Knowledge (XXG)

Wave nonlinearity

Source đź“ť

2986: 131:. Waves that are asymmetric along the horizontal axis are called skewed waves. Asymmetry along the horizontal axis indicates that the wave crest deviates from the wave trough in terms of duration and height. Generally, skewed waves have a short and high wave crest and a long and flat wave trough. A skewed wave shape results in larger orbital velocities under the wave crest compared to smaller orbital velocities under the wave trough. For waves having the same velocity variance, the ones with higher skewness result in a larger net 3010: 2050: 3022: 2938: 2959: 901:, the skewness is maximum and the asymmetry is small and the waves have a skewed shape. For large Ursell numbers, the skewness approaches 0 and the asymmetry is maximum, resulting in an asymmetric wave shape. In this way, if the wave shape is known, the Ursell number can be predicted and consequently the size and direction of sediment transport at a certain location can be predicted. 2998: 100: 2039: 2948: 868: 973:
model with a focus on the deep ocean. SWAN is a nearshore model and mainly has coastal applications. Advantages of phase-averaged models are that they compute wave characteristics over a large domain, they are fast and they can be coupled to sediment transport models, which is an efficient tool to
143:
Waves that are asymmetric along the vertical axis are referred to as asymmetric waves. Wave asymmetry indicates the leaning forward or backward of the wave, with a steep front face and a gentle rear face. A steep front correlates with an upward tilt, a steep back is correlated with a downward tilt.
931:
as the high velocities under the crest are much more capable of moving large sediments. Beneath waves with high asymmetry, the change from onshore to offshore flow is more gradual than from offshore to onshore, where sediments are stirred up during peaks in offshore velocity and are transported
235: 956:
approach. With the phase-averaged approach, wave skewness and asymmetry are included based on parameterizations. Phase-averaged models incorporate the evolution of wave frequency and direction in space and time of the wave spectrum. Examples of these kinds of models are
913:
and swash zone. In the shoaling zone, the wave nonlinearity increases due to the decreasing depth and the sinusoidal waves approaching the coast will transform into skewed waves. As waves propagate further towards the coast, the wave shape becomes more asymmetric due to
334: 701: 230: 422:
Values for the skewness are positive with typical values between 0 and 1, where values of 1 indicate high skewness. Values for asymmetry are negative with typical values between -1.5 and 0, where values of -1.5 indicate high asymmetry.
111:) are waves having equal height and duration during the crest and the trough, and they can be mirrored in both the crest and the trough. Due to Non-linear effects, waves can transform from sinusoidal to a skewed and asymmetric shape. 1361: 144:
The duration and height of the wave-crest equal the duration and height of the wave-trough. An asymmetric wave shape results in a larger acceleration between trough and crest and a smaller acceleration between crest and trough.
926:
in shallow conditions, where it both affects the bedload transport as the suspended load transport. Skewed waves have higher flow velocities under the crest of the waves than under the trough, resulting in a net onshore
60:
and crest length. For practical engineering purposes, it is important to know the probability of these wave characteristics in seas and oceans at a given place and time. This knowledge is crucial for the prediction of
921:
Skewness and asymmetry are not only observed in the shape of the wave, but also in the orbital velocity profiles beneath the waves. The skewed and asymmetric velocity profiles have important implications for
36:
or a shallow area. As waves shoal in the nearshore zone, in addition to their wavelength and height changing, their asymmetry and skewness also change. Wave skewness and asymmetry are often implicated in
514: 872:
For small Ursell numbers, the skewness and asymmetry both approach zero and the waves have a sinusoidal shape, and thus waves having small Ursell numbers do not result in net sediment transport. For
248: 416: 863:{\displaystyle {\textrm {where}}\;B={\frac {0.857}{1+\exp({\frac {-0.471-\log(Ur)}{0.297}})}},\;{\textrm {and}}\;\psi =-90^{\circ }+90^{\circ }\tanh({\frac {0.8150}{Ur^{0.672}}})} 695: 647: 385: 2678: 899: 76:
data shows geographically coherent skewness fields in the ocean and from the data has been concluded that large values of skewness occur primarily in regions of large
157: 547: 2668: 1727: 962: 359: 595: 571: 2584: 435:, relates the skewness and asymmetry and quantifies the degree of sea surface elevation nonlinearity. Ruessink et al. defined the Ursell number as: 1999: 1767: 2231: 2121: 1720: 2826: 2253: 2141: 1213:
Elgar, Steve, and R. T. Guza. "Shoaling gravity waves: Comparisons between field observations, linear theory, and a nonlinear model."
2673: 1944: 32:, the two categories of nonlinearity are skewness and asymmetry. Wave skewness and asymmetry occur when waves encounter an opposing 2091: 440: 152:
Skewness (Sk) and asymmetry (As) are measures of the wave nonlinearity and can be described in terms of the following parameters:
2131: 2951: 2861: 1847: 2534: 2941: 1713: 1036: 966: 2976: 1989: 2049: 2186: 1605:
Ruessink, B. G.; Michallet, H.; Abreu, T.; Sancho, F.; A, D. A. Van der; Werf, J. J. Van der; Silva, P. A. (2011).
1454:
Ruessink, B. G.; Michallet, H.; Abreu, T.; Sancho, F.; A, D. A. Van der; Werf, J. J. Van der; Silva, P. A. (2011).
2086: 2721: 2126: 329:{\displaystyle As={\frac {\langle {\mathcal {H}}(\eta )^{3}\rangle }{\langle \eta ^{2}\rangle ^{\frac {3}{2}}}}} 2851: 2226: 2216: 2156: 1792: 1762: 1672:"On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models" 1417:"On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models" 2888: 2871: 2708: 2201: 2066: 2004: 1994: 1887: 550: 395: 77: 1267: 3042: 2883: 2821: 2248: 1934: 1671: 1521:"Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis" 1416: 1228: 1073:"Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis" 975: 1607:"Observations of velocities, sand concentrations, and fluxes under velocity-asymmetric oscillatory flows" 1520: 1456:"Observations of velocities, sand concentrations, and fluxes under velocity-asymmetric oscillatory flows" 1072: 2990: 2716: 2698: 2206: 2101: 1736: 1044: 66: 38: 25: 1606: 1455: 1160: 600:
The skewness and asymmetry at a certain location nearshore can be predicted from the Ursell number by:
653: 605: 2903: 2736: 2439: 2296: 2161: 1872: 1618: 1571: 1467: 1373: 1172: 1123: 953: 84: 17: 1110:
GĂłmez-Enri, J.; Gommenginger, C. P.; Srokosz, M. A.; Challenor, P. G.; Benveniste, J. (2007-06-01).
949: 366: 3009: 2898: 2783: 2778: 2504: 2176: 2136: 1852: 128: 42: 29: 2841: 2554: 2544: 2509: 2409: 2394: 2291: 1652: 1587: 1501: 1397: 1303: 1196: 1002: 928: 923: 132: 120: 108: 88: 936:
bar formation and provides a mechanism for the generation of three-dimensional features such as
225:{\displaystyle Sk={\frac {\langle \eta ^{3}\rangle }{\langle \eta ^{2}\rangle ^{\frac {3}{2}}}}} 1266:
Dugdale, Hannah L.; Macdonald, David W.; Pope, Lisa C.; Johnson, Paul J.; Burke, Terry (2008).
932:
onshore because of the sudden change in flow direction. The local sediment transport generates
2923: 2913: 2856: 2836: 2519: 2484: 2419: 2399: 2389: 2271: 1817: 1691: 1644: 1540: 1493: 1436: 1389: 1342: 1295: 1287: 1248: 1188: 1141: 1092: 987: 875: 388: 239: 1021:
Elgar, Steve, and R. T. Guza. "Observations of bispectra of shoaling surface gravity waves."
2878: 2846: 2816: 2625: 2610: 2479: 2414: 2306: 2221: 2151: 2076: 1857: 1827: 1757: 1752: 1683: 1634: 1626: 1579: 1532: 1483: 1475: 1428: 1381: 1334: 1279: 1240: 1180: 1131: 1084: 522: 234: 344: 2683: 2579: 2529: 2494: 2454: 2346: 2316: 2166: 2116: 2026: 1984: 1917: 1842: 1802: 1057: 970: 958: 33: 2038: 1622: 1575: 1471: 1377: 1176: 1127: 3026: 3014: 2793: 2788: 2693: 2688: 2524: 2464: 2459: 2191: 2081: 1902: 1837: 1812: 580: 556: 1558:
Ribberink, J. S.; Werf, J. J. van der; O'Donoghue, T.; Hassan, W. N. M. (2008-01-01).
1244: 3036: 2963: 2811: 2731: 2620: 2539: 2514: 2449: 2379: 2286: 2181: 2058: 1979: 1939: 1912: 1822: 1772: 1687: 1591: 1536: 1432: 1401: 1283: 1268:"Reproductive skew and relatedness in social groups of European badgers, Meles meles" 1200: 1088: 933: 915: 1656: 1505: 1307: 99: 3021: 3002: 2958: 2918: 2866: 2806: 2757: 2635: 2630: 2605: 2589: 2564: 2281: 2171: 2111: 1897: 1807: 1782: 432: 2908: 2640: 2569: 2434: 2374: 2341: 2331: 2326: 2211: 2146: 2106: 2096: 2071: 1954: 1927: 1907: 1867: 1832: 997: 937: 53: 1338: 1322: 1161:"Modeling sediment transport beneath skewed asymmetric waves above a plane bed" 2726: 2574: 2549: 2444: 2424: 2351: 2336: 2321: 2311: 2276: 2196: 2016: 2011: 1974: 1969: 1964: 1862: 1583: 1385: 992: 574: 124: 62: 57: 1695: 1648: 1544: 1497: 1440: 1393: 1346: 1291: 1252: 1192: 1145: 1096: 238:
Skewness (top) and Asymmetry (bottom) plotted against the Ursell number on a
2997: 2798: 2660: 2645: 2559: 2404: 2243: 2238: 2021: 1949: 1877: 1797: 1787: 1744: 1559: 910: 70: 49: 21: 1323:"Relationships involving third moments and bispectra of a harmonic process" 1299: 1112:"Measuring Global Ocean Wave Skewness by Retracking RA-2 Envisat Waveforms" 2893: 2615: 2474: 2366: 2356: 2301: 1777: 1630: 1560:"Sand motion induced by oscillatory flows: Sheet flow and vortex ripples" 1479: 1184: 1705: 1136: 1111: 918:
in the surf zone until the waves run up on the beach in the swash zone.
2762: 2752: 1922: 1892: 73: 2469: 1882: 1639: 1488: 46: 948:
Two different approaches exist to include wave shape in models: the
127:, skewness refers to a distortion or asymmetry that deviates from a 2831: 2650: 2429: 2384: 1159:
Ruessink, B. G.; Berg, T. J. J. van den; Rijn, L. C. van (2009).
2263: 1709: 1366:
Mathematical Proceedings of the Cambridge Philosophical Society
1327:
IEEE Transactions on Acoustics, Speech, and Signal Processing
1670:
Ruessink, B.G.; Ramaekers, G.; Van Rijn, L.C. (2012-07-01).
1415:
Ruessink, B.G.; Ramaekers, G.; Van Rijn, L.C. (2012-07-01).
509:{\displaystyle Ur={\frac {3}{8}}{\frac {H_{m0}k}{(kh)^{3}}}} 372: 269: 1362:"The long-wave paradox in the theory of gravity waves" 1229:"Transport rate under irregular sheet flow conditions" 909:
The nearshore zone is divided into the shoaling zone,
2974: 878: 704: 656: 608: 583: 559: 525: 443: 418:
the angle brackets indicate averaging over many waves
398: 369: 347: 251: 160: 103:
a) sinusoidal, b) skewed and c) asymmetric wave shape
2771: 2745: 2707: 2659: 2598: 2493: 2365: 2262: 2057: 1743: 1227:Dibajnia, Mohammad; Watanabe, Akira (1998-11-01). 893: 862: 689: 641: 589: 565: 541: 508: 410: 379: 353: 328: 224: 2679:North West Shelf Operational Oceanographic System 83:At the nearshore zone, skewness and asymmetry of 1037:"The effects of currents on wave nonlinearities" 2669:Deep-ocean Assessment and Reporting of Tsunamis 52:, in particular regarding the distribution of 1721: 1116:Journal of Atmospheric and Oceanic Technology 8: 944:Models including wave skewness and asymmetry 405: 399: 309: 295: 290: 264: 205: 191: 186: 173: 1728: 1714: 1706: 793: 785: 712: 1638: 1519:Doering, J.C.; Bowen, A.J. (1995-09-01). 1487: 1135: 1071:Doering, J.C.; Bowen, A.J. (1995-09-01). 877: 848: 835: 820: 807: 787: 786: 740: 719: 706: 705: 703: 655: 607: 582: 558: 530: 524: 497: 470: 463: 453: 442: 397: 371: 370: 368: 346: 312: 302: 284: 268: 267: 261: 250: 208: 198: 180: 170: 159: 233: 98: 2981: 1611:Journal of Geophysical Research: Oceans 1460:Journal of Geophysical Research: Oceans 1165:Journal of Geophysical Research: Oceans 1014: 361:is the zero-mean wave surface elevation 2000:one-dimensional Saint-Venant equations 1053: 1042: 411:{\displaystyle \langle \cdot \rangle } 7: 2947: 65:, which are a danger for ships and 2827:National Oceanographic Data Center 2254:World Ocean Circulation Experiment 2142:Global Ocean Data Analysis Project 20:refers to their deviations from a 14: 2674:Global Sea Level Observing System 3020: 3008: 2996: 2984: 2957: 2946: 2937: 2936: 2132:Geochemical Ocean Sections Study 2048: 2037: 1688:10.1016/j.coastaleng.2012.03.006 1433:10.1016/j.coastaleng.2012.03.006 1284:10.1111/j.1365-294X.2008.03708.x 690:{\displaystyle As=B*\sin(\psi )} 642:{\displaystyle Sk=B*\cos(\psi )} 2862:Ocean thermal energy conversion 2585:Vine–Matthews–Morley hypothesis 431:The Ursell number, named after 857: 832: 776: 767: 758: 737: 684: 678: 636: 630: 494: 484: 380:{\displaystyle {\mathcal {H}}} 281: 274: 1: 1245:10.1016/S0378-3839(98)00034-9 2122:El Niño–Southern Oscillation 2092:Craik–Leibovich vortex force 1848:Luke's variational principle 1537:10.1016/0378-3839(95)00007-X 1089:10.1016/0378-3839(95)00007-X 1035:van de Ven, Maartje (2018). 905:Impact on sediment transport 1360:Ursell, F. (October 1953). 1321:Elgar, S. (December 1987). 3059: 2187:Ocean dynamical thermostat 2035: 1339:10.1109/TASSP.1987.1165090 1215:Journal of fluid mechanics 1023:Journal of Fluid Mechanics 969:). WAVEWATCH3 is a global 2932: 2722:Ocean acoustic tomography 2535:MohoroviÄŤić discontinuity 2127:General circulation model 1763:Benjamin–Feir instability 1584:10.1080/14685240802220009 1386:10.1017/S0305004100028887 597:is the mean water depth. 87:are the main drivers for 2852:Ocean surface topography 2227:Thermohaline circulation 2217:Subsurface ocean current 2157:Hydrothermal circulation 1990:Wave–current interaction 1768:Boussinesq approximation 894:{\displaystyle Ur\sim 1} 148:Mathematical description 24:shape. In the fields of 2889:Sea surface temperature 2872:Outline of oceanography 2067:Atmospheric circulation 2005:shallow water equations 1995:Waves and shallow water 1888:Significant wave height 551:significant wave height 78:significant wave height 2884:Sea surface microlayer 2249:Wind generated current 1052:Cite journal requires 1025:161.1 (1985): 425-448. 895: 864: 691: 643: 591: 567: 543: 542:{\displaystyle H_{m0}} 510: 412: 381: 355: 330: 243: 226: 104: 95:Skewness and asymmetry 2717:Deep scattering layer 2699:World Geodetic System 2207:Princeton Ocean Model 2087:Coriolis–Stokes force 1737:Physical oceanography 1564:Journal of Turbulence 896: 865: 692: 644: 592: 568: 544: 511: 413: 382: 356: 354:{\displaystyle \eta } 331: 237: 227: 107:Sinusoidal waves (or 102: 85:surface gravity waves 45:for the modelling of 26:physical oceanography 18:surface gravity waves 2737:Underwater acoustics 2297:Perigean spring tide 2162:Langmuir circulation 1873:Rossby-gravity waves 1631:10.1029/2010JC006443 1480:10.1029/2010JC006443 1185:10.1029/2009JC005416 876: 702: 654: 606: 581: 557: 523: 441: 396: 367: 345: 249: 158: 16:The nonlinearity of 2899:Science On a Sphere 2505:Convergent boundary 2177:Modular Ocean Model 2137:Geostrophic current 1853:Mild-slope equation 1676:Coastal Engineering 1623:2011JGRC..116.3004R 1576:2008JTurb...9...20R 1525:Coastal Engineering 1472:2011JGRC..116.3004R 1421:Coastal Engineering 1378:1953PCPS...49..685U 1233:Coastal Engineering 1177:2009JGRC..11411021R 1137:10.1175/JTECH2014.1 1128:2007JAtOT..24.1102G 1077:Coastal Engineering 940:and rhythmic bars. 129:normal distribution 67:offshore structures 43:coastal engineering 30:coastal engineering 2555:Seafloor spreading 2545:Outer trench swell 2510:Divergent boundary 2410:Continental margin 2395:Carbonate platform 2292:Lunitidal interval 1217:158 (1985): 47-70. 1003:Sediment transport 988:Infragravity waves 929:sediment transport 924:sediment transport 891: 860: 687: 639: 587: 563: 539: 506: 408: 377: 351: 326: 244: 222: 133:sediment transport 121:probability theory 105: 89:sediment transport 2972: 2971: 2964:Oceans portal 2924:World Ocean Atlas 2914:Underwater glider 2857:Ocean temperature 2520:Hydrothermal vent 2485:Submarine volcano 2420:Continental shelf 2400:Coastal geography 2390:Bathymetric chart 2272:Amphidromic point 1960:Wave nonlinearity 1818:Infragravity wave 1333:(12): 1725–1726. 1272:Molecular Ecology 952:approach and the 855: 790: 780: 774: 709: 590:{\displaystyle h} 566:{\displaystyle k} 504: 461: 389:Hilbert transform 324: 320: 240:logarithmic scale 220: 216: 39:ocean engineering 3050: 3025: 3024: 3013: 3012: 3001: 3000: 2989: 2988: 2987: 2980: 2962: 2961: 2950: 2949: 2940: 2939: 2879:Pelagic sediment 2817:Marine pollution 2611:Deep ocean water 2480:Submarine canyon 2415:Continental rise 2307:Rule of twelfths 2222:Sverdrup balance 2152:Humboldt Current 2077:Boundary current 2052: 2041: 1858:Radiation stress 1828:Iribarren number 1803:Equatorial waves 1758:Ballantine scale 1753:Airy wave theory 1730: 1723: 1716: 1707: 1700: 1699: 1667: 1661: 1660: 1642: 1602: 1596: 1595: 1555: 1549: 1548: 1516: 1510: 1509: 1491: 1451: 1445: 1444: 1412: 1406: 1405: 1357: 1351: 1350: 1318: 1312: 1311: 1278:(7): 1815–1827. 1263: 1257: 1256: 1224: 1218: 1211: 1205: 1204: 1156: 1150: 1149: 1139: 1122:(6): 1102–1116. 1107: 1101: 1100: 1068: 1062: 1061: 1055: 1050: 1048: 1040: 1032: 1026: 1019: 971:wave forecasting 900: 898: 897: 892: 869: 867: 866: 861: 856: 854: 853: 852: 836: 825: 824: 812: 811: 792: 791: 788: 781: 779: 775: 770: 741: 720: 711: 710: 707: 696: 694: 693: 688: 648: 646: 645: 640: 596: 594: 593: 588: 572: 570: 569: 564: 548: 546: 545: 540: 538: 537: 515: 513: 512: 507: 505: 503: 502: 501: 482: 478: 477: 464: 462: 454: 417: 415: 414: 409: 386: 384: 383: 378: 376: 375: 360: 358: 357: 352: 335: 333: 332: 327: 325: 323: 322: 321: 313: 307: 306: 293: 289: 288: 273: 272: 262: 231: 229: 228: 223: 221: 219: 218: 217: 209: 203: 202: 189: 185: 184: 171: 139:Asymmetric waves 3058: 3057: 3053: 3052: 3051: 3049: 3048: 3047: 3033: 3032: 3031: 3019: 3007: 2995: 2985: 2983: 2975: 2973: 2968: 2956: 2928: 2767: 2741: 2703: 2684:Sea-level curve 2655: 2594: 2580:Transform fault 2530:Mid-ocean ridge 2496: 2489: 2455:Oceanic plateau 2361: 2347:Tidal resonance 2317:Theory of tides 2258: 2167:Longshore drift 2117:Ekman transport 2053: 2047: 2046: 2045: 2044: 2043: 2042: 2033: 1985:Wave turbulence 1918:Trochoidal wave 1843:Longshore drift 1739: 1734: 1704: 1703: 1669: 1668: 1664: 1604: 1603: 1599: 1557: 1556: 1552: 1518: 1517: 1513: 1453: 1452: 1448: 1414: 1413: 1409: 1359: 1358: 1354: 1320: 1319: 1315: 1265: 1264: 1260: 1226: 1225: 1221: 1212: 1208: 1158: 1157: 1153: 1109: 1108: 1104: 1070: 1069: 1065: 1051: 1041: 1034: 1033: 1029: 1020: 1016: 1011: 984: 954:phase-resolving 946: 907: 874: 873: 844: 840: 816: 803: 742: 724: 700: 699: 652: 651: 604: 603: 579: 578: 555: 554: 526: 521: 520: 493: 483: 466: 465: 439: 438: 429: 394: 393: 365: 364: 343: 342: 308: 298: 294: 280: 263: 247: 246: 204: 194: 190: 176: 172: 156: 155: 150: 141: 117: 97: 12: 11: 5: 3056: 3054: 3046: 3045: 3035: 3034: 3030: 3029: 3017: 3005: 2993: 2991:Earth sciences 2970: 2969: 2967: 2966: 2954: 2944: 2933: 2930: 2929: 2927: 2926: 2921: 2916: 2911: 2906: 2904:Stratification 2901: 2896: 2891: 2886: 2881: 2876: 2875: 2874: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2829: 2824: 2819: 2814: 2809: 2804: 2796: 2794:Color of water 2791: 2789:Benthic lander 2786: 2781: 2775: 2773: 2769: 2768: 2766: 2765: 2760: 2755: 2749: 2747: 2743: 2742: 2740: 2739: 2734: 2729: 2724: 2719: 2713: 2711: 2705: 2704: 2702: 2701: 2696: 2694:Sea level rise 2691: 2689:Sea level drop 2686: 2681: 2676: 2671: 2665: 2663: 2657: 2656: 2654: 2653: 2648: 2643: 2638: 2633: 2628: 2623: 2618: 2613: 2608: 2602: 2600: 2596: 2595: 2593: 2592: 2587: 2582: 2577: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2525:Marine geology 2522: 2517: 2512: 2507: 2501: 2499: 2491: 2490: 2488: 2487: 2482: 2477: 2472: 2467: 2465:Passive margin 2462: 2460:Oceanic trench 2457: 2452: 2447: 2442: 2437: 2432: 2427: 2422: 2417: 2412: 2407: 2402: 2397: 2392: 2387: 2382: 2377: 2371: 2369: 2363: 2362: 2360: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2268: 2266: 2260: 2259: 2257: 2256: 2251: 2246: 2241: 2236: 2235: 2234: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2192:Ocean dynamics 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2082:Coriolis force 2079: 2074: 2069: 2063: 2061: 2055: 2054: 2036: 2034: 2032: 2031: 2030: 2029: 2019: 2014: 2009: 2008: 2007: 2002: 1992: 1987: 1982: 1977: 1972: 1967: 1962: 1957: 1952: 1947: 1942: 1937: 1932: 1931: 1930: 1920: 1915: 1910: 1905: 1903:Stokes problem 1900: 1895: 1890: 1885: 1880: 1875: 1870: 1865: 1860: 1855: 1850: 1845: 1840: 1838:Kinematic wave 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1800: 1795: 1790: 1785: 1780: 1775: 1770: 1765: 1760: 1755: 1749: 1747: 1741: 1740: 1735: 1733: 1732: 1725: 1718: 1710: 1702: 1701: 1662: 1597: 1550: 1531:(1–2): 15–33. 1511: 1446: 1407: 1372:(4): 685–694. 1352: 1313: 1258: 1239:(3): 167–183. 1219: 1206: 1151: 1102: 1083:(1–2): 15–33. 1063: 1054:|journal= 1027: 1013: 1012: 1010: 1007: 1006: 1005: 1000: 995: 990: 983: 980: 976:morphodynamics 950:phase-averaged 945: 942: 906: 903: 890: 887: 884: 881: 859: 851: 847: 843: 839: 834: 831: 828: 823: 819: 815: 810: 806: 802: 799: 796: 784: 778: 773: 769: 766: 763: 760: 757: 754: 751: 748: 745: 739: 736: 733: 730: 727: 723: 718: 715: 686: 683: 680: 677: 674: 671: 668: 665: 662: 659: 638: 635: 632: 629: 626: 623: 620: 617: 614: 611: 586: 562: 536: 533: 529: 500: 496: 492: 489: 486: 481: 476: 473: 469: 460: 457: 452: 449: 446: 428: 425: 420: 419: 407: 404: 401: 391: 374: 362: 350: 319: 316: 311: 305: 301: 297: 292: 287: 283: 279: 276: 271: 266: 260: 257: 254: 215: 212: 207: 201: 197: 193: 188: 183: 179: 175: 169: 166: 163: 149: 146: 140: 137: 116: 113: 96: 93: 13: 10: 9: 6: 4: 3: 2: 3055: 3044: 3043:Gravity waves 3041: 3040: 3038: 3028: 3023: 3018: 3016: 3011: 3006: 3004: 2999: 2994: 2992: 2982: 2978: 2965: 2960: 2955: 2953: 2945: 2943: 2935: 2934: 2931: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2873: 2870: 2869: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2812:Marine energy 2810: 2808: 2805: 2803: 2802: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2779:Acidification 2777: 2776: 2774: 2770: 2764: 2761: 2759: 2756: 2754: 2751: 2750: 2748: 2744: 2738: 2735: 2733: 2732:SOFAR channel 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2714: 2712: 2710: 2706: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2666: 2664: 2662: 2658: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2603: 2601: 2597: 2591: 2588: 2586: 2583: 2581: 2578: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2540:Oceanic crust 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2515:Fracture zone 2513: 2511: 2508: 2506: 2503: 2502: 2500: 2498: 2492: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2450:Oceanic basin 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2380:Abyssal plain 2378: 2376: 2373: 2372: 2370: 2368: 2364: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2287:Internal tide 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2269: 2267: 2265: 2261: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2233: 2230: 2229: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2182:Ocean current 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2064: 2062: 2060: 2056: 2051: 2040: 2028: 2025: 2024: 2023: 2020: 2018: 2015: 2013: 2010: 2006: 2003: 2001: 1998: 1997: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1980:Wave shoaling 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1948: 1946: 1943: 1941: 1940:Ursell number 1938: 1936: 1933: 1929: 1926: 1925: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1823:Internal wave 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1774: 1773:Breaking wave 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1750: 1748: 1746: 1742: 1738: 1731: 1726: 1724: 1719: 1717: 1712: 1711: 1708: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1663: 1658: 1654: 1650: 1646: 1641: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1598: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1554: 1551: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1512: 1507: 1503: 1499: 1495: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1450: 1447: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1411: 1408: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1356: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1317: 1314: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1223: 1220: 1216: 1210: 1207: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1152: 1147: 1143: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1106: 1103: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1067: 1064: 1059: 1046: 1038: 1031: 1028: 1024: 1018: 1015: 1008: 1004: 1001: 999: 996: 994: 991: 989: 986: 985: 981: 979: 977: 972: 968: 964: 960: 955: 951: 943: 941: 939: 935: 930: 925: 919: 917: 916:wave breaking 912: 904: 902: 888: 885: 882: 879: 870: 849: 845: 841: 837: 829: 826: 821: 817: 813: 808: 804: 800: 797: 794: 782: 771: 764: 761: 755: 752: 749: 746: 743: 734: 731: 728: 725: 721: 716: 713: 697: 681: 675: 672: 669: 666: 663: 660: 657: 649: 633: 627: 624: 621: 618: 615: 612: 609: 601: 598: 584: 576: 573:is the local 560: 552: 549:is the local 534: 531: 527: 517: 498: 490: 487: 479: 474: 471: 467: 458: 455: 450: 447: 444: 436: 434: 427:Ursell number 426: 424: 402: 392: 390: 363: 348: 341: 340: 339: 336: 317: 314: 303: 299: 285: 277: 258: 255: 252: 241: 236: 232: 213: 210: 199: 195: 181: 177: 167: 164: 161: 153: 147: 145: 138: 136: 134: 130: 126: 122: 114: 112: 110: 101: 94: 92: 90: 86: 81: 79: 75: 72: 68: 64: 63:extreme waves 59: 55: 51: 48: 44: 40: 35: 31: 27: 23: 19: 2919:Water column 2867:Oceanography 2842:Observations 2837:Explorations 2807:Marginal sea 2800: 2758:OSTM/Jason-2 2590:Volcanic arc 2565:Slab suction 2282:Head of tide 2172:Loop Current 2112:Ekman spiral 1959: 1898:Stokes drift 1808:Gravity wave 1783:Cnoidal wave 1679: 1675: 1665: 1614: 1610: 1600: 1567: 1563: 1553: 1528: 1524: 1514: 1463: 1459: 1449: 1424: 1420: 1410: 1369: 1365: 1355: 1330: 1326: 1316: 1275: 1271: 1261: 1236: 1232: 1222: 1214: 1209: 1168: 1164: 1154: 1119: 1115: 1105: 1080: 1076: 1066: 1045:cite journal 1030: 1022: 1017: 965:) and SWAN ( 947: 938:rip currents 920: 908: 871: 698: 650: 602: 599: 518: 437: 433:Fritz Ursell 430: 421: 337: 245: 154: 151: 142: 118: 115:Skewed waves 109:linear waves 106: 82: 74:Envisat RA-2 69:. Satellite 15: 2909:Thermocline 2626:Mesopelagic 2599:Ocean zones 2570:Slab window 2435:Hydrography 2375:Abyssal fan 2342:Tidal range 2332:Tidal power 2327:Tidal force 2212:Rip current 2147:Gulf Stream 2107:Ekman layer 2097:Downwelling 2072:Baroclinity 2059:Circulation 1955:Wave height 1945:Wave action 1928:megatsunami 1908:Stokes wave 1868:Rossby wave 1833:Kelvin wave 1813:Green's law 998:Wind stress 54:wave height 2847:Reanalysis 2746:Satellites 2727:Sofar bomb 2575:Subduction 2550:Ridge push 2445:Ocean bank 2425:Contourite 2352:Tide gauge 2337:Tidal race 2322:Tidal bore 2312:Slack tide 2277:Earth tide 2197:Ocean gyre 2017:Wind setup 2012:Wind fetch 1975:Wave setup 1970:Wave radar 1965:Wave power 1863:Rogue wave 1793:Dispersion 1009:References 993:Wind waves 959:WAVEWATCH3 575:wavenumber 338:In which: 125:statistics 58:wavelength 50:sea states 22:sinusoidal 2709:Acoustics 2661:Sea level 2560:Slab pull 2497:tectonics 2405:Cold seep 2367:Landforms 2244:Whirlpool 2239:Upwelling 2022:Wind wave 1950:Wave base 1878:Sea state 1798:Edge wave 1788:Cross sea 1696:0378-3839 1682:: 56–63. 1649:2156-2202 1640:2164/2592 1592:122442269 1545:0378-3839 1498:2156-2202 1489:2164/2592 1441:0378-3839 1427:: 56–63. 1402:121889662 1394:1469-8064 1347:0096-3518 1292:1365-294X 1253:0378-3839 1201:129854001 1193:2156-2202 1146:0739-0572 1097:0378-3839 934:nearshore 911:surf zone 886:∼ 830:⁡ 822:∘ 809:∘ 801:− 795:ψ 756:⁡ 750:− 744:− 735:⁡ 682:ψ 676:⁡ 670:∗ 634:ψ 628:⁡ 622:∗ 406:⟩ 403:⋅ 400:⟨ 349:η 310:⟩ 300:η 296:⟨ 291:⟩ 278:η 265:⟨ 206:⟩ 196:η 192:⟨ 187:⟩ 178:η 174:⟨ 71:altimeter 3037:Category 2942:Category 2894:Seawater 2621:Littoral 2616:Deep sea 2475:Seamount 2357:Tideline 2302:Rip tide 2232:shutdown 2202:Overflow 1935:Undertow 1778:Clapotis 1657:67785214 1506:67785214 1308:17970642 1300:18371017 982:See also 967:TU Delft 3027:Science 3015:Weather 2977:Portals 2952:Commons 2822:Mooring 2772:Related 2763:Jason-3 2753:Jason-1 2636:Pelagic 2631:Oceanic 2606:Benthic 1923:Tsunami 1893:Soliton 1619:Bibcode 1572:Bibcode 1570:: N20. 1468:Bibcode 1374:Bibcode 1173:Bibcode 1171:(C11). 1124:Bibcode 387:is the 34:current 2641:Photic 2470:Seabed 1883:Seiche 1694:  1655:  1647:  1617:(C3). 1590:  1543:  1504:  1496:  1466:(C3). 1439:  1400:  1392:  1345:  1306:  1298:  1290:  1251:  1199:  1191:  1144:  1095:  974:study 838:0.8150 519:where 47:random 3003:Water 2832:Ocean 2801:Alvin 2651:Swash 2495:Plate 2440:Knoll 2430:Guyot 2385:Atoll 2264:Tides 2027:model 1913:Swell 1745:Waves 1653:S2CID 1588:S2CID 1502:S2CID 1398:S2CID 1304:S2CID 1197:S2CID 850:0.672 772:0.297 747:0.471 722:0.857 708:where 2799:DSV 2784:Argo 2646:Surf 2102:Eddy 1692:ISSN 1645:ISSN 1541:ISSN 1494:ISSN 1437:ISSN 1390:ISSN 1343:ISSN 1296:PMID 1288:ISSN 1249:ISSN 1189:ISSN 1142:ISSN 1093:ISSN 1058:help 963:NOAA 827:tanh 577:and 123:and 41:and 28:and 1684:doi 1635:hdl 1627:doi 1615:116 1580:doi 1533:doi 1484:hdl 1476:doi 1464:116 1429:doi 1382:doi 1335:doi 1280:doi 1241:doi 1181:doi 1169:114 1132:doi 1085:doi 789:and 753:log 732:exp 673:sin 625:cos 119:In 3039:: 1690:. 1680:65 1678:. 1674:. 1651:. 1643:. 1633:. 1625:. 1613:. 1609:. 1586:. 1578:. 1566:. 1562:. 1539:. 1529:26 1527:. 1523:. 1500:. 1492:. 1482:. 1474:. 1462:. 1458:. 1435:. 1425:65 1423:. 1419:. 1396:. 1388:. 1380:. 1370:49 1368:. 1364:. 1341:. 1331:35 1329:. 1325:. 1302:. 1294:. 1286:. 1276:17 1274:. 1270:. 1247:. 1237:35 1235:. 1231:. 1195:. 1187:. 1179:. 1167:. 1163:. 1140:. 1130:. 1120:24 1118:. 1114:. 1091:. 1081:26 1079:. 1075:. 1049:: 1047:}} 1043:{{ 978:. 818:90 805:90 553:, 516:, 135:. 91:. 80:. 56:, 2979:: 1729:e 1722:t 1715:v 1698:. 1686:: 1659:. 1637:: 1629:: 1621:: 1594:. 1582:: 1574:: 1568:9 1547:. 1535:: 1508:. 1486:: 1478:: 1470:: 1443:. 1431:: 1404:. 1384:: 1376:: 1349:. 1337:: 1310:. 1282:: 1255:. 1243:: 1203:. 1183:: 1175:: 1148:. 1134:: 1126:: 1099:. 1087:: 1060:) 1056:( 1039:. 961:( 889:1 883:r 880:U 858:) 846:r 842:U 833:( 814:+ 798:= 783:, 777:) 768:) 765:r 762:U 759:( 738:( 729:+ 726:1 717:= 714:B 685:) 679:( 667:B 664:= 661:s 658:A 637:) 631:( 619:B 616:= 613:k 610:S 585:h 561:k 535:0 532:m 528:H 499:3 495:) 491:h 488:k 485:( 480:k 475:0 472:m 468:H 459:8 456:3 451:= 448:r 445:U 373:H 318:2 315:3 304:2 286:3 282:) 275:( 270:H 259:= 256:s 253:A 242:. 214:2 211:3 200:2 182:3 168:= 165:k 162:S

Index

surface gravity waves
sinusoidal
physical oceanography
coastal engineering
current
ocean engineering
coastal engineering
random
sea states
wave height
wavelength
extreme waves
offshore structures
altimeter
Envisat RA-2
significant wave height
surface gravity waves
sediment transport

linear waves
probability theory
statistics
normal distribution
sediment transport

logarithmic scale
Hilbert transform
Fritz Ursell
significant wave height
wavenumber

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑