Knowledge (XXG)

Waveplate

Source 📝

1199: 1191: 1641:, it is common to use a full-wave plate designed for green light (a wavelength near 540 nm). Linearly polarized white light which passes through the plate becomes elliptically polarized, except for that green light wavelength, which will remain linear. If a linear polarizer oriented perpendicular to the original polarization is added, this green wavelength is fully extinguished but elements of the other colors remain. This means that under these conditions the plate will appear an intense shade of red-violet, sometimes known as "sensitive tint". This gives rise to this plate's alternative names, the 1614: 1629:
delayed). If the input polarization is 45° to the fast and slow axis, the polarization on those axes are equal. But the phase of the output of the slow axis will be delayed 90° with the output of the fast axis. If not the amplitude but both sine values are displayed, then x and y combined will describe a circle. With other angles than 0° or 45° the values in fast and slow axis will differ and their resultant output will describe an ellipse.
167: 1698: 426: 767: 31: 158: 1669:
A multiple-order waveplate is made from a single birefringent crystal that produces an integer multiple of the rated retardance (for example, a multiple-order half-wave plate may have an absolute retardance of 37λ/2). By contrast, a zero-order waveplate produces exactly the specified retardance. This
1628:
The polarization of the incoming photon (or beam) can be resolved as two polarizations on the x and y axis. If the input polarization is parallel to the fast or slow axis, then there is no polarization of the other axis, so the output polarization is the same as the input (only the phase more or less
52:
Linearly polarized light entering a half-wave plate can be resolved into two waves, parallel and perpendicular to the optic axis of the waveplate. In the plate, the parallel wave propagates slightly slower than the perpendicular one. At the far side of the plate, the parallel wave is exactly half of
1741:
relative to crystal elongation – that is, whether the mineral is "length slow" or "length fast" – based on whether the visible interference colors increase or decrease by one order when the plate is added. Secondly, a slightly more complex procedure allows for a tint plate to be used in conjunction
568: 117:
of light, and the variation of the index of refraction. By appropriate choice of the relationship between these parameters, it is possible to introduce a controlled phase shift between the two polarization components of a light wave, thereby altering its polarization. With an engineered combination
399:
For a single waveplate changing the wavelength of the light introduces a linear error in the phase. Tilt of the waveplate enters via a factor of 1/cos θ (where θ is the angle of tilt) into the path length and thus only quadratically into the phase. For the extraordinary polarization the tilt also
1736:
In practical terms, the plate is inserted between the perpendicular polarizers at an angle of 45 degrees. This allows two different procedures to be carried out to investigate the mineral under the crosshairs of the microscope. Firstly, in ordinary cross polarized light, the plate can be used to
391:
in the denominator in the above equation). Waveplates are thus manufactured to work for a particular range of wavelengths. The phase variation can be minimized by stacking two waveplates that differ by a tiny amount in thickness back-to-back, with the slow axis of one along the fast axis of the
1021: 1670:
can be accomplished by combining two multiple-order wave plates such that the difference in their retardances yields the net (true) retardance of the waveplate. Zero-order waveplates are less sensitive to temperature and wavelength shifts, but are more expensive than multiple-order ones.
287:
Depending on the thickness of the crystal, light with polarization components along both axes will emerge in a different polarization state. The waveplate is characterized by the amount of relative phase, Γ, that it imparts on the two components, which is related to the birefringence
1605:
If the axis of polarization of the incident wave is chosen so that it makes a 0° with the fast or slow axes of the waveplate, then the polarization will not change, so remains linear. If the angle is in between 0° and 45° the resulting wave has an elliptical polarization.
1178:. For linearly polarized light, this is equivalent to saying that the effect of the half-wave plate is to rotate the polarization vector through an angle 2θ; however, for elliptically polarized light the half-wave plate also has the effect of inverting the light's 1609:
A circulating polarization can be visualized as the sum of two linear polarizations with a phase difference of 90°. The output depends on the polarization of the input. Suppose polarization axes x and y parallel with the slow and fast axis of the waveplate:
208:. The ordinary axis is perpendicular to the optic axis. The extraordinary axis is parallel to the optic axis. For a light wave normally incident upon the plate, the polarization component along the ordinary axis travels through the crystal with a speed 112:
is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the
403:
A polarization-independent phase shift of zero order needs a plate with thickness of one wavelength. For calcite the refractive index changes in the first decimal place, so that a true zero order plate is ten times as thick as one wavelength. For
1478: 1325: 809: 1597: 161:
A wave in a uniaxial crystal will separate in two components, one parallel and one perpendicular to the optic axis, that will accumulate phase at different rates. This can be used to manipulate the polarization state of the
1750:
of the mineral. The optic angle (often notated as "2V") can both be diagnostic of mineral type, as well as in some cases revealing information about the variation of chemical composition within a single mineral type.
762:{\displaystyle \mathbf {E} \,\mathrm {e} ^{i(kz-\omega t)}=E\,\mathbf {\hat {p}} \,\mathrm {e} ^{i(kz-\omega t)}=E(\cos \theta \,\mathbf {\hat {f}} +\sin \theta \,\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} 356: 392:
other. With this configuration, the relative phase imparted can be, for the case of a quarter-wave plate, one-fourth a wavelength rather than three-fourths or one-fourth plus an integer. This is called a
1198: 1089: 1055: 1176: 1147: 1118: 796: 559: 530: 501: 472: 1218:
is chosen so that the phase shift between polarization components is Γ = π/2. Now suppose a linearly polarized wave is incident on the crystal. This wave can be written as
149:
within the visible crystal sections. This alignment can allow discrimination between minerals which otherwise appear very similar in plane polarized and cross polarized light.
1190: 1374: 1224: 400:
changes the refractive index to the ordinary via a factor of cos θ, so combined with the path length, the phase shift for the extraordinary light due to tilt is zero.
53:
a wavelength delayed relative to the perpendicular wave, and the resulting combination is a mirror-image of the entry polarization state (relative to the optic axis).
1510: 376:
formalism, which uses a vector to represent the polarization state of light and a matrix to represent the linear transformation of a waveplate or polarizer.
1623: 118:
of two birefringent materials, an achromatic waveplate can be manufactured such that the spectral response of its phase retardance can be nearly flat.
1637:
A full-wave plate introduces a phase difference of exactly one wavelength between the two polarization directions, for one wavelength of light. In
1016:{\displaystyle E(\cos \theta \,\mathbf {\hat {f}} -\sin \theta \,\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)}=E\mathrm {e} ^{i(kz-\omega t)}.} 445:
is chosen so that the phase shift between polarization components is Γ = π. Now suppose a linearly polarized wave with polarization vector
387:, this is negligible compared to the variation in phase difference according to the wavelength of the light due to the fixed path difference (λ 182:
crystal with a carefully chosen orientation and thickness. The crystal is cut into a plate, with the orientation of the cut chosen so that the
798:
lies along the waveplate's slow axis. The effect of the half-wave plate is to introduce a phase shift term e = e = −1 between the
302: 1120:
is −θ. Evidently, the effect of the half-wave plate is to mirror the wave's polarization vector through the plane formed by the vectors
1486:
If the axis of polarization of the incident wave is chosen so that it makes a 45° with the fast and slow axes of the waveplate, then
89:, which converts between different elliptical polarizations (such as the special case of converting from linearly polarized light to 412:
the refractive index changes in the second decimal place and true zero order plates are common for wavelengths above 1 μm.
1824: 1910: 1968: 1678: 1973: 1963: 1057:
denotes the polarization vector of the wave exiting the waveplate, then this expression shows that the angle between
186:
of the crystal is parallel to the surfaces of the plate. This results in two axes in the plane of the cut: the
157: 1785: 1714: 183: 130: 1770: 1060: 1026: 1152: 1123: 1094: 772: 535: 506: 477: 448: 90: 1775: 178:
between two perpendicular polarization components of the light wave. A typical waveplate is simply a
121:
A common use of waveplates—particularly the sensitive-tint (full-wave) and quarter-wave plates—is in
70: 1743: 1356:
are real. The effect of the quarter-wave plate is to introduce a phase shift term e =e =
384: 109: 82: 1622: 1473:{\displaystyle (E_{f}\mathbf {\hat {f}} +iE_{s}\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)}.} 1338:
axes are the quarter-wave plate's fast and slow axes, respectively, the wave propagates along the
1884: 1730: 1710: 1638: 1320:{\displaystyle (E_{f}\mathbf {\hat {f}} +E_{s}\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} 409: 146: 122: 1673:
Stacking a series of different-order waveplates with polarization filters between them yields a
1820: 244:. This leads to a phase difference between the two components as they exit the crystal. When 1702: 1686: 1738: 1592:{\displaystyle E(\mathbf {\hat {f}} +i\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} 1613: 166: 1760: 1726: 1709:
The sensitive-tint (full-wave) and quarter-wave plates are widely used in the field of
1682: 1658: 373: 142: 1957: 1765: 226:, while the polarization component along the extraordinary axis travels with a speed 179: 175: 97: 565:
denote the propagation axis of the wave. The electric field of the incident wave is
1722: 1654: 138: 1368:
components of the wave, so that upon exiting the crystal the wave is now given by
806:
components of the wave, so that upon exiting the crystal the wave is now given by
1202:
Creating circular polarization using a quarter-wave plate and a polarizing filter
1674: 145:
easier, in particular by allowing deduction of the shape and orientation of the
1947: 1938: 1697: 425: 1790: 114: 1179: 369: 126: 1729:, in particular by allowing deduction of the shape and orientation of the 17: 1649:. These plates are widely used in mineralogy to aid in identification of 1780: 1718: 1650: 259: 134: 30: 405: 101: 66: 351:{\displaystyle \Gamma ={\frac {2\pi \,\Delta n\,L}{\lambda _{0}}},} 77:
wave travelling through it. Two common types of waveplates are the
1696: 1612: 1197: 1189: 424: 165: 156: 74: 1617:
Composition of two linearly polarized waves, phase shifted by π/2
105: 1873:. Vol. 1. New York: John Wiley & Sons. p. 121. 1869:
Winchell, Newton Horace; Winchell, Alexander Newton (1922).
1840: 474:
is incident on the crystal. Let θ denote the angle between
1194:
Two waves differing by a quarter-phase shift for one axis
1677:. Either the filters can be rotated, or the waveplates 1504:, and the resulting wave upon exiting the waveplate is 1871:
Elements of Optical Mineralogy: Principles and Methods
1513: 1377: 1227: 1155: 1126: 1097: 1063: 1029: 812: 775: 571: 538: 509: 480: 451: 305: 1206:For a quarter-wave plate, the relationship between 561:is the vector along the waveplate's fast axis. Let 1591: 1472: 1319: 1170: 1141: 1112: 1083: 1049: 1015: 790: 761: 553: 524: 495: 466: 350: 1713:. Addition of plates between the polarizers of a 1544: 1526: 1425: 1397: 1272: 1247: 1162: 1133: 1104: 1071: 1037: 968: 935: 860: 835: 782: 714: 689: 624: 545: 516: 487: 458: 433:For a half-wave plate, the relationship between 81:, which rotates the polarization direction of 1864: 1862: 1860: 1705:photographed using a petrographic microscope. 8: 1943:Encyclopedia of Laser Physics and Technology 1737:distinguish the orientation of the optical 1717:makes easier the optical identification of 38: Electric field parallel to optic axis 44: Electric field perpendicular to axis 1559: 1554: 1539: 1538: 1521: 1520: 1512: 1440: 1435: 1420: 1419: 1413: 1392: 1391: 1385: 1376: 1287: 1282: 1267: 1266: 1260: 1242: 1241: 1235: 1226: 1157: 1156: 1154: 1128: 1127: 1125: 1099: 1098: 1096: 1066: 1065: 1062: 1032: 1031: 1028: 983: 978: 963: 962: 930: 929: 875: 870: 855: 854: 853: 830: 829: 828: 811: 777: 776: 774: 729: 724: 709: 708: 707: 684: 683: 682: 637: 632: 630: 619: 618: 617: 584: 579: 577: 572: 570: 540: 539: 537: 511: 510: 508: 482: 481: 479: 453: 452: 450: 337: 328: 321: 312: 304: 1665:Multiple-order vs. zero-order waveplates 1483:The wave is now elliptically polarized. 429:A wave passing through a half-wave plate 29: 1810: 1808: 1806: 1802: 1746:techniques to allow measurement of the 1693:Use in mineralogy and optical petrology 365:is the vacuum wavelength of the light. 262:, the extraordinary axis is called the 1602:and the wave is circularly polarized. 1733:within the visible crystal sections. 170:A waveplate mounted in a rotary mount 7: 1084:{\displaystyle \mathbf {\hat {p}} '} 1050:{\displaystyle \mathbf {\hat {p}} '} 266:and the ordinary axis is called the 133:makes the optical identification of 96:Waveplates are constructed out of a 1685:layers, to obtain a widely tunable 1171:{\displaystyle \mathbf {\hat {z}} } 1142:{\displaystyle \mathbf {\hat {f}} } 1113:{\displaystyle \mathbf {\hat {f}} } 791:{\displaystyle \mathbf {\hat {s}} } 554:{\displaystyle \mathbf {\hat {f}} } 525:{\displaystyle \mathbf {\hat {f}} } 496:{\displaystyle \mathbf {\hat {p}} } 467:{\displaystyle \mathbf {\hat {p}} } 1689:in optical transmission spectrum. 1633:Full-wave, or sensitive-tint plate 1555: 1436: 1283: 979: 871: 725: 633: 580: 368:Waveplates in general, as well as 322: 306: 174:A waveplate works by shifting the 108:, or even plastic), for which the 25: 125:. Addition of plates between the 1841:"Mounted Achromatic Wave Plates" 1819:(4th ed.). pp. 352–5. 1621: 1541: 1523: 1422: 1394: 1269: 1244: 1159: 1130: 1101: 1068: 1034: 965: 932: 857: 832: 779: 711: 686: 621: 573: 542: 513: 484: 455: 1581: 1563: 1550: 1517: 1462: 1444: 1431: 1378: 1309: 1291: 1278: 1228: 1005: 987: 974: 959: 950: 926: 917: 908: 897: 879: 866: 816: 751: 733: 720: 670: 659: 641: 606: 588: 296:of the crystal by the formula 1: 372:, can be described using the 379:Although the birefringence Δ 284:the situation is reversed. 201:, with index of refraction 190:, with index of refraction 27:Optical polarization device 1990: 1911:"Understanding Waveplates" 1948:Polarizers and Waveplates 1891:. University of Cambridge 1701:Thin crystalline film of 383:may vary slightly due to 50: The combined field 1786:Spatial light modulator 1715:petrographic microscope 153:Principles of operation 131:petrographic microscope 93:light and vice versa.) 69:device that alters the 1771:Photoelastic modulator 1706: 1618: 1593: 1474: 1321: 1203: 1195: 1172: 1143: 1114: 1085: 1051: 1017: 792: 763: 555: 526: 497: 468: 430: 352: 171: 163: 54: 1700: 1616: 1594: 1475: 1322: 1201: 1193: 1173: 1144: 1115: 1086: 1052: 1018: 793: 764: 556: 527: 498: 469: 428: 353: 169: 160: 33: 1969:Polarization (waves) 1915:www.edmundoptics.com 1776:Polarization rotator 1731:optical indicatrices 1643:sensitive-tint plate 1511: 1375: 1225: 1153: 1124: 1095: 1061: 1027: 810: 773: 569: 536: 507: 478: 449: 394:zero-order waveplate 303: 147:optical indicatrices 91:circularly polarized 1744:interference figure 1645:or (less commonly) 110:index of refraction 1974:Optical components 1964:Optical mineralogy 1815:Hecht, E. (2001). 1711:optical mineralogy 1707: 1639:optical mineralogy 1619: 1589: 1470: 1317: 1204: 1196: 1186:Quarter-wave plate 1168: 1139: 1110: 1081: 1047: 1013: 788: 759: 551: 522: 493: 464: 431: 410:magnesium fluoride 348: 292:and the thickness 199:extraordinary axis 172: 164: 123:optical mineralogy 100:material (such as 87:quarter-wave plate 83:linearly polarized 55: 1547: 1529: 1428: 1400: 1275: 1250: 1165: 1136: 1107: 1074: 1040: 971: 938: 863: 838: 785: 717: 692: 627: 548: 519: 490: 461: 343: 16:(Redirected from 1981: 1926: 1925: 1923: 1922: 1907: 1901: 1900: 1898: 1896: 1881: 1875: 1874: 1866: 1855: 1854: 1852: 1851: 1845:www.thorlabs.com 1837: 1831: 1830: 1812: 1703:caesium chloride 1625: 1598: 1596: 1595: 1590: 1585: 1584: 1558: 1549: 1548: 1540: 1531: 1530: 1522: 1479: 1477: 1476: 1471: 1466: 1465: 1439: 1430: 1429: 1421: 1418: 1417: 1402: 1401: 1393: 1390: 1389: 1326: 1324: 1323: 1318: 1313: 1312: 1286: 1277: 1276: 1268: 1265: 1264: 1252: 1251: 1243: 1240: 1239: 1177: 1175: 1174: 1169: 1167: 1166: 1158: 1148: 1146: 1145: 1140: 1138: 1137: 1129: 1119: 1117: 1116: 1111: 1109: 1108: 1100: 1090: 1088: 1087: 1082: 1080: 1076: 1075: 1067: 1056: 1054: 1053: 1048: 1046: 1042: 1041: 1033: 1022: 1020: 1019: 1014: 1009: 1008: 982: 973: 972: 964: 940: 939: 931: 901: 900: 874: 865: 864: 856: 840: 839: 831: 797: 795: 794: 789: 787: 786: 778: 768: 766: 765: 760: 755: 754: 728: 719: 718: 710: 694: 693: 685: 663: 662: 636: 629: 628: 620: 610: 609: 583: 576: 560: 558: 557: 552: 550: 549: 541: 531: 529: 528: 523: 521: 520: 512: 502: 500: 499: 494: 492: 491: 483: 473: 471: 470: 465: 463: 462: 454: 357: 355: 354: 349: 344: 342: 341: 332: 313: 49: 43: 37: 21: 1989: 1988: 1984: 1983: 1982: 1980: 1979: 1978: 1954: 1953: 1935: 1930: 1929: 1920: 1918: 1917:. Edmund Optics 1909: 1908: 1904: 1894: 1892: 1883: 1882: 1878: 1868: 1867: 1858: 1849: 1847: 1839: 1838: 1834: 1827: 1814: 1813: 1804: 1799: 1757: 1695: 1679:can be replaced 1667: 1635: 1553: 1509: 1508: 1498: 1491: 1434: 1409: 1381: 1373: 1372: 1354: 1347: 1281: 1256: 1231: 1223: 1222: 1217: 1188: 1151: 1150: 1122: 1121: 1093: 1092: 1064: 1059: 1058: 1030: 1025: 1024: 977: 869: 808: 807: 771: 770: 723: 631: 578: 567: 566: 534: 533: 505: 504: 476: 475: 447: 446: 444: 423: 421:Half-wave plate 418: 390: 364: 333: 314: 301: 300: 283: 276: 257: 250: 243: 232: 225: 214: 207: 196: 155: 85:light, and the 79:half-wave plate 51: 47: 45: 41: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1987: 1985: 1977: 1976: 1971: 1966: 1956: 1955: 1952: 1951: 1945: 1934: 1933:External links 1931: 1928: 1927: 1902: 1876: 1856: 1832: 1825: 1801: 1800: 1798: 1795: 1794: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1761:Crystal optics 1756: 1753: 1694: 1691: 1683:liquid crystal 1666: 1663: 1647:red-tint plate 1634: 1631: 1600: 1599: 1588: 1583: 1580: 1577: 1574: 1571: 1568: 1565: 1562: 1557: 1552: 1546: 1543: 1537: 1534: 1528: 1525: 1519: 1516: 1496: 1489: 1481: 1480: 1469: 1464: 1461: 1458: 1455: 1452: 1449: 1446: 1443: 1438: 1433: 1427: 1424: 1416: 1412: 1408: 1405: 1399: 1396: 1388: 1384: 1380: 1352: 1345: 1328: 1327: 1316: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1285: 1280: 1274: 1271: 1263: 1259: 1255: 1249: 1246: 1238: 1234: 1230: 1215: 1187: 1184: 1164: 1161: 1135: 1132: 1106: 1103: 1079: 1073: 1070: 1045: 1039: 1036: 1012: 1007: 1004: 1001: 998: 995: 992: 989: 986: 981: 976: 970: 967: 961: 958: 955: 952: 949: 946: 943: 937: 934: 928: 925: 922: 919: 916: 913: 910: 907: 904: 899: 896: 893: 890: 887: 884: 881: 878: 873: 868: 862: 859: 852: 849: 846: 843: 837: 834: 827: 824: 821: 818: 815: 784: 781: 758: 753: 750: 747: 744: 741: 738: 735: 732: 727: 722: 716: 713: 706: 703: 700: 697: 691: 688: 681: 678: 675: 672: 669: 666: 661: 658: 655: 652: 649: 646: 643: 640: 635: 626: 623: 616: 613: 608: 605: 602: 599: 596: 593: 590: 587: 582: 575: 547: 544: 518: 515: 489: 486: 460: 457: 442: 422: 419: 417: 414: 388: 362: 359: 358: 347: 340: 336: 331: 327: 324: 320: 317: 311: 308: 281: 274: 255: 248: 241: 230: 223: 212: 205: 194: 154: 151: 46: 40: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1986: 1975: 1972: 1970: 1967: 1965: 1962: 1961: 1959: 1949: 1946: 1944: 1941:RP photonics 1940: 1937: 1936: 1932: 1916: 1912: 1906: 1903: 1890: 1886: 1885:"Tint plates" 1880: 1877: 1872: 1865: 1863: 1861: 1857: 1846: 1842: 1836: 1833: 1828: 1822: 1818: 1811: 1809: 1807: 1803: 1796: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1766:Fresnel rhomb 1764: 1762: 1759: 1758: 1754: 1752: 1749: 1745: 1740: 1734: 1732: 1728: 1724: 1723:thin sections 1720: 1716: 1712: 1704: 1699: 1692: 1690: 1688: 1684: 1680: 1676: 1671: 1664: 1662: 1660: 1656: 1655:thin sections 1652: 1648: 1644: 1640: 1632: 1630: 1626: 1624: 1615: 1611: 1607: 1603: 1586: 1578: 1575: 1572: 1569: 1566: 1560: 1535: 1532: 1514: 1507: 1506: 1505: 1503: 1499: 1492: 1484: 1467: 1459: 1456: 1453: 1450: 1447: 1441: 1414: 1410: 1406: 1403: 1386: 1382: 1371: 1370: 1369: 1367: 1363: 1359: 1355: 1348: 1341: 1337: 1333: 1314: 1306: 1303: 1300: 1297: 1294: 1288: 1261: 1257: 1253: 1236: 1232: 1221: 1220: 1219: 1213: 1209: 1200: 1192: 1185: 1183: 1181: 1077: 1043: 1010: 1002: 999: 996: 993: 990: 984: 956: 953: 947: 944: 941: 923: 920: 914: 911: 905: 902: 894: 891: 888: 885: 882: 876: 850: 847: 844: 841: 825: 822: 819: 813: 805: 801: 756: 748: 745: 742: 739: 736: 730: 704: 701: 698: 695: 679: 676: 673: 667: 664: 656: 653: 650: 647: 644: 638: 614: 611: 603: 600: 597: 594: 591: 585: 564: 440: 436: 427: 420: 415: 413: 411: 407: 401: 397: 395: 386: 382: 377: 375: 371: 366: 345: 338: 334: 329: 325: 318: 315: 309: 299: 298: 297: 295: 291: 285: 280: 273: 269: 265: 261: 254: 247: 240: 236: 229: 222: 218: 211: 204: 200: 193: 189: 188:ordinary axis 185: 181: 177: 168: 159: 152: 150: 148: 144: 140: 139:thin sections 136: 132: 128: 124: 119: 116: 111: 107: 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 60: 32: 19: 1942: 1919:. Retrieved 1914: 1905: 1893:. Retrieved 1888: 1879: 1870: 1848:. Retrieved 1844: 1835: 1816: 1747: 1735: 1708: 1672: 1668: 1646: 1642: 1636: 1627: 1620: 1608: 1604: 1601: 1501: 1494: 1487: 1485: 1482: 1365: 1361: 1360:between the 1357: 1350: 1343: 1339: 1335: 1331: 1329: 1211: 1207: 1205: 803: 799: 562: 438: 434: 432: 402: 398: 393: 380: 378: 374:Jones matrix 367: 360: 293: 289: 286: 278: 271: 267: 263: 252: 245: 238: 234: 227: 220: 216: 209: 202: 198: 191: 187: 180:birefringent 173: 120: 98:birefringent 95: 86: 78: 71:polarization 62: 58: 56: 1748:optic angle 1675:Lyot filter 416:Plate types 277: > 251: < 73:state of a 1958:Categories 1939:Waveplates 1921:2019-05-03 1850:2024-01-16 1826:0805385665 1797:References 1791:Zone plate 1739:indicatrix 1342:axis, and 1330:where the 1180:handedness 385:dispersion 370:polarizers 197:, and the 184:optic axis 127:polarizers 115:wavelength 18:Wave plate 1950:Animation 1687:pass band 1576:ω 1573:− 1545:^ 1527:^ 1457:ω 1454:− 1426:^ 1398:^ 1304:ω 1301:− 1273:^ 1248:^ 1163:^ 1134:^ 1105:^ 1072:^ 1038:^ 1000:ω 997:− 969:^ 957:θ 954:− 948:⁡ 936:^ 924:θ 921:− 915:⁡ 892:ω 889:− 861:^ 851:θ 848:⁡ 842:− 836:^ 826:θ 823:⁡ 783:^ 746:ω 743:− 715:^ 705:θ 702:⁡ 690:^ 680:θ 677:⁡ 654:ω 651:− 625:^ 601:ω 598:− 546:^ 517:^ 488:^ 459:^ 335:λ 323:Δ 319:π 307:Γ 268:slow axis 264:fast axis 59:waveplate 1889:DoITPoMS 1755:See also 1719:minerals 1651:minerals 1500: ≡ 1493: = 1078:′ 1044:′ 532:, where 258:, as in 135:minerals 63:retarder 1895:Dec 31, 1781:Q-plate 1214:, and λ 441:, and λ 361:where λ 260:calcite 67:optical 1823:  1817:Optics 769:where 406:quartz 270:. For 102:quartz 65:is an 48:  42:  36:  1742:with 1727:rocks 1681:with 1659:rocks 176:phase 162:wave. 143:rocks 129:of a 75:light 1897:2016 1821:ISBN 1364:and 1349:and 1334:and 1149:and 1091:and 802:and 503:and 408:and 106:mica 1725:of 1721:in 1657:of 1653:in 1210:, Δ 1023:If 945:sin 912:cos 845:sin 820:cos 699:sin 674:cos 437:, Δ 141:of 137:in 104:or 61:or 1960:: 1913:. 1887:. 1859:^ 1843:. 1805:^ 1661:. 1182:. 396:. 233:= 215:= 57:A 1924:. 1899:. 1853:. 1829:. 1587:, 1582:) 1579:t 1570:z 1567:k 1564:( 1561:i 1556:e 1551:) 1542:s 1536:i 1533:+ 1524:f 1518:( 1515:E 1502:E 1497:s 1495:E 1490:f 1488:E 1468:. 1463:) 1460:t 1451:z 1448:k 1445:( 1442:i 1437:e 1432:) 1423:s 1415:s 1411:E 1407:i 1404:+ 1395:f 1387:f 1383:E 1379:( 1366:s 1362:f 1358:i 1353:s 1351:E 1346:f 1344:E 1340:z 1336:s 1332:f 1315:, 1310:) 1307:t 1298:z 1295:k 1292:( 1289:i 1284:e 1279:) 1270:s 1262:s 1258:E 1254:+ 1245:f 1237:f 1233:E 1229:( 1216:0 1212:n 1208:L 1160:z 1131:f 1102:f 1069:p 1035:p 1011:. 1006:) 1003:t 994:z 991:k 988:( 985:i 980:e 975:] 966:s 960:) 951:( 942:+ 933:f 927:) 918:( 909:[ 906:E 903:= 898:) 895:t 886:z 883:k 880:( 877:i 872:e 867:) 858:s 833:f 817:( 814:E 804:s 800:f 780:s 757:, 752:) 749:t 740:z 737:k 734:( 731:i 726:e 721:) 712:s 696:+ 687:f 671:( 668:E 665:= 660:) 657:t 648:z 645:k 642:( 639:i 634:e 622:p 615:E 612:= 607:) 604:t 595:z 592:k 589:( 586:i 581:e 574:E 563:z 543:f 514:f 485:p 456:p 443:0 439:n 435:L 389:0 381:n 363:0 346:, 339:0 330:L 326:n 316:2 310:= 294:L 290:n 288:Δ 282:o 279:n 275:e 272:n 256:o 253:n 249:e 246:n 242:e 239:n 237:/ 235:c 231:e 228:v 224:o 221:n 219:/ 217:c 213:o 210:v 206:e 203:n 195:o 192:n 20:)

Index

Wave plate

optical
polarization
light
linearly polarized
circularly polarized
birefringent
quartz
mica
index of refraction
wavelength
optical mineralogy
polarizers
petrographic microscope
minerals
thin sections
rocks
optical indicatrices


phase
birefringent
optic axis
calcite
polarizers
Jones matrix
dispersion
quartz
magnesium fluoride

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.