Knowledge (XXG)

Wavelength-dispersive X-ray spectroscopy

Source 📝

144: 1083: 1095: 216:
with the distance between the specimen and the crystal equal to the distance between the crystal and the detector. It is usually operated under vacuum to reduce the absorption of soft radiation (low-energy photons) by the air and thus increase the sensitivity for the detection and quantification of
228:
As the atomic number of the element increases so there are more possible electrons at different energy levels that can be ejected resulting in x-rays with different wavelengths. This creates spectra with multiple lines, one for each energy level. The largest peak in the spectrum is labelled
155:
within an atom or ion, creating a void. This void is filled when an electron from a higher orbital releases energy and drops down to replace the dislodged electron. The energy difference between the two orbitals is characteristic of the
192:
This means that a crystal with a known lattice size will deflect a beam of x-rays from a specific type of sample at a pre-determined angle. The x-ray beam can be measured by placing a detector (usually a
107:) is a non-destructive analysis technique used to obtain elemental information about a range of materials by measuring characteristic x-rays within a small wavelength range. The technique generates a 201:) in the path of the deflected beam and, since each element has a distinctive x-ray wavelength, multiple elements can be determined by having multiple crystals and multiple detectors. 727: 225:). The technique generates a spectrum with peaks corresponding to x-ray lines. This is compared with reference spectra to determine the elemental composition of the sample. 710: 705: 854: 557: 135:
Wavelength-dispersive X-ray spectroscopy is based on known principles of how the characteristic x-rays are generated by a sample and how the x-rays are measured.
844: 447: 111:
in which the peaks correspond to specific x-ray lines and elements can be easily identified. WDS is primarily used in chemical analysis, wavelength dispersive
747: 720: 172:, when an X-ray beam of wavelength "λ" strikes the surface of a crystal at an angle "Θ" and the crystal has atomic lattice planes a distance "d" apart, then 655: 254:
Analysis is generally limited to a very small area of the sample, although modern automated equipment often use grid patterns for larger analysis areas.
715: 675: 799: 665: 612: 245:
Applications include analysis of catalysts, cement, food, metals, mining and mineral samples, petroleum, plastics, semiconductors, and wood.
1054: 782: 767: 693: 88: 804: 637: 490: 440: 792: 787: 685: 660: 627: 864: 849: 829: 567: 1121: 632: 475: 1099: 809: 772: 617: 275:
of another element and hence if the first element is present, the second element cannot be reliably detected (for example
1087: 647: 433: 124: 1126: 834: 752: 173: 1059: 1013: 839: 1049: 762: 698: 572: 531: 326: 952: 157: 957: 777: 194: 411: 143: 962: 521: 151:
X-rays are generated when an electron beam of high enough energy dislodges an electron from an inner
927: 912: 819: 814: 757: 622: 604: 536: 526: 470: 456: 120: 998: 577: 541: 301: 176:
will result in a beam of diffracted x-rays that will be emitted from the crystal at angle "Θ" if
112: 942: 937: 892: 824: 352: 947: 902: 516: 169: 152: 1115: 978: 922: 582: 1029: 353:"An Introduction to Energy-Dispersive and Wavelength-Dispersive X-Ray Microanalysis" 1039: 1003: 897: 887: 562: 511: 116: 261:
of elements as the electron configuration of isotopes of an element are identical.
147:
Electron beam interactions with a sample, X-rays are one of the possible products
983: 917: 907: 212:. The single crystal, the specimen, and the detector are mounted precisely on a 1064: 485: 480: 213: 209: 205: 56: 932: 587: 1034: 500: 284: 276: 264:
It cannot measure the valence state of the element, for example Fe vs Fe.
108: 381: 127:, and high precision experiments for testing atomic and plasma physics. 1044: 988: 670: 258: 183: 425: 1008: 222: 68: 64: 60: 218: 198: 142: 993: 160:
of the atom or ion and can be used to identify the atom or ion.
72: 429: 1022: 971: 880: 873: 740: 684: 646: 603: 596: 550: 499: 463: 84: 79: 52: 48:
Elements in solids, liquids, powders and thin films
44: 36: 26: 204:To improve accuracy the x-ray beams are usually 855:Serial block-face scanning electron microscopy 558:Detectors for transmission electron microscopy 441: 8: 182:nλ = 2d sin Θ, where n is an 21: 877: 600: 448: 434: 426: 412:"Wavelength-dispersive spectroscopy (WDS)" 321: 319: 317: 257:The technique cannot distinguish between 416:Geochemical Instrumentation and Analysis 376: 374: 331:Geochemical Instrumentation and Analysis 97:Wavelength-dispersive X-ray spectroscopy 22:Wavelength-dispersive X-ray spectroscopy 313: 20: 406: 404: 402: 7: 1094: 89:Energy-dispersive X-ray spectroscopy 208:by parallel copper blades called a 382:"EDXRF - XRF - Elemental Analysis" 14: 491:Timeline of microscope technology 1093: 1082: 1081: 850:Precession electron diffraction 386:Applied Rigaku Technologies Inc 63:, Hecus, Malvern Panalytical, 1: 125:scanning electron microscopes 16:Chemical analysis technique 1143: 835:Immune electron microscopy 753:Annular dark-field imaging 568:Everhart–Thornley detector 267:In certain elements, the K 1077: 989:Hitachi High-Technologies 174:constructive interference 1014:Thermo Fisher Scientific 840:Geometric phase analysis 728:Aberration-Corrected TEM 357:Wiley Analytical Science 271:line might overlap the K 217:light elements (between 763:Charge contrast imaging 573:Field electron emission 953:Thomas Eugene Everhart 158:electron configuration 148: 1122:Emission spectroscopy 958:Vernon Ellis Cosslett 778:Dark-field microscopy 195:scintillation counter 146: 963:Vladimir K. Zworykin 613:Correlative light EM 522:Electron diffraction 199:proportional counter 121:electron microprobes 75:, Oxford Instruments 928:Manfred von Ardenne 913:Gerasimos Danilatos 820:Electron tomography 815:Electron holography 758:Cathodoluminescence 537:Secondary electrons 527:Electron scattering 471:Electron microscopy 457:Electron microscopy 418:. 10 November 2016. 359:. 14 September 2020 23: 1127:X-ray spectroscopy 1050:Digital Micrograph 656:Environmental SEM 578:Field emission gun 542:X-ray fluorescence 333:. 10 November 2016 302:X-ray spectroscopy 149: 113:X-ray fluorescence 65:Rigaku Corporation 1109: 1108: 1073: 1072: 943:Nestor J. Zaluzec 938:Maximilian Haider 736: 735: 210:Söller collimator 164:X-ray measurement 94: 93: 1134: 1097: 1096: 1085: 1084: 893:Bodo von Borries 878: 638:Photoemission EM 601: 450: 443: 436: 427: 420: 419: 408: 397: 396: 394: 392: 378: 369: 368: 366: 364: 349: 343: 342: 340: 338: 323: 139:X-ray generation 80:Other techniques 24: 1142: 1141: 1137: 1136: 1135: 1133: 1132: 1131: 1112: 1111: 1110: 1105: 1069: 1018: 967: 948:Ondrej Krivanek 869: 732: 680: 642: 628:Liquid-Phase EM 592: 551:Instrumentation 546: 504: 495: 459: 454: 424: 423: 410: 409: 400: 390: 388: 380: 379: 372: 362: 360: 351: 350: 346: 336: 334: 325: 324: 315: 310: 298: 290: 282: 274: 270: 251: 243: 236: 232: 166: 141: 133: 31: 17: 12: 11: 5: 1140: 1138: 1130: 1129: 1124: 1114: 1113: 1107: 1106: 1104: 1103: 1091: 1078: 1075: 1074: 1071: 1070: 1068: 1067: 1062: 1057: 1055:Direct methods 1052: 1047: 1042: 1037: 1032: 1026: 1024: 1020: 1019: 1017: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 975: 973: 969: 968: 966: 965: 960: 955: 950: 945: 940: 935: 930: 925: 920: 915: 910: 905: 903:Ernst G. Bauer 900: 895: 890: 884: 882: 875: 871: 870: 868: 867: 862: 857: 852: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 796: 795: 785: 780: 775: 770: 765: 760: 755: 750: 744: 742: 738: 737: 734: 733: 731: 730: 725: 724: 723: 713: 708: 703: 702: 701: 690: 688: 682: 681: 679: 678: 673: 668: 663: 658: 652: 650: 644: 643: 641: 640: 635: 630: 625: 620: 615: 609: 607: 598: 594: 593: 591: 590: 585: 580: 575: 570: 565: 560: 554: 552: 548: 547: 545: 544: 539: 534: 529: 524: 519: 517:Bremsstrahlung 514: 508: 506: 497: 496: 494: 493: 488: 483: 478: 473: 467: 465: 461: 460: 455: 453: 452: 445: 438: 430: 422: 421: 398: 370: 344: 312: 311: 309: 306: 305: 304: 297: 294: 293: 292: 288: 280: 272: 268: 265: 262: 255: 250: 247: 242: 239: 234: 230: 190: 189: 188: 187: 165: 162: 140: 137: 132: 129: 92: 91: 86: 82: 81: 77: 76: 54: 50: 49: 46: 42: 41: 38: 37:Classification 34: 33: 28: 15: 13: 10: 9: 6: 4: 3: 2: 1139: 1128: 1125: 1123: 1120: 1119: 1117: 1102: 1101: 1092: 1090: 1089: 1080: 1079: 1076: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1027: 1025: 1021: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 979:Carl Zeiss AG 977: 976: 974: 972:Manufacturers 970: 964: 961: 959: 956: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 923:James Hillier 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 885: 883: 879: 876: 872: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 794: 791: 790: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 745: 743: 739: 729: 726: 722: 719: 718: 717: 714: 712: 709: 707: 704: 700: 697: 696: 695: 692: 691: 689: 687: 683: 677: 676:Ultrafast SEM 674: 672: 669: 667: 664: 662: 659: 657: 654: 653: 651: 649: 645: 639: 636: 634: 633:Low-energy EM 631: 629: 626: 624: 621: 619: 616: 614: 611: 610: 608: 606: 602: 599: 595: 589: 586: 584: 583:Magnetic lens 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 555: 553: 549: 543: 540: 538: 535: 533: 532:Kikuchi lines 530: 528: 525: 523: 520: 518: 515: 513: 510: 509: 507: 502: 498: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 468: 466: 462: 458: 451: 446: 444: 439: 437: 432: 431: 428: 417: 413: 407: 405: 403: 399: 387: 383: 377: 375: 371: 358: 354: 348: 345: 332: 328: 322: 320: 318: 314: 307: 303: 300: 299: 295: 286: 278: 266: 263: 260: 256: 253: 252: 248: 246: 240: 238: 237:, and so on. 226: 224: 220: 215: 211: 207: 202: 200: 196: 185: 181: 180: 179: 178: 177: 175: 171: 168:According to 163: 161: 159: 154: 145: 138: 136: 130: 128: 126: 122: 118: 114: 110: 106: 102: 98: 90: 87: 83: 78: 74: 70: 66: 62: 58: 55: 53:Manufacturers 51: 47: 43: 39: 35: 29: 25: 19: 1098: 1086: 1040:EM Data Bank 1004:Nion Company 898:Dennis Gabor 888:Albert Crewe 859: 666:Confocal SEM 563:Electron gun 512:Auger effect 415: 391:14 September 389:. Retrieved 385: 363:14 September 361:. Retrieved 356: 347: 337:14 September 335:. Retrieved 330: 244: 241:Applications 233:, the next K 227: 203: 191: 167: 150: 134: 117:spectrometry 104: 100: 96: 95: 40:Spectroscopy 18: 984:FEI Company 918:Harald Rose 908:Ernst Ruska 597:Microscopes 505:with matter 503:interaction 327:"BraggsLaw" 249:Limitations 170:Bragg's law 1116:Categories 1065:Multislice 881:Developers 741:Techniques 486:Microscope 481:Micrograph 308:References 214:goniometer 206:collimated 67:, Xenocs, 61:Bruker AXS 57:Anton Paar 933:Max Knoll 588:Stigmator 283:overlaps 1088:Category 1035:CrysTBox 1023:Software 694:Cryo-TEM 501:Electron 296:See also 259:isotopes 115:(WDXRF) 109:spectrum 45:Analytes 1100:Commons 748:4D STEM 721:4D STEM 699:Cryo-ET 671:SEM-XRF 661:CryoSEM 618:Cryo-EM 476:History 184:integer 153:orbital 85:Related 27:Acronym 1045:EMsoft 1030:CASINO 1009:TESCAN 874:Others 773:cryoEM 464:Basics 223:oxygen 131:Theory 69:CAMECA 999:Leica 845:PINEM 711:HRTEM 706:EFTEM 219:boron 197:or a 1060:IUCr 994:JEOL 865:WBDF 860:WDXS 810:EBIC 805:EELS 800:ECCI 788:EBSD 768:CBED 716:STEM 393:2020 365:2020 339:2020 221:and 101:WDXS 73:JEOL 30:WDXS 830:FEM 825:FIB 793:TKD 783:EDS 686:TEM 648:SEM 623:EMP 105:WDS 103:or 32:WDS 1118:: 605:EM 414:. 401:^ 384:. 373:^ 355:. 329:. 316:^ 285:Ti 123:, 119:, 71:, 59:, 449:e 442:t 435:v 395:. 367:. 341:. 291:) 289:β 287:K 281:α 279:K 277:V 273:β 269:α 235:β 231:α 229:K 186:. 99:(

Index

Anton Paar
Bruker AXS
Rigaku Corporation
CAMECA
JEOL
Energy-dispersive X-ray spectroscopy
spectrum
X-ray fluorescence
spectrometry
electron microprobes
scanning electron microscopes

orbital
electron configuration
Bragg's law
constructive interference
integer
scintillation counter
proportional counter
collimated
Söller collimator
goniometer
boron
oxygen
isotopes
V
Ti
X-ray spectroscopy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.