79: 4588: 1971: 4719: 509:
state. Large crystal vibrations will generate heat in the metal and are detectable because of a change in
31: 2277: 1992:
PICASSO Collaboration (2009). "Dark Matter Spin-Dependent Limits for WIMP Interactions on F by PICASSO".
4072: 3969: 2930:"Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target" 2843: 2256: 679: 510: 477:
Fig 1. CDMS parameter space excluded as of 2004. DAMA result is located in green area and is disallowed.
215: 192: 72: 2045:
Cooley, J. (28 October 2014). "Overview of non-liquid noble direct detection dark matter experiments".
582:, an experiment that observed an annular modulation of the signal consistent with WIMP detection (see 4704: 4576: 4344: 4092: 4014: 3929: 3890: 3817: 3770: 3684: 3678: 3631: 3565: 3505: 3456: 3393: 3336: 3283: 3230: 3156: 3050: 2951: 2886: 2807: 2738: 2695: 2652: 2568: 2480: 2350: 2184: 2122: 2064: 2011: 1925: 1863: 1810: 1754: 1706: 1663: 1602: 1549: 1496: 1430: 1377: 1332: 1281: 1188: 1146: 1105: 1086:
Fox, Patrick J.; Jung, Gabriel; Sorensen, Peter; Weiner, Neal (2014). "Dark matter in light of LUX".
1013: 966: 175:
Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, including
4676: 4382: 1323:
Griest, Kim (1991). "Galactic Microlensing as a Method of Detecting Massive Compact Halo Objects".
834: 379: 157:{\displaystyle \langle \sigma v\rangle \simeq 3\times 10^{-26}\mathrm {cm} ^{3}\;\mathrm {s} ^{-1}} 52: 3706:
Cerdeño, David G.; Green, Anne M. (2010). Bertone, Gianfranco (ed.). "Direct detection of WIMPs".
1697:
Freese, Katherine (1986). "Can scalar neutrinos or massive Dirac neutrinos be the missing mass?".
808:
published the first results of their searches for WIMPs, the first excluding cross sections above
4664: 4652: 4097: 4057: 3875: 3807: 3786: 3760: 3739: 3711: 3655: 3621: 3589: 3555: 3523: 3474: 3425: 3383: 3352: 3326: 3299: 3273: 3246: 3220: 3191: 3172: 3146: 3119: 3040: 2941: 2910: 2876: 2831: 2797: 2770: 2668: 2642: 2592: 2558: 2504: 2470: 2366: 2340: 2306: 2216: 2174: 2146: 2112: 2080: 2054: 2027: 2001: 1949: 1915: 1887: 1853: 1826: 1800: 1770: 1744: 1679: 1653: 1626: 1592: 1565: 1539: 1512: 1486: 1446: 1420: 1393: 1367: 1305: 1271: 1239: 1211: 1178: 1136: 1095: 1066: 1029: 1003: 956: 315: 60: 3137:
Buttazzo, D.; et al. (2020). "Annual modulations from secular variations: relaxing DAMA?".
2523: 2384: 1844:
Aprile, E; et al. (2017). "First Dark Matter Search Results from the XENON1T Experiment".
690: 4542: 4427: 3949: 3944: 3849: 3729: 3692: 3647: 3581: 3417: 3409: 3111: 3076: 2985: 2967: 2902: 2823: 2762: 2754: 2729:
Freese, K.; Frieman, J.; Gould, A. (1988). "Signal Modulation in Cold Dark Matter Detection".
2711: 2584: 2496: 2208: 2200: 2138: 1941: 1879: 1618: 1297: 1229: 793: 334: 169: 4334: 4628: 4501: 4299: 4294: 4239: 4229: 4077: 4024: 3954: 3934: 3825: 3778: 3721: 3639: 3573: 3513: 3464: 3401: 3344: 3291: 3238: 3164: 3103: 3066: 3058: 2975: 2959: 2894: 2815: 2746: 2703: 2660: 2576: 2531: 2488: 2461:
The CDMS II Collaboration (2010). "Dark Matter Search Results from the CDMS II Experiment".
2358: 2298: 2192: 2130: 2101:"Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB" 2072: 2019: 1933: 1871: 1818: 1788: 1762: 1714: 1671: 1610: 1557: 1504: 1438: 1385: 1340: 1289: 1221: 1113: 1021: 974: 921: 915: 903: 862: 664: 634: 593: 441: 403: 343: 68: 4284: 4219: 3029:"An induced annual modulation signature in COSINE-100 data by DAMA/LIBRA's analysis method" 1464: 473: 191:
in the laboratory, as well as attempts to directly produce WIMPs in colliders, such as the
4557: 4442: 3939: 3609: 3543: 3371: 2100: 506: 429: 372: 3242: 3821: 3774: 3751:
Davis, Jonathan H. (2015). "The Past and Future of Light Dark Matter Direct Detection".
3688: 3635: 3569: 3509: 3460: 3397: 3348: 3340: 3287: 3234: 3160: 3071: 3054: 3028: 2955: 2890: 2811: 2742: 2699: 2664: 2656: 2572: 2484: 2354: 2331:
Davis, Jonathan H. (2015). "The Past and Future of Light Dark Matter Direct Detection".
2188: 2126: 2068: 2015: 1929: 1867: 1814: 1758: 1710: 1667: 1606: 1553: 1500: 1434: 1381: 1336: 1285: 1192: 1150: 1109: 1017: 970: 4688: 4616: 4496: 4082: 2980: 2929: 2864: 1358:
de Swart, J. G.; Bertone, G.; van Dongen, J. (2017). "How dark matter came to matter".
1293: 994:
Jungman, Gerard; Kamionkowski, Marc; Griest, Kim (1996). "Supersymmetric dark matter".
768: 630: 355: 235: 188: 754: 4698: 4552: 4532: 4274: 4112: 3790: 3743: 3659: 3593: 3527: 3478: 3429: 3356: 3176: 3123: 3095: 2914: 2370: 2310: 2220: 2150: 2084: 1774: 1732: 1718: 1683: 1630: 1569: 1397: 1033: 1025: 805: 436:
with each other, theoretically forming a variety of particles, including high-energy
330: 231: 203: 3303: 3250: 2835: 2672: 2596: 2031: 1953: 1891: 1516: 1450: 1243: 4683: 4640: 3643: 3577: 3405: 2774: 2580: 2508: 2389: 2196: 2134: 2023: 1937: 1875: 1614: 1309: 912: – Neutral mass eigenstate formed from superpartners of gauge and Higgs bosons 532: 433: 294: 243: 76: 1830: 816:
at 28 GeV with 90% confidence level and the second excluding cross sections above
3725: 551:
instrument a very large target mass of liquid argon for sensitive WIMP searches.
4527: 4491: 4483: 4067: 4004: 3913: 3829: 3168: 2898: 846: 659:(TPCs) filled with low pressure gases are being studied for WIMP detection. The 494: 445: 211: 45: 3295: 3107: 3062: 2444: 2076: 1791:(2008). "Status and perspectives of indirect and direct dark matter searches". 1675: 1508: 1225: 1117: 214:
experiments along with the failure to produce evidence of supersymmetry in the
4522: 4359: 4324: 4209: 4062: 4019: 3869: 3865: 3782: 2819: 2362: 2302: 1822: 1766: 1065:
Craig, Nathaniel (2013). "The State of Supersymmetry after Run I of the LHC".
909: 716: 639: 579: 565: 408: 184: 3413: 2971: 2906: 2750: 2707: 2204: 4506: 4463: 4254: 3843: 3518: 3493: 3469: 3444: 3211:
Baudis, Laura (2012). "DARWIN: dark matter WIMP search with noble liquids".
2492: 1389: 786:
have found no signal in their data, with a lowest excluded cross section of
742: 588:). Several experiments are attempting to replicate those results, including 522: 176: 3651: 3585: 3544:"First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment" 3421: 3115: 3080: 2989: 2963: 2827: 2588: 2500: 2419: 2212: 2142: 1945: 1883: 1622: 1301: 2766: 2715: 979: 944: 4214: 2535: 2257:"First Results from LUX, the World's Most Sensitive Dark Matter Detector" 1805: 1749: 1425: 772: 437: 359: 299: 268: 227: 180: 64: 44:) are hypothetical particles that are one of the proposed candidates for 1262:
Griest, Kim (1993). "The Search for the Dark Matter: WIMPs and MACHOs".
4547: 4447: 4319: 1658: 1276: 1183: 1141: 1008: 611: 420: 319: 164:, which is roughly what is expected for a new particle in the 100  59:
and any other force (or forces) which is as weak as or weaker than the
56: 3610:"First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment" 2758: 1561: 4304: 4179: 1735:; Bertone, G. (2005). "Dark Matter Dynamics and Indirect Detection". 783: 771:, while for higher masses the background contains contributions from 726: 712: 615: 569: 552: 540: 531:– Another way of detecting atoms "knocked about" by a WIMP is to use 518: 498: 351: 17: 3860:
Portraits of darkness, New Scientist, August 31, 2013. Preview only.
4635: 3765: 3626: 3560: 3388: 3151: 3045: 2946: 2881: 2802: 2345: 2291:"Largest-ever dark-matter experiment poised to test popular theory" 2179: 2117: 1858: 1442: 1372: 1344: 51:
There exists no formal definition of a WIMP, but broadly, it is an
4468: 4354: 4349: 4199: 4154: 3999: 3994: 3812: 3716: 3331: 3278: 3225: 3196: 2647: 2563: 2475: 2059: 2006: 1920: 1597: 1544: 1491: 1216: 1100: 1071: 961: 801: 619: 589: 561: 472: 3372:"Dark Matter Search Results from the PandaX-4T Commissioning Run" 3190:
Malling, D. C.; et al. (2011). "After LUX: The LZ Program".
2865:"Annual modulation results from three-year exposure of ANAIS-112" 604:
is approaching the same problem using CsI(Tl) as a scintillator.
218:(LHC) experiment has cast doubt on the simplest WIMP hypothesis. 4314: 4309: 4234: 4189: 4159: 668: 536: 263: 196: 3886: 3882: 505:(TES) are held at the critical temperature so they are in the 165: 3874:(video; colloquium). Brown University Department of Physics. 3096:"Notorious dark-matter signal could be due to analysis error" 924: – Hypothetical particle that interacts only via gravity 2235:"New Experiment Torpedoes Lightweight Dark Matter Particles" 362:, are very light, and hence would be fast moving, or "hot". 2413:"Results from the Final Exposure of the CDMS II Experiment" 859:) – Hypothetical form of dark matter in galactic halos 71:. Obtaining the correct abundance of dark matter today via 329:
Large mass compared to standard particles (WIMPs with sub-
1169:
Kamionkowski, Marc (1997). "WIMP and Axion Dark Matter".
900:) – Lightest new particle in a supersymmetric model 3708:
Particle Dark Matter: Observations, Models and Searches
3680:
Particle Dark Matter: Observations, Models and Searches
27:
Hypothetical particles that may constitute dark matter
4600: 879:
Weakly interacting sub-eV / slender / slight particle
649:
PICO is an expansion of the concept planned in 2015.
88: 310:
The main theoretical characteristics of a WIMP are:
4515: 4481: 4456: 4368: 4140: 4131: 4048: 3987: 3920: 3004:"Is the end in sight for famous dark matter claim?" 918: – Hypothetical black holes of very small size 865: – Hypothetical black holes of very small size 849: – Elementary particle involved with rest mass 715:and CRESST-II), and two which remain unexplained ( 156: 3844:Particle Data Group review article on WIMP search 2612:"CoGeNT findings support dark-matter halo theory" 633:but, since only the small droplets can undergo a 3445:"Tightening the Net on Two Kinds of Dark Matter" 1906:Interactions from a Two Liter Bubble Chamber". 869:Robust associations of massive baryonic objects 3319:Journal of Cosmology and Astroparticle Physics 2635:Journal of Cosmology and Astroparticle Physics 2438:"Latest Results in the Search for Dark Matter" 2385:"Key to the universe found on the Iron Range?" 1164: 1162: 1160: 3898: 3856:in Living Reviews in Relativity, Vol 5, 2002. 2524:"A CoGeNT result in the hunt for dark matter" 661:Directional Recoil Identification From Tracks 596:, which is codeploying NaI crystals with the 8: 2278:Dark matter search comes up empty. July 2016 906: – Fermion that is its own antiparticle 98: 89: 30:"WIMPs" redirects here. For other uses, see 3683:. Cambridge University Press. p. 762. 2848:: CS1 maint: numeric names: authors list ( 2259:. Berkeley Lab News Center. 30 October 2013 4137: 3905: 3891: 3883: 1264:Annals of the New York Academy of Sciences 138: 3811: 3764: 3753:International Journal of Modern Physics A 3715: 3625: 3559: 3517: 3468: 3387: 3330: 3277: 3224: 3195: 3150: 3070: 3044: 2979: 2945: 2880: 2801: 2646: 2562: 2474: 2344: 2333:International Journal of Modern Physics A 2178: 2116: 2058: 2005: 1919: 1857: 1804: 1748: 1657: 1596: 1543: 1490: 1424: 1371: 1275: 1215: 1182: 1140: 1099: 1070: 1048:"LHC discovery maims supersymmetry again" 1007: 978: 960: 618:in Canada. It uses bubble detectors with 145: 140: 132: 124: 114: 87: 1257: 1255: 1253: 753: 689: 248: 4607: 1465:Introduction: The Millennium Simulation 935: 67:cosmology, and usually will constitute 2841: 875:) – Proposed type of star cluster 797:at 40 GeV with 90% confidence level. 646:terms of spin dependent interactions. 322:, or possibly other interactions with 3871:The WIMP is dead. Long live the WIMP! 3854:Experimental Searches for Dark Matter 1206:Zacek, Viktor (2007). "Dark Matter". 824:at 36 GeV with 90% confidence level. 777:diffuse supernova neutrino background 741:2021 new results from COSINE-100 and 289:lightest Kaluza–Klein particle (LKP) 226:WIMP-like particles are predicted by 7: 4583: 2434:. See also a non-technical summary: 1135:. Vol. 1997. IOP. p. 485. 916:Planck-mass-sized black hole remnant 222:Theoretical framework and properties 38:Weakly interacting massive particles 3094:Castelvecchi, Davide (2022-08-16). 1463:The Millennium Simulation Project, 1294:10.1111/j.1749-6632.1993.tb43912.x 584: 168:mass range that interacts via the 141: 128: 125: 25: 4710:Physics beyond the Standard Model 1171:High Energy Physics and Cosmology 392:Indirect detection of dark matter 4682: 4670: 4658: 4646: 4634: 4622: 4610: 4582: 4571: 4570: 3978: 3878:from the original on 2021-12-11. 3494:"The Search for WIMPs Continues" 894:Lightest supersymmetric particle 274:lightest supersymmetric particle 3443:Stephens, Marric (2021-12-23). 837: – Hypothetical unparticle 782:In December 2021, results from 458:Direct detection of dark matter 333:masses may be considered to be 4538:Galaxy formation and evolution 3644:10.1103/PhysRevLett.131.041002 3578:10.1103/PhysRevLett.131.041003 3406:10.1103/PhysRevLett.127.261802 3243:10.1088/1742-6596/375/1/012028 3139:Journal of High Energy Physics 2581:10.1103/PhysRevLett.106.131301 2197:10.1103/PhysRevLett.122.161801 2135:10.1103/PhysRevLett.123.181802 2024:10.1016/j.physletb.2009.11.019 1968:"Bubble Technology Industries" 1938:10.1103/PhysRevLett.106.021303 1876:10.1103/PhysRevLett.119.181301 1615:10.1103/PhysRevLett.113.101101 750:The future of direct detection 326:no higher than the weak scale; 314:Interactions only through the 304:lightest T-odd particle (LTP) 1: 3349:10.1088/1475-7516/2015/03/012 2665:10.1088/1475-7516/2014/08/014 234:, a type of extension to the 3960:Self-interacting dark matter 3726:10.1017/CBO9780511770739.018 3677:Bertone, Gianfranco (2010). 2047:Physics of the Dark Universe 1719:10.1016/0370-2693(86)90349-7 1026:10.1016/0370-1573(95)00058-5 600:detector at the South Pole. 491:Cryogenic Dark Matter Search 348:massive compact halo objects 4118:Navarro–Frenk–White profile 4108:Massive compact halo object 4103:Mass dimension one fermions 3830:10.1016/j.phpro.2014.12.009 3492:Day, Charles (2023-07-28). 2899:10.1103/PhysRevD.103.102005 943:Garrett, Katherine (2010). 853:Massive compact halo object 841:Feebly interacting particle 487:Cryogenic crystal detectors 4746: 3296:10.1103/PhysRevD.89.023524 3108:10.1038/d41586-022-02222-9 3063:10.1038/s41598-023-31688-4 2610:Dacey, James (June 2011). 2077:10.1016/j.dark.2014.10.005 1793:Advances in Space Research 1676:10.1103/PhysRevD.74.115007 1532:AIP Conference Proceedings 1509:10.1103/PhysRevD.89.042001 1226:10.1142/9789812776105_0007 1118:10.1103/PhysRevD.89.103526 489:– A technique used by the 455: 413:inverse Compton scattering 389: 29: 4566: 3976: 3783:10.1142/S0217751X15300380 2820:10.1038/s41586-018-0739-1 2522:Hand, Eric (2010-02-26). 2363:10.1142/S0217751X15300380 2303:10.1038/nature.2015.18772 2289:Cartlidge, Edwin (2015). 1823:10.1016/j.asr.2007.02.067 1767:10.1142/S0217732305017391 1413:The Astrophysical Journal 1325:The Astrophysical Journal 240:universal extra dimension 4123:Scalar field dark matter 3965:Scalar field dark matter 2751:10.1103/PhysRevD.37.3388 2708:10.1103/PhysRevD.33.3495 1737:Modern Physics Letters A 1208:Fundamental Interactions 657:Time projection chambers 653:Other types of detectors 3614:Physical Review Letters 3548:Physical Review Letters 3519:10.1103/Physics.16.s106 3470:10.1103/Physics.14.s164 3376:Physical Review Letters 3169:10.1007/JHEP04(2020)137 2551:Physical Review Letters 2493:10.1126/science.1186112 2167:Physical Review Letters 2105:Physical Review Letters 1908:Physical Review Letters 1846:Physical Review Letters 1585:Physical Review Letters 1390:10.1038/s41550-017-0059 945:"Dark matter: A primer" 529:Noble gas scintillators 503:transition edge sensors 493:(CDMS) detector at the 482:Experimental techniques 4725:Hypothetical particles 3988:Hypothetical particles 3970:Primordial black holes 2964:10.1126/sciadv.abk2699 887:Theoretical candidates 759: 696: 680:Charge Coupled Devices 478: 158: 32:WIMPS (disambiguation) 4715:Astroparticle physics 4073:Dark globular cluster 949:Advances in Astronomy 773:atmospheric neutrinos 757: 693: 576:Crystal scintillators 476: 216:Large Hadron Collider 193:Large Hadron Collider 159: 4093:Dwarf galaxy problem 4015:Minicharged particle 3930:Baryonic dark matter 2536:10.1038/news.2010.97 2436:CDMS Collaboration. 2411:CDMS Collaboration. 585:§ Recent limits 525:run similar setups. 86: 55:which interacts via 4730:Physics experiments 3822:2015PhPro..61...45D 3775:2015IJMPA..3030038D 3689:2010pdmo.book.....B 3636:2023PhRvL.131d1002A 3570:2023PhRvL.131d1003A 3510:2023PhyOJ..16.s106D 3461:2021PhyOJ..14.s164S 3398:2021PhRvL.127z1802M 3341:2015JCAP...03..012D 3288:2014PhRvD..89b3524B 3235:2012JPhCS.375a2028B 3161:2020JHEP...04..137B 3055:2023NatSR..13.4676A 2956:2021SciA....7.2699A 2891:2021PhRvD.103j2005A 2812:2018Natur.564...83C 2743:1988PhRvD..37.3388F 2700:1986PhRvD..33.3495D 2657:2014JCAP...08..014D 2573:2011PhRvL.106m1301A 2485:2010Sci...327.1619C 2469:(5973): 1619–1621. 2355:2015IJMPA..3030038D 2189:2019PhRvL.122p1801A 2127:2019PhRvL.123r1802A 2069:2014PDU.....4...92C 2016:2009PhLB..682..185A 1930:2011PhRvL.106b1303B 1868:2017PhRvL.119r1301A 1815:2008AdSpR..41.2010F 1759:2005MPLA...20.1021B 1711:1986PhLB..167..295F 1668:2006PhRvD..74k5007F 1607:2014PhRvL.113j1101A 1554:2012AIPC.1505..689G 1501:2014PhRvD..89d2001A 1435:2006ApJ...647..201C 1382:2017NatAs...1E..59D 1337:1991ApJ...366..412G 1286:1993NYASA.688..390G 1193:1998hepc.conf..394K 1151:1998hep.ex....2007K 1110:2014PhRvD..89j3526F 1018:1996PhR...267..195J 980:10.1155/2011/968283 971:2011AdAst2011E...8G 835:Darkon (unparticle) 380:thermal equilibrium 346:, the others being 53:elementary particle 4098:Halo mass function 4058:Cuspy halo problem 3213:J. Phys. Conf. Ser 3033:Scientific Reports 760: 697: 479: 404:satellite galaxies 399:Indirect detection 386:Indirect detection 316:weak nuclear force 154: 73:thermal production 61:weak nuclear force 4598: 4597: 4543:Illustris project 4477: 4476: 3950:Mixed dark matter 3945:Light dark matter 3868:(13 April 2018). 3850:Timothy J. Sumner 3698:978-0-521-76368-4 3266:Physical Review D 2869:Physical Review D 2737:(12): 3388–3405. 2731:Physical Review D 2694:(12): 3495–3508. 2688:Physical Review D 2237:. 30 October 2013 1994:Physics Letters B 1799:(12): 2010–2018. 1789:Fornengo, Nicolao 1743:(14): 1021–1036. 1699:Physics Letters B 1646:Physical Review D 1562:10.1063/1.4772353 1479:Physical Review D 1235:978-981-277-609-9 1133:Beyond the Desert 1088:Physical Review D 800:In July 2023 the 335:light dark matter 308: 307: 170:electroweak force 16:(Redirected from 4737: 4687: 4686: 4675: 4674: 4673: 4663: 4662: 4661: 4651: 4650: 4649: 4639: 4638: 4627: 4626: 4625: 4615: 4614: 4606: 4586: 4585: 4574: 4573: 4138: 4078:Dark matter halo 4025:Sterile neutrino 3982: 3981: 3955:Warm dark matter 3935:Cold dark matter 3907: 3900: 3893: 3884: 3879: 3833: 3815: 3800:Physics Procedia 3794: 3768: 3747: 3719: 3702: 3664: 3663: 3629: 3604: 3598: 3597: 3563: 3538: 3532: 3531: 3521: 3489: 3483: 3482: 3472: 3440: 3434: 3433: 3391: 3367: 3361: 3360: 3334: 3314: 3308: 3307: 3281: 3261: 3255: 3254: 3228: 3208: 3202: 3201: 3199: 3187: 3181: 3180: 3154: 3134: 3128: 3127: 3091: 3085: 3084: 3074: 3048: 3024: 3018: 3017: 3015: 3014: 3000: 2994: 2993: 2983: 2949: 2940:(46): eabk2699. 2934:Science Advances 2925: 2919: 2918: 2884: 2860: 2854: 2853: 2847: 2839: 2805: 2785: 2779: 2778: 2726: 2720: 2719: 2683: 2677: 2676: 2650: 2630: 2624: 2623: 2621: 2619: 2607: 2601: 2600: 2566: 2546: 2540: 2539: 2519: 2513: 2512: 2478: 2458: 2452: 2451: 2449: 2443:. Archived from 2442: 2433: 2431: 2430: 2424: 2418:. Archived from 2417: 2408: 2402: 2401: 2399: 2397: 2381: 2375: 2374: 2348: 2328: 2322: 2321: 2319: 2317: 2286: 2280: 2275: 2269: 2268: 2266: 2264: 2253: 2247: 2246: 2244: 2242: 2231: 2225: 2224: 2182: 2161: 2155: 2154: 2120: 2095: 2089: 2088: 2062: 2042: 2036: 2035: 2009: 1989: 1983: 1982: 1980: 1979: 1970:. Archived from 1964: 1958: 1957: 1923: 1902: 1896: 1895: 1861: 1841: 1835: 1834: 1808: 1806:astro-ph/0612786 1785: 1779: 1778: 1752: 1750:astro-ph/0504422 1729: 1723: 1722: 1694: 1688: 1687: 1661: 1641: 1635: 1634: 1600: 1580: 1574: 1573: 1547: 1527: 1521: 1520: 1494: 1474: 1468: 1461: 1455: 1454: 1428: 1426:astro-ph/0512234 1408: 1402: 1401: 1375: 1360:Nature Astronomy 1355: 1349: 1348: 1320: 1314: 1313: 1279: 1259: 1248: 1247: 1219: 1203: 1197: 1196: 1186: 1166: 1155: 1154: 1144: 1128: 1122: 1121: 1103: 1083: 1077: 1076: 1074: 1062: 1056: 1055: 1044: 1038: 1037: 1011: 1002:(5–6): 195–373. 991: 985: 984: 982: 964: 955:(968283): 1–22. 940: 922:Sterile neutrino 904:Majorana fermion 899: 874: 863:Micro black hole 858: 823: 821: 815: 813: 796: 791: 665:carbon disulfide 635:phase transition 572:collaborations. 463:Direct detection 452:Direct detection 442:Super-Kamiokande 344:cold dark matter 249: 212:direct-detection 163: 161: 160: 155: 153: 152: 144: 137: 136: 131: 122: 121: 75:requires a self- 69:cold dark matter 21: 4745: 4744: 4740: 4739: 4738: 4736: 4735: 4734: 4695: 4694: 4693: 4681: 4671: 4669: 4659: 4657: 4647: 4645: 4633: 4623: 4621: 4609: 4601: 4599: 4594: 4562: 4558:UniverseMachine 4511: 4473: 4452: 4370: 4364: 4142: 4133: 4127: 4050: 4044: 3983: 3979: 3974: 3940:Hot dark matter 3922: 3916: 3911: 3864: 3840: 3797: 3759:(15): 1530038. 3750: 3736: 3705: 3699: 3676: 3673: 3671:Further reading 3668: 3667: 3606: 3605: 3601: 3540: 3539: 3535: 3491: 3490: 3486: 3442: 3441: 3437: 3369: 3368: 3364: 3316: 3315: 3311: 3263: 3262: 3258: 3210: 3209: 3205: 3189: 3188: 3184: 3136: 3135: 3131: 3093: 3092: 3088: 3026: 3025: 3021: 3012: 3010: 3008:www.science.org 3002: 3001: 2997: 2927: 2926: 2922: 2862: 2861: 2857: 2840: 2796:(7734): 83–86. 2787: 2786: 2782: 2728: 2727: 2723: 2685: 2684: 2680: 2632: 2631: 2627: 2617: 2615: 2609: 2608: 2604: 2548: 2547: 2543: 2530:. Nature News. 2521: 2520: 2516: 2460: 2459: 2455: 2447: 2440: 2435: 2428: 2426: 2422: 2415: 2410: 2409: 2405: 2395: 2393: 2383: 2382: 2378: 2339:(15): 1530038. 2330: 2329: 2325: 2315: 2313: 2288: 2287: 2283: 2276: 2272: 2262: 2260: 2255: 2254: 2250: 2240: 2238: 2233: 2232: 2228: 2163: 2162: 2158: 2097: 2096: 2092: 2044: 2043: 2039: 1991: 1990: 1986: 1977: 1975: 1966: 1965: 1961: 1904: 1903: 1899: 1843: 1842: 1838: 1787: 1786: 1782: 1731: 1730: 1726: 1696: 1695: 1691: 1643: 1642: 1638: 1582: 1581: 1577: 1529: 1528: 1524: 1476: 1475: 1471: 1462: 1458: 1410: 1409: 1405: 1357: 1356: 1352: 1322: 1321: 1317: 1261: 1260: 1251: 1236: 1205: 1204: 1200: 1168: 1167: 1158: 1130: 1129: 1125: 1085: 1084: 1080: 1064: 1063: 1059: 1046: 1045: 1041: 996:Physics Reports 993: 992: 988: 942: 941: 937: 932: 927: 897: 884: 872: 856: 830: 819: 817: 811: 809: 789: 787: 752: 688: 674: 625: 608:Bubble chambers 507:superconducting 484: 460: 454: 430:escape velocity 394: 388: 373:hot dark matter 368: 224: 139: 123: 110: 84: 83: 35: 28: 23: 22: 15: 12: 11: 5: 4743: 4741: 4733: 4732: 4727: 4722: 4717: 4712: 4707: 4697: 4696: 4692: 4691: 4679: 4667: 4655: 4643: 4631: 4619: 4596: 4595: 4593: 4592: 4580: 4567: 4564: 4563: 4561: 4560: 4555: 4550: 4548:Imaginary mass 4545: 4540: 4535: 4530: 4525: 4519: 4517: 4513: 4512: 4510: 4509: 4504: 4499: 4497:HVC 127-41-330 4494: 4488: 4486: 4479: 4478: 4475: 4474: 4472: 4471: 4466: 4460: 4458: 4457:Other projects 4454: 4453: 4451: 4450: 4445: 4440: 4435: 4430: 4425: 4420: 4415: 4410: 4405: 4400: 4395: 4390: 4385: 4380: 4374: 4372: 4366: 4365: 4363: 4362: 4357: 4352: 4347: 4342: 4337: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4277: 4272: 4267: 4262: 4257: 4252: 4247: 4242: 4237: 4232: 4227: 4222: 4217: 4212: 4207: 4202: 4197: 4192: 4187: 4182: 4177: 4172: 4167: 4162: 4157: 4152: 4146: 4144: 4135: 4129: 4128: 4126: 4125: 4120: 4115: 4110: 4105: 4100: 4095: 4090: 4085: 4083:Dark radiation 4080: 4075: 4070: 4065: 4060: 4054: 4052: 4046: 4045: 4043: 4042: 4037: 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3991: 3989: 3985: 3984: 3977: 3975: 3973: 3972: 3967: 3962: 3957: 3952: 3947: 3942: 3937: 3932: 3926: 3924: 3918: 3917: 3912: 3910: 3909: 3902: 3895: 3887: 3881: 3880: 3862: 3857: 3847: 3839: 3838:External links 3836: 3835: 3834: 3795: 3748: 3734: 3703: 3697: 3672: 3669: 3666: 3665: 3599: 3533: 3484: 3435: 3382:(26): 261802. 3362: 3309: 3256: 3203: 3182: 3129: 3086: 3019: 2995: 2920: 2875:(10): 102005. 2855: 2780: 2721: 2678: 2625: 2614:. physicsworld 2602: 2557:(13): 131301. 2541: 2514: 2453: 2450:on 2010-06-18. 2403: 2376: 2323: 2281: 2270: 2248: 2226: 2173:(16): 161801. 2165:Skipper-CCD". 2156: 2111:(18): 181802. 2090: 2037: 2000:(2): 185–192. 1984: 1959: 1897: 1852:(18): 181301. 1836: 1780: 1724: 1705:(3): 295–300. 1689: 1659:hep-ph/0609257 1652:(11): 115007. 1636: 1591:(10): 101101. 1575: 1522: 1469: 1456: 1443:10.1086/503602 1419:(1): 201–214. 1403: 1350: 1345:10.1086/169575 1315: 1277:hep-ph/9303253 1249: 1234: 1198: 1184:hep-ph/9710467 1156: 1142:hep-ex/9802007 1123: 1094:(10): 103526. 1078: 1057: 1052:Discovery News 1039: 1009:hep-ph/9506380 986: 934: 933: 931: 928: 926: 925: 919: 913: 907: 901: 890: 889: 888: 883: 882: 876: 866: 860: 850: 844: 838: 831: 829: 826: 751: 748: 687: 684: 672: 631:bubble chamber 623: 483: 480: 453: 450: 387: 384: 367: 366:As dark matter 364: 356:Standard Model 339: 338: 327: 324:cross-sections 306: 305: 302: 297: 291: 290: 287: 284: 278: 277: 271: 266: 260: 259: 256: 253: 236:Standard Model 223: 220: 204:supersymmetric 151: 148: 143: 135: 130: 127: 120: 117: 113: 109: 106: 103: 100: 97: 94: 91: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4742: 4731: 4728: 4726: 4723: 4721: 4720:Exotic matter 4718: 4716: 4713: 4711: 4708: 4706: 4703: 4702: 4700: 4690: 4685: 4680: 4678: 4668: 4666: 4656: 4654: 4644: 4642: 4637: 4632: 4630: 4620: 4618: 4613: 4608: 4604: 4591: 4590: 4581: 4579: 4578: 4569: 4568: 4565: 4559: 4556: 4554: 4553:Negative mass 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4533:Exotic matter 4531: 4529: 4526: 4524: 4521: 4520: 4518: 4514: 4508: 4505: 4503: 4502:Smith's Cloud 4500: 4498: 4495: 4493: 4490: 4489: 4487: 4485: 4484:dark galaxies 4480: 4470: 4467: 4465: 4462: 4461: 4459: 4455: 4449: 4446: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4396: 4394: 4391: 4389: 4386: 4384: 4381: 4379: 4376: 4375: 4373: 4367: 4361: 4358: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4268: 4266: 4263: 4261: 4258: 4256: 4253: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4153: 4151: 4148: 4147: 4145: 4139: 4136: 4130: 4124: 4121: 4119: 4116: 4114: 4113:Mirror matter 4111: 4109: 4106: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4055: 4053: 4047: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3992: 3990: 3986: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3927: 3925: 3919: 3915: 3908: 3903: 3901: 3896: 3894: 3889: 3888: 3885: 3877: 3873: 3872: 3867: 3863: 3861: 3858: 3855: 3851: 3848: 3845: 3842: 3841: 3837: 3831: 3827: 3823: 3819: 3814: 3809: 3805: 3801: 3796: 3792: 3788: 3784: 3780: 3776: 3772: 3767: 3762: 3758: 3754: 3749: 3745: 3741: 3737: 3735:9780511770739 3731: 3727: 3723: 3718: 3713: 3709: 3704: 3700: 3694: 3690: 3686: 3682: 3681: 3675: 3674: 3670: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3628: 3623: 3620:(4): 041002. 3619: 3615: 3611: 3603: 3600: 3595: 3591: 3587: 3583: 3579: 3575: 3571: 3567: 3562: 3557: 3554:(4): 041003. 3553: 3549: 3545: 3537: 3534: 3529: 3525: 3520: 3515: 3511: 3507: 3503: 3499: 3495: 3488: 3485: 3480: 3476: 3471: 3466: 3462: 3458: 3454: 3450: 3446: 3439: 3436: 3431: 3427: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3390: 3385: 3381: 3377: 3373: 3366: 3363: 3358: 3354: 3350: 3346: 3342: 3338: 3333: 3328: 3324: 3320: 3313: 3310: 3305: 3301: 3297: 3293: 3289: 3285: 3280: 3275: 3272:(2): 023524. 3271: 3267: 3260: 3257: 3252: 3248: 3244: 3240: 3236: 3232: 3227: 3222: 3219:(1): 012028. 3218: 3214: 3207: 3204: 3198: 3193: 3186: 3183: 3178: 3174: 3170: 3166: 3162: 3158: 3153: 3148: 3144: 3140: 3133: 3130: 3125: 3121: 3117: 3113: 3109: 3105: 3101: 3097: 3090: 3087: 3082: 3078: 3073: 3068: 3064: 3060: 3056: 3052: 3047: 3042: 3038: 3034: 3030: 3023: 3020: 3009: 3005: 2999: 2996: 2991: 2987: 2982: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2948: 2943: 2939: 2935: 2931: 2924: 2921: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2883: 2878: 2874: 2870: 2866: 2859: 2856: 2851: 2845: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2804: 2799: 2795: 2791: 2784: 2781: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2725: 2722: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2682: 2679: 2674: 2670: 2666: 2662: 2658: 2654: 2649: 2644: 2640: 2636: 2629: 2626: 2613: 2606: 2603: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2570: 2565: 2560: 2556: 2552: 2545: 2542: 2537: 2533: 2529: 2525: 2518: 2515: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2477: 2472: 2468: 2464: 2457: 2454: 2446: 2439: 2425:on 2009-12-29 2421: 2414: 2407: 2404: 2392: 2391: 2386: 2380: 2377: 2372: 2368: 2364: 2360: 2356: 2352: 2347: 2342: 2338: 2334: 2327: 2324: 2312: 2308: 2304: 2300: 2296: 2292: 2285: 2282: 2279: 2274: 2271: 2258: 2252: 2249: 2236: 2230: 2227: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2181: 2176: 2172: 2168: 2160: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2119: 2114: 2110: 2106: 2102: 2094: 2091: 2086: 2082: 2078: 2074: 2070: 2066: 2061: 2056: 2052: 2048: 2041: 2038: 2033: 2029: 2025: 2021: 2017: 2013: 2008: 2003: 1999: 1995: 1988: 1985: 1974:on 2008-03-20 1973: 1969: 1963: 1960: 1955: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1922: 1917: 1914:(2): 021303. 1913: 1909: 1901: 1898: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1860: 1855: 1851: 1847: 1840: 1837: 1832: 1828: 1824: 1820: 1816: 1812: 1807: 1802: 1798: 1794: 1790: 1784: 1781: 1776: 1772: 1768: 1764: 1760: 1756: 1751: 1746: 1742: 1738: 1734: 1728: 1725: 1720: 1716: 1712: 1708: 1704: 1700: 1693: 1690: 1685: 1681: 1677: 1673: 1669: 1665: 1660: 1655: 1651: 1647: 1640: 1637: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1599: 1594: 1590: 1586: 1579: 1576: 1571: 1567: 1563: 1559: 1555: 1551: 1546: 1541: 1537: 1533: 1526: 1523: 1518: 1514: 1510: 1506: 1502: 1498: 1493: 1488: 1485:(4): 042001. 1484: 1480: 1473: 1470: 1466: 1460: 1457: 1452: 1448: 1444: 1440: 1436: 1432: 1427: 1422: 1418: 1414: 1407: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1374: 1369: 1365: 1361: 1354: 1351: 1346: 1342: 1338: 1334: 1330: 1326: 1319: 1316: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1278: 1273: 1269: 1265: 1258: 1256: 1254: 1250: 1245: 1241: 1237: 1231: 1227: 1223: 1218: 1213: 1209: 1202: 1199: 1194: 1190: 1185: 1180: 1176: 1172: 1165: 1163: 1161: 1157: 1152: 1148: 1143: 1138: 1134: 1127: 1124: 1119: 1115: 1111: 1107: 1102: 1097: 1093: 1089: 1082: 1079: 1073: 1068: 1061: 1058: 1053: 1049: 1043: 1040: 1035: 1031: 1027: 1023: 1019: 1015: 1010: 1005: 1001: 997: 990: 987: 981: 976: 972: 968: 963: 958: 954: 950: 946: 939: 936: 929: 923: 920: 917: 914: 911: 908: 905: 902: 895: 892: 891: 886: 885: 880: 877: 870: 867: 864: 861: 854: 851: 848: 845: 842: 839: 836: 833: 832: 827: 825: 807: 806:LZ experiment 803: 798: 795: 785: 780: 778: 774: 770: 764: 756: 749: 747: 744: 739: 734: 730: 728: 724: 722: 718: 714: 709: 706: 702: 692: 686:Recent limits 685: 683: 681: 676: 670: 666: 662: 658: 654: 650: 647: 643: 641: 636: 632: 627: 621: 617: 613: 609: 605: 603: 599: 595: 591: 587: 586: 581: 577: 573: 571: 567: 563: 558: 554: 550: 546: 542: 538: 534: 533:scintillating 530: 526: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 481: 475: 471: 467: 464: 459: 451: 449: 447: 443: 439: 435: 431: 425: 422: 418: 414: 410: 405: 400: 393: 385: 383: 381: 376: 374: 365: 363: 361: 357: 353: 350:(MACHOs) and 349: 345: 336: 332: 328: 325: 321: 317: 313: 312: 311: 303: 301: 298: 296: 293: 292: 288: 285: 283: 280: 279: 275: 272: 270: 267: 265: 262: 261: 257: 254: 251: 250: 247: 245: 241: 237: 233: 232:supersymmetry 229: 221: 219: 217: 213: 209: 205: 200: 198: 194: 190: 186: 182: 178: 173: 171: 167: 149: 146: 133: 118: 115: 111: 107: 104: 101: 95: 92: 81: 80:cross section 78: 74: 70: 66: 62: 58: 54: 49: 47: 43: 39: 33: 19: 4677:Solar System 4587: 4575: 4034: 3870: 3803: 3799: 3756: 3752: 3707: 3679: 3617: 3613: 3602: 3551: 3547: 3536: 3501: 3497: 3487: 3452: 3448: 3438: 3379: 3375: 3365: 3322: 3318: 3312: 3269: 3265: 3259: 3216: 3212: 3206: 3185: 3142: 3138: 3132: 3099: 3089: 3036: 3032: 3022: 3011:. Retrieved 3007: 2998: 2937: 2933: 2923: 2872: 2868: 2858: 2844:cite journal 2793: 2789: 2783: 2734: 2730: 2724: 2691: 2687: 2681: 2638: 2634: 2628: 2616:. Retrieved 2605: 2554: 2550: 2544: 2527: 2517: 2466: 2462: 2456: 2445:the original 2427:. Retrieved 2420:the original 2406: 2396:December 18, 2394:. Retrieved 2390:Star Tribune 2388: 2379: 2336: 2332: 2326: 2314:. Retrieved 2294: 2284: 2273: 2261:. Retrieved 2251: 2239:. Retrieved 2229: 2170: 2166: 2159: 2108: 2104: 2093: 2050: 2046: 2040: 1997: 1993: 1987: 1976:. Retrieved 1972:the original 1962: 1911: 1907: 1900: 1849: 1845: 1839: 1796: 1792: 1783: 1740: 1736: 1727: 1702: 1698: 1692: 1649: 1645: 1639: 1588: 1584: 1578: 1535: 1531: 1525: 1482: 1478: 1472: 1459: 1416: 1412: 1406: 1366:(59): 0059. 1363: 1359: 1353: 1328: 1324: 1318: 1267: 1263: 1207: 1201: 1174: 1170: 1132: 1126: 1091: 1087: 1081: 1060: 1051: 1042: 999: 995: 989: 952: 948: 938: 799: 781: 765: 761: 735: 731: 725: 710: 698: 677: 652: 651: 648: 644: 628: 607: 606: 583: 575: 574: 528: 527: 486: 485: 468: 462: 461: 426: 398: 395: 377: 369: 340: 309: 295:little Higgs 244:little Higgs 230:-conserving 225: 208:WIMP miracle 207: 201: 174: 77:annihilation 50: 41: 37: 36: 4705:Dark matter 4665:Outer space 4653:Spaceflight 4528:Dark energy 4492:HE0450-2958 4134:experiments 4068:Dark galaxy 4051:and objects 4005:Dark photon 3923:dark matter 3914:Dark matter 3866:Hooper, Dan 3710:: 347–369. 3039:(1): 4676. 1733:Merritt, D. 1538:: 689–692. 1331:: 412–421. 1270:: 390–407. 1210:: 170–206. 847:Higgs boson 495:Soudan Mine 446:Higgs boson 185:cosmic rays 46:dark matter 4699:Categories 4523:Antimatter 4482:Potential 4210:DAMA/LIBRA 4063:Dark fluid 4020:Neutralino 3766:1506.03924 3627:2207.03764 3561:2303.14729 3389:2107.13438 3325:(3): 012. 3152:2002.00459 3145:(4): 137. 3046:2208.05158 3013:2021-12-29 2947:2104.03537 2882:2103.01175 2803:1906.01791 2641:(8): 014. 2429:2009-12-21 2346:1506.03924 2316:15 January 2180:1901.10478 2118:1907.12628 1978:2010-03-16 1859:1705.06655 1373:1703.00013 930:References 910:Neutralino 822:10 cm 814:10 cm 738:COSINE-100 717:DAMA/LIBRA 580:DAMA/LIBRA 566:LUX-ZEPLIN 511:resistance 456:See also: 434:annihilate 409:gamma rays 390:See also: 286:KK-parity 258:candidate 246:theories. 177:gamma rays 4629:Astronomy 4507:VIRGOHI21 4464:MultiDark 4371:detection 4255:EDELWEISS 4143:detection 4088:Dark star 3813:1405.5582 3806:: 45–54. 3791:119269304 3744:119311963 3717:1002.1912 3660:250343331 3594:257767449 3528:260751963 3479:247277808 3430:236469421 3414:0031-9007 3357:118596203 3332:1412.1475 3279:1307.5458 3226:1201.2402 3197:1110.0103 3177:211010848 3124:251624302 2972:2375-2548 2915:232092298 2907:2470-0010 2648:1405.0495 2564:1002.4703 2476:0912.3592 2371:119269304 2311:182831370 2221:119219165 2205:0031-9007 2151:198985735 2085:118724305 2060:1410.4960 2053:: 92–97. 2007:0907.0307 1921:1008.3518 1775:119405319 1684:119351935 1631:220469354 1598:1405.5303 1570:118510709 1545:1210.4961 1492:1310.0828 1398:119092226 1217:0707.0472 1101:1401.0216 1072:1309.0528 1034:119067698 962:1006.2483 743:ANAIS-112 705:SuperCDMS 523:EDELWEISS 438:neutrinos 360:neutrinos 181:neutrinos 147:− 116:− 108:× 102:≃ 99:⟩ 93:σ 90:⟨ 4577:Category 4369:Indirect 4225:DarkSide 4215:DAMA/NaI 4049:Theories 3921:Forms of 3876:Archived 3652:37566836 3586:37566859 3504:: s106. 3422:35029500 3304:16208132 3251:30885844 3116:35974221 3081:36949218 3072:10033922 2990:34757778 2836:54459495 2828:30518890 2673:54532870 2597:24822628 2589:21517370 2501:20150446 2213:31075006 2143:31763884 2032:15163629 1954:20188890 1946:21405218 1892:45532100 1884:29219593 1623:25238345 1517:46664722 1451:13189513 1302:26469437 1244:16734425 828:See also 792:10  775:and the 545:DarkSide 300:T-parity 269:R-parity 228:R-parity 202:Because 65:Big Bang 4689:Science 4617:Physics 4603:Portals 4589:Commons 4516:Related 4448:VERITAS 4423:IceCube 4383:ANTARES 4335:TREX-DM 4320:ROSEBUD 4310:PICASSO 3818:Bibcode 3771:Bibcode 3685:Bibcode 3632:Bibcode 3566:Bibcode 3506:Bibcode 3498:Physics 3457:Bibcode 3449:Physics 3394:Bibcode 3337:Bibcode 3284:Bibcode 3231:Bibcode 3157:Bibcode 3051:Bibcode 2981:8580298 2952:Bibcode 2887:Bibcode 2808:Bibcode 2775:2610174 2767:9958634 2759:1448427 2739:Bibcode 2716:9956575 2696:Bibcode 2653:Bibcode 2569:Bibcode 2509:2517711 2481:Bibcode 2463:Science 2351:Bibcode 2185:Bibcode 2123:Bibcode 2065:Bibcode 2012:Bibcode 1926:Bibcode 1864:Bibcode 1811:Bibcode 1755:Bibcode 1707:Bibcode 1664:Bibcode 1603:Bibcode 1550:Bibcode 1497:Bibcode 1431:Bibcode 1378:Bibcode 1333:Bibcode 1310:8955141 1282:Bibcode 1189:Bibcode 1177:: 394. 1147:Bibcode 1106:Bibcode 1014:Bibcode 967:Bibcode 802:XENONnT 721:CDMS-Si 612:PICASSO 598:IceCube 547:at the 421:IceCube 320:gravity 255:parity 57:gravity 4443:PAMELA 4378:AMS-02 4360:ZEPLIN 4330:SIMPLE 4305:PandaX 4300:NEWS-G 4295:NEWAGE 4260:EURECA 4240:DM-Ice 4230:DARWIN 4195:CRESST 4185:COSINE 4180:CoGeNT 4141:Direct 4132:Search 3789:  3742:  3732:  3695:  3658:  3650:  3592:  3584:  3526:  3477:  3428:  3420:  3412:  3355:  3302:  3249:  3175:  3122:  3114:  3100:Nature 3079:  3069:  2988:  2978:  2970:  2913:  2905:  2834:  2826:  2790:Nature 2773:  2765:  2757:  2714:  2671:  2595:  2587:  2528:Nature 2507:  2499:  2369:  2309:  2295:Nature 2219:  2211:  2203:  2149:  2141:  2083:  2030:  1952:  1944:  1890:  1882:  1831:202740 1829:  1773:  1682:  1629:  1621:  1568:  1515:  1449:  1396:  1308:  1300:  1242:  1232:  1032:  881:(WISP) 873:RAMBOs 784:PandaX 727:CoGeNT 713:CoGeNT 708:2016. 640:SIMPLE 616:SNOLAB 610:– The 594:DM-Ice 570:PandaX 555:, and 553:ZEPLIN 541:SNOLAB 521:, and 519:CoGeNT 515:CRESST 352:axions 276:(LSP) 252:Model 189:nuclei 4641:Stars 4469:PVLAS 4428:MAGIC 4408:Fermi 4403:DAMPE 4393:CALET 4355:XMASS 4350:XENON 4340:UKDMC 4325:SABRE 4290:NAIAD 4285:MIMAC 4280:MACRO 4250:DRIFT 4245:DMTPC 4220:DAMIC 4200:CUORE 4190:COUPP 4175:CLEAN 4155:ANAIS 4000:Axion 3995:Axino 3808:arXiv 3787:S2CID 3761:arXiv 3740:S2CID 3712:arXiv 3656:S2CID 3622:arXiv 3590:S2CID 3556:arXiv 3524:S2CID 3475:S2CID 3426:S2CID 3384:arXiv 3353:S2CID 3327:arXiv 3300:S2CID 3274:arXiv 3247:S2CID 3221:arXiv 3192:arXiv 3173:S2CID 3147:arXiv 3120:S2CID 3041:arXiv 2942:arXiv 2911:S2CID 2877:arXiv 2832:S2CID 2798:arXiv 2771:S2CID 2669:S2CID 2643:arXiv 2618:5 May 2593:S2CID 2559:arXiv 2505:S2CID 2471:arXiv 2448:(PDF) 2441:(PDF) 2423:(PDF) 2416:(PDF) 2367:S2CID 2341:arXiv 2307:S2CID 2263:6 May 2241:6 May 2217:S2CID 2175:arXiv 2147:S2CID 2113:arXiv 2081:S2CID 2055:arXiv 2028:S2CID 2002:arXiv 1950:S2CID 1916:arXiv 1888:S2CID 1854:arXiv 1827:S2CID 1801:arXiv 1771:S2CID 1745:arXiv 1680:S2CID 1654:arXiv 1627:S2CID 1593:arXiv 1566:S2CID 1540:arXiv 1513:S2CID 1487:arXiv 1447:S2CID 1421:arXiv 1394:S2CID 1368:arXiv 1306:S2CID 1272:arXiv 1240:S2CID 1212:arXiv 1179:arXiv 1137:arXiv 1096:arXiv 1067:arXiv 1030:S2CID 1004:arXiv 957:arXiv 857:MACHO 843:(FIP) 675:gas. 620:Freon 590:ANAIS 562:XENON 557:XENON 417:Fermi 42:WIMPs 18:WIMPs 4438:OGLE 4418:HESS 4413:HAWC 4398:CAST 4388:ATIC 4345:WARP 4315:PICO 4265:KIMS 4235:DEAP 4170:CDMS 4165:CDEX 4160:ArDM 4150:ADMX 4040:WISP 4035:WIMP 4030:SIMP 3730:ISBN 3693:ISBN 3648:PMID 3582:PMID 3418:PMID 3410:ISSN 3323:1503 3143:2020 3112:PMID 3077:PMID 2986:PMID 2968:ISSN 2903:ISSN 2850:link 2824:PMID 2763:PMID 2755:OSTI 2712:PMID 2639:1408 2620:2015 2585:PMID 2497:PMID 2398:2009 2318:2017 2265:2014 2243:2014 2209:PMID 2201:ISSN 2139:PMID 1942:PMID 1880:PMID 1619:PMID 1536:1505 1298:PMID 1230:ISBN 953:2011 810:2.58 804:and 736:The 719:and 703:and 669:MWPC 602:KIMS 592:and 568:and 549:LNGS 543:and 537:DEAP 318:and 264:SUSY 242:and 197:CERN 183:and 4433:MOA 4270:LUX 4010:LSP 3826:doi 3779:doi 3722:doi 3640:doi 3618:131 3574:doi 3552:131 3514:doi 3465:doi 3402:doi 3380:127 3345:doi 3292:doi 3239:doi 3217:375 3165:doi 3104:doi 3067:PMC 3059:doi 2976:PMC 2960:doi 2895:doi 2873:103 2816:doi 2794:564 2747:doi 2704:doi 2661:doi 2577:doi 2555:106 2532:doi 2489:doi 2467:327 2359:doi 2299:doi 2193:doi 2171:122 2131:doi 2109:123 2073:doi 2020:doi 1998:682 1934:doi 1912:106 1872:doi 1850:119 1819:doi 1763:doi 1715:doi 1703:167 1672:doi 1611:doi 1589:113 1558:doi 1505:doi 1439:doi 1417:647 1386:doi 1341:doi 1329:366 1290:doi 1268:688 1222:doi 1114:doi 1022:doi 1000:267 975:doi 898:LSP 818:9.2 788:3.8 769:Sun 701:LUX 539:at 331:GeV 282:UED 195:at 166:GeV 82:of 4701:: 4275:LZ 4205:D3 3852:, 3824:. 3816:. 3804:61 3802:. 3785:. 3777:. 3769:. 3757:30 3755:. 3738:. 3728:. 3720:. 3691:. 3654:. 3646:. 3638:. 3630:. 3616:. 3612:. 3588:. 3580:. 3572:. 3564:. 3550:. 3546:. 3522:. 3512:. 3502:16 3500:. 3496:. 3473:. 3463:. 3455:. 3453:14 3451:. 3447:. 3424:. 3416:. 3408:. 3400:. 3392:. 3378:. 3374:. 3351:. 3343:. 3335:. 3321:. 3298:. 3290:. 3282:. 3270:89 3268:. 3245:. 3237:. 3229:. 3215:. 3171:. 3163:. 3155:. 3141:. 3118:. 3110:. 3102:. 3098:. 3075:. 3065:. 3057:. 3049:. 3037:13 3035:. 3031:. 3006:. 2984:. 2974:. 2966:. 2958:. 2950:. 2936:. 2932:. 2909:. 2901:. 2893:. 2885:. 2871:. 2867:. 2846:}} 2842:{{ 2830:. 2822:. 2814:. 2806:. 2792:. 2769:. 2761:. 2753:. 2745:. 2735:37 2733:. 2710:. 2702:. 2692:33 2690:. 2667:. 2659:. 2651:. 2637:. 2591:. 2583:. 2575:. 2567:. 2553:. 2526:. 2503:. 2495:. 2487:. 2479:. 2465:. 2387:. 2365:. 2357:. 2349:. 2337:30 2335:. 2305:. 2297:. 2293:. 2215:. 2207:. 2199:. 2191:. 2183:. 2169:. 2145:. 2137:. 2129:. 2121:. 2107:. 2103:. 2079:. 2071:. 2063:. 2049:. 2026:. 2018:. 2010:. 1996:. 1948:. 1940:. 1932:. 1924:. 1910:. 1886:. 1878:. 1870:. 1862:. 1848:. 1825:. 1817:. 1809:. 1797:41 1795:. 1769:. 1761:. 1753:. 1741:20 1739:. 1713:. 1701:. 1678:. 1670:. 1662:. 1650:74 1648:. 1625:. 1617:. 1609:. 1601:. 1587:. 1564:. 1556:. 1548:. 1534:. 1511:. 1503:. 1495:. 1483:89 1481:. 1445:. 1437:. 1429:. 1415:. 1392:. 1384:. 1376:. 1362:. 1339:. 1327:. 1304:. 1296:. 1288:. 1280:. 1266:. 1252:^ 1238:. 1228:. 1220:. 1187:. 1175:14 1173:. 1159:^ 1145:. 1112:. 1104:. 1092:89 1090:. 1050:. 1028:. 1020:. 1012:. 998:. 973:. 965:. 951:. 947:. 794:cm 779:. 655:– 642:. 564:, 517:, 513:. 499:mK 337:). 199:. 179:, 172:. 119:26 112:10 48:. 4605:: 3906:e 3899:t 3892:v 3832:. 3828:: 3820:: 3810:: 3793:. 3781:: 3773:: 3763:: 3746:. 3724:: 3714:: 3701:. 3687:: 3662:. 3642:: 3634:: 3624:: 3596:. 3576:: 3568:: 3558:: 3530:. 3516:: 3508:: 3481:. 3467:: 3459:: 3432:. 3404:: 3396:: 3386:: 3359:. 3347:: 3339:: 3329:: 3306:. 3294:: 3286:: 3276:: 3253:. 3241:: 3233:: 3223:: 3200:. 3194:: 3179:. 3167:: 3159:: 3149:: 3126:. 3106:: 3083:. 3061:: 3053:: 3043:: 3016:. 2992:. 2962:: 2954:: 2944:: 2938:7 2917:. 2897:: 2889:: 2879:: 2852:) 2838:. 2818:: 2810:: 2800:: 2777:. 2749:: 2741:: 2718:. 2706:: 2698:: 2675:. 2663:: 2655:: 2645:: 2622:. 2599:. 2579:: 2571:: 2561:: 2538:. 2534:: 2511:. 2491:: 2483:: 2473:: 2432:. 2400:. 2373:. 2361:: 2353:: 2343:: 2320:. 2301:: 2267:. 2245:. 2223:. 2195:: 2187:: 2177:: 2153:. 2133:: 2125:: 2115:: 2087:. 2075:: 2067:: 2057:: 2051:4 2034:. 2022:: 2014:: 2004:: 1981:. 1956:. 1936:: 1928:: 1918:: 1894:. 1874:: 1866:: 1856:: 1833:. 1821:: 1813:: 1803:: 1777:. 1765:: 1757:: 1747:: 1721:. 1717:: 1709:: 1686:. 1674:: 1666:: 1656:: 1633:. 1613:: 1605:: 1595:: 1572:. 1560:: 1552:: 1542:: 1519:. 1507:: 1499:: 1489:: 1453:. 1441:: 1433:: 1423:: 1400:. 1388:: 1380:: 1370:: 1364:1 1347:. 1343:: 1335:: 1312:. 1292:: 1284:: 1274:: 1246:. 1224:: 1214:: 1195:. 1191:: 1181:: 1153:. 1149:: 1139:: 1120:. 1116:: 1108:: 1098:: 1075:. 1069:: 1054:. 1036:. 1024:: 1016:: 1006:: 983:. 977:: 969:: 959:: 896:( 871:( 855:( 820:× 812:× 790:× 673:4 624:3 150:1 142:s 134:3 129:m 126:c 105:3 96:v 40:( 34:. 20:)

Index

WIMPs
WIMPS (disambiguation)
dark matter
elementary particle
gravity
weak nuclear force
Big Bang
cold dark matter
thermal production
annihilation
cross section
GeV
electroweak force
gamma rays
neutrinos
cosmic rays
nuclei
Large Hadron Collider
CERN
supersymmetric
direct-detection
Large Hadron Collider
R-parity
supersymmetry
Standard Model
universal extra dimension
little Higgs
SUSY
R-parity
lightest supersymmetric particle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.