Knowledge (XXG)

Waveplate

Source 📝

1188: 1180: 1630:, it is common to use a full-wave plate designed for green light (a wavelength near 540 nm). Linearly polarized white light which passes through the plate becomes elliptically polarized, except for that green light wavelength, which will remain linear. If a linear polarizer oriented perpendicular to the original polarization is added, this green wavelength is fully extinguished but elements of the other colors remain. This means that under these conditions the plate will appear an intense shade of red-violet, sometimes known as "sensitive tint". This gives rise to this plate's alternative names, the 1603: 1618:
delayed). If the input polarization is 45° to the fast and slow axis, the polarization on those axes are equal. But the phase of the output of the slow axis will be delayed 90° with the output of the fast axis. If not the amplitude but both sine values are displayed, then x and y combined will describe a circle. With other angles than 0° or 45° the values in fast and slow axis will differ and their resultant output will describe an ellipse.
156: 1687: 415: 756: 20: 147: 1658:
A multiple-order waveplate is made from a single birefringent crystal that produces an integer multiple of the rated retardance (for example, a multiple-order half-wave plate may have an absolute retardance of 37λ/2). By contrast, a zero-order waveplate produces exactly the specified retardance. This
1617:
The polarization of the incoming photon (or beam) can be resolved as two polarizations on the x and y axis. If the input polarization is parallel to the fast or slow axis, then there is no polarization of the other axis, so the output polarization is the same as the input (only the phase more or less
41:
Linearly polarized light entering a half-wave plate can be resolved into two waves, parallel and perpendicular to the optic axis of the waveplate. In the plate, the parallel wave propagates slightly slower than the perpendicular one. At the far side of the plate, the parallel wave is exactly half of
1730:
relative to crystal elongation – that is, whether the mineral is "length slow" or "length fast" – based on whether the visible interference colors increase or decrease by one order when the plate is added. Secondly, a slightly more complex procedure allows for a tint plate to be used in conjunction
557: 106:
of light, and the variation of the index of refraction. By appropriate choice of the relationship between these parameters, it is possible to introduce a controlled phase shift between the two polarization components of a light wave, thereby altering its polarization. With an engineered combination
388:
For a single waveplate changing the wavelength of the light introduces a linear error in the phase. Tilt of the waveplate enters via a factor of 1/cos θ (where θ is the angle of tilt) into the path length and thus only quadratically into the phase. For the extraordinary polarization the tilt also
1725:
In practical terms, the plate is inserted between the perpendicular polarizers at an angle of 45 degrees. This allows two different procedures to be carried out to investigate the mineral under the crosshairs of the microscope. Firstly, in ordinary cross polarized light, the plate can be used to
380:
in the denominator in the above equation). Waveplates are thus manufactured to work for a particular range of wavelengths. The phase variation can be minimized by stacking two waveplates that differ by a tiny amount in thickness back-to-back, with the slow axis of one along the fast axis of the
1010: 1659:
can be accomplished by combining two multiple-order wave plates such that the difference in their retardances yields the net (true) retardance of the waveplate. Zero-order waveplates are less sensitive to temperature and wavelength shifts, but are more expensive than multiple-order ones.
276:
Depending on the thickness of the crystal, light with polarization components along both axes will emerge in a different polarization state. The waveplate is characterized by the amount of relative phase, Γ, that it imparts on the two components, which is related to the birefringence
1594:
If the axis of polarization of the incident wave is chosen so that it makes a 0° with the fast or slow axes of the waveplate, then the polarization will not change, so remains linear. If the angle is in between 0° and 45° the resulting wave has an elliptical polarization.
1167:. For linearly polarized light, this is equivalent to saying that the effect of the half-wave plate is to rotate the polarization vector through an angle 2θ; however, for elliptically polarized light the half-wave plate also has the effect of inverting the light's 1598:
A circulating polarization can be visualized as the sum of two linear polarizations with a phase difference of 90°. The output depends on the polarization of the input. Suppose polarization axes x and y parallel with the slow and fast axis of the waveplate:
197:. The ordinary axis is perpendicular to the optic axis. The extraordinary axis is parallel to the optic axis. For a light wave normally incident upon the plate, the polarization component along the ordinary axis travels through the crystal with a speed 101:
is different for light linearly polarized along one or the other of two certain perpendicular crystal axes. The behavior of a waveplate (that is, whether it is a half-wave plate, a quarter-wave plate, etc.) depends on the thickness of the crystal, the
392:
A polarization-independent phase shift of zero order needs a plate with thickness of one wavelength. For calcite the refractive index changes in the first decimal place, so that a true zero order plate is ten times as thick as one wavelength. For
1467: 1314: 798: 1586: 150:
A wave in a uniaxial crystal will separate in two components, one parallel and one perpendicular to the optic axis, that will accumulate phase at different rates. This can be used to manipulate the polarization state of the
1739:
of the mineral. The optic angle (often notated as "2V") can both be diagnostic of mineral type, as well as in some cases revealing information about the variation of chemical composition within a single mineral type.
751:{\displaystyle \mathbf {E} \,\mathrm {e} ^{i(kz-\omega t)}=E\,\mathbf {\hat {p}} \,\mathrm {e} ^{i(kz-\omega t)}=E(\cos \theta \,\mathbf {\hat {f}} +\sin \theta \,\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} 345: 381:
other. With this configuration, the relative phase imparted can be, for the case of a quarter-wave plate, one-fourth a wavelength rather than three-fourths or one-fourth plus an integer. This is called a
1187: 1078: 1044: 1165: 1136: 1107: 785: 548: 519: 490: 461: 1207:
is chosen so that the phase shift between polarization components is Γ = π/2. Now suppose a linearly polarized wave is incident on the crystal. This wave can be written as
138:
within the visible crystal sections. This alignment can allow discrimination between minerals which otherwise appear very similar in plane polarized and cross polarized light.
1179: 1363: 1213: 389:
changes the refractive index to the ordinary via a factor of cos θ, so combined with the path length, the phase shift for the extraordinary light due to tilt is zero.
42:
a wavelength delayed relative to the perpendicular wave, and the resulting combination is a mirror-image of the entry polarization state (relative to the optic axis).
1499: 365:
formalism, which uses a vector to represent the polarization state of light and a matrix to represent the linear transformation of a waveplate or polarizer.
1612: 107:
of two birefringent materials, an achromatic waveplate can be manufactured such that the spectral response of its phase retardance can be nearly flat.
1626:
A full-wave plate introduces a phase difference of exactly one wavelength between the two polarization directions, for one wavelength of light. In
1005:{\displaystyle E(\cos \theta \,\mathbf {\hat {f}} -\sin \theta \,\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)}=E\mathrm {e} ^{i(kz-\omega t)}.} 434:
is chosen so that the phase shift between polarization components is Γ = π. Now suppose a linearly polarized wave with polarization vector
376:, this is negligible compared to the variation in phase difference according to the wavelength of the light due to the fixed path difference (λ 171:
crystal with a carefully chosen orientation and thickness. The crystal is cut into a plate, with the orientation of the cut chosen so that the
787:
lies along the waveplate's slow axis. The effect of the half-wave plate is to introduce a phase shift term e = e = −1 between the
291: 1109:
is −θ. Evidently, the effect of the half-wave plate is to mirror the wave's polarization vector through the plane formed by the vectors
1475:
If the axis of polarization of the incident wave is chosen so that it makes a 45° with the fast and slow axes of the waveplate, then
78:, which converts between different elliptical polarizations (such as the special case of converting from linearly polarized light to 401:
the refractive index changes in the second decimal place and true zero order plates are common for wavelengths above 1 μm.
1813: 1899: 1957: 1667: 1962: 1952: 1046:
denotes the polarization vector of the wave exiting the waveplate, then this expression shows that the angle between
175:
of the crystal is parallel to the surfaces of the plate. This results in two axes in the plane of the cut: the
146: 1774: 1703: 172: 119: 1759: 1049: 1015: 1141: 1112: 1083: 761: 524: 495: 466: 437: 79: 1764: 167:
between two perpendicular polarization components of the light wave. A typical waveplate is simply a
110:
A common use of waveplates—particularly the sensitive-tint (full-wave) and quarter-wave plates—is in
59: 1732: 1345:
are real. The effect of the quarter-wave plate is to introduce a phase shift term e =e =
373: 98: 71: 1611: 1462:{\displaystyle (E_{f}\mathbf {\hat {f}} +iE_{s}\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)}.} 1327:
axes are the quarter-wave plate's fast and slow axes, respectively, the wave propagates along the
1873: 1719: 1699: 1627: 1309:{\displaystyle (E_{f}\mathbf {\hat {f}} +E_{s}\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} 398: 135: 111: 1662:
Stacking a series of different-order waveplates with polarization filters between them yields a
1809: 233:. This leads to a phase difference between the two components as they exit the crystal. When 1691: 1675: 1727: 1581:{\displaystyle E(\mathbf {\hat {f}} +i\mathbf {\hat {s}} )\mathrm {e} ^{i(kz-\omega t)},} 1602: 155: 1749: 1715: 1698:
The sensitive-tint (full-wave) and quarter-wave plates are widely used in the field of
1671: 1647: 362: 131: 1946: 1754: 215:, while the polarization component along the extraordinary axis travels with a speed 168: 164: 86: 554:
denote the propagation axis of the wave. The electric field of the incident wave is
1711: 1643: 127: 1357:
components of the wave, so that upon exiting the crystal the wave is now given by
795:
components of the wave, so that upon exiting the crystal the wave is now given by
1191:
Creating circular polarization using a quarter-wave plate and a polarizing filter
1663: 134:
easier, in particular by allowing deduction of the shape and orientation of the
1936: 1927: 1686: 414: 1779: 103: 1168: 358: 115: 1718:, in particular by allowing deduction of the shape and orientation of the 1638:. These plates are widely used in mineralogy to aid in identification of 1769: 1707: 1639: 248: 123: 19: 394: 90: 55: 340:{\displaystyle \Gamma ={\frac {2\pi \,\Delta n\,L}{\lambda _{0}}},} 66:
wave travelling through it. Two common types of waveplates are the
1685: 1601: 1186: 1178: 413: 154: 145: 63: 1606:
Composition of two linearly polarized waves, phase shifted by π/2
94: 1862:. Vol. 1. New York: John Wiley & Sons. p. 121. 1858:
Winchell, Newton Horace; Winchell, Alexander Newton (1922).
1829: 463:
is incident on the crystal. Let θ denote the angle between
1183:
Two waves differing by a quarter-phase shift for one axis
1666:. Either the filters can be rotated, or the waveplates 1493:, and the resulting wave upon exiting the waveplate is 1860:
Elements of Optical Mineralogy: Principles and Methods
1502: 1366: 1216: 1144: 1115: 1086: 1052: 1018: 801: 764: 560: 527: 498: 469: 440: 294: 1195:For a quarter-wave plate, the relationship between 550:is the vector along the waveplate's fast axis. Let 1580: 1461: 1308: 1159: 1130: 1101: 1072: 1038: 1004: 779: 750: 542: 513: 484: 455: 339: 1702:. Addition of plates between the polarizers of a 1533: 1515: 1414: 1386: 1261: 1236: 1151: 1122: 1093: 1060: 1026: 957: 924: 849: 824: 771: 703: 678: 613: 534: 505: 476: 447: 422:For a half-wave plate, the relationship between 70:, which rotates the polarization direction of 1853: 1851: 1849: 1694:photographed using a petrographic microscope. 8: 1932:Encyclopedia of Laser Physics and Technology 1726:distinguish the orientation of the optical 1706:makes easier the optical identification of 27: Electric field parallel to optic axis 33: Electric field perpendicular to axis 1548: 1543: 1528: 1527: 1510: 1509: 1501: 1429: 1424: 1409: 1408: 1402: 1381: 1380: 1374: 1365: 1276: 1271: 1256: 1255: 1249: 1231: 1230: 1224: 1215: 1146: 1145: 1143: 1117: 1116: 1114: 1088: 1087: 1085: 1055: 1054: 1051: 1021: 1020: 1017: 972: 967: 952: 951: 919: 918: 864: 859: 844: 843: 842: 819: 818: 817: 800: 766: 765: 763: 718: 713: 698: 697: 696: 673: 672: 671: 626: 621: 619: 608: 607: 606: 573: 568: 566: 561: 559: 529: 528: 526: 500: 499: 497: 471: 470: 468: 442: 441: 439: 326: 317: 310: 301: 293: 1654:Multiple-order vs. zero-order waveplates 1472:The wave is now elliptically polarized. 418:A wave passing through a half-wave plate 18: 1799: 1797: 1795: 1791: 1735:techniques to allow measurement of the 1682:Use in mineralogy and optical petrology 354:is the vacuum wavelength of the light. 251:, the extraordinary axis is called the 1591:and the wave is circularly polarized. 1722:within the visible crystal sections. 159:A waveplate mounted in a rotary mount 7: 1073:{\displaystyle \mathbf {\hat {p}} '} 1039:{\displaystyle \mathbf {\hat {p}} '} 255:and the ordinary axis is called the 122:makes the optical identification of 85:Waveplates are constructed out of a 1674:layers, to obtain a widely tunable 1160:{\displaystyle \mathbf {\hat {z}} } 1131:{\displaystyle \mathbf {\hat {f}} } 1102:{\displaystyle \mathbf {\hat {f}} } 780:{\displaystyle \mathbf {\hat {s}} } 543:{\displaystyle \mathbf {\hat {f}} } 514:{\displaystyle \mathbf {\hat {f}} } 485:{\displaystyle \mathbf {\hat {p}} } 456:{\displaystyle \mathbf {\hat {p}} } 1678:in optical transmission spectrum. 1622:Full-wave, or sensitive-tint plate 1544: 1425: 1272: 968: 860: 714: 622: 569: 357:Waveplates in general, as well as 311: 295: 163:A waveplate works by shifting the 97:, or even plastic), for which the 14: 114:. Addition of plates between the 1830:"Mounted Achromatic Wave Plates" 1808:(4th ed.). pp. 352–5. 1610: 1530: 1512: 1411: 1383: 1258: 1233: 1148: 1119: 1090: 1057: 1023: 954: 921: 846: 821: 768: 700: 675: 610: 562: 531: 502: 473: 444: 1570: 1552: 1539: 1506: 1451: 1433: 1420: 1367: 1298: 1280: 1267: 1217: 994: 976: 963: 948: 939: 915: 906: 897: 886: 868: 855: 805: 740: 722: 709: 659: 648: 630: 595: 577: 285:of the crystal by the formula 1: 361:, can be described using the 368:Although the birefringence Δ 273:the situation is reversed. 190:, with index of refraction 179:, with index of refraction 16:Optical polarization device 1979: 1900:"Understanding Waveplates" 1937:Polarizers and Waveplates 1880:. University of Cambridge 1690:Thin crystalline film of 372:may vary slightly due to 39: The combined field 1775:Spatial light modulator 1704:petrographic microscope 142:Principles of operation 120:petrographic microscope 82:light and vice versa.) 58:device that alters the 1760:Photoelastic modulator 1695: 1607: 1582: 1463: 1310: 1192: 1184: 1161: 1132: 1103: 1074: 1040: 1006: 781: 752: 544: 515: 486: 457: 419: 341: 160: 152: 43: 1689: 1605: 1583: 1464: 1311: 1190: 1182: 1162: 1133: 1104: 1075: 1041: 1007: 782: 753: 545: 516: 487: 458: 417: 342: 158: 149: 22: 1958:Polarization (waves) 1904:www.edmundoptics.com 1765:Polarization rotator 1720:optical indicatrices 1632:sensitive-tint plate 1500: 1364: 1214: 1142: 1113: 1084: 1050: 1016: 799: 762: 558: 525: 496: 467: 438: 383:zero-order waveplate 292: 136:optical indicatrices 80:circularly polarized 1733:interference figure 1634:or (less commonly) 99:index of refraction 1963:Optical components 1953:Optical mineralogy 1804:Hecht, E. (2001). 1700:optical mineralogy 1696: 1628:optical mineralogy 1608: 1578: 1459: 1306: 1193: 1185: 1175:Quarter-wave plate 1157: 1128: 1099: 1070: 1036: 1002: 777: 748: 540: 511: 482: 453: 420: 399:magnesium fluoride 337: 281:and the thickness 188:extraordinary axis 161: 153: 112:optical mineralogy 89:material (such as 76:quarter-wave plate 72:linearly polarized 44: 1536: 1518: 1417: 1389: 1264: 1239: 1154: 1125: 1096: 1063: 1029: 960: 927: 852: 827: 774: 706: 681: 616: 537: 508: 479: 450: 332: 1970: 1915: 1914: 1912: 1911: 1896: 1890: 1889: 1887: 1885: 1870: 1864: 1863: 1855: 1844: 1843: 1841: 1840: 1834:www.thorlabs.com 1826: 1820: 1819: 1801: 1692:caesium chloride 1614: 1587: 1585: 1584: 1579: 1574: 1573: 1547: 1538: 1537: 1529: 1520: 1519: 1511: 1468: 1466: 1465: 1460: 1455: 1454: 1428: 1419: 1418: 1410: 1407: 1406: 1391: 1390: 1382: 1379: 1378: 1315: 1313: 1312: 1307: 1302: 1301: 1275: 1266: 1265: 1257: 1254: 1253: 1241: 1240: 1232: 1229: 1228: 1166: 1164: 1163: 1158: 1156: 1155: 1147: 1137: 1135: 1134: 1129: 1127: 1126: 1118: 1108: 1106: 1105: 1100: 1098: 1097: 1089: 1079: 1077: 1076: 1071: 1069: 1065: 1064: 1056: 1045: 1043: 1042: 1037: 1035: 1031: 1030: 1022: 1011: 1009: 1008: 1003: 998: 997: 971: 962: 961: 953: 929: 928: 920: 890: 889: 863: 854: 853: 845: 829: 828: 820: 786: 784: 783: 778: 776: 775: 767: 757: 755: 754: 749: 744: 743: 717: 708: 707: 699: 683: 682: 674: 652: 651: 625: 618: 617: 609: 599: 598: 572: 565: 549: 547: 546: 541: 539: 538: 530: 520: 518: 517: 512: 510: 509: 501: 491: 489: 488: 483: 481: 480: 472: 462: 460: 459: 454: 452: 451: 443: 346: 344: 343: 338: 333: 331: 330: 321: 302: 38: 32: 26: 1978: 1977: 1973: 1972: 1971: 1969: 1968: 1967: 1943: 1942: 1924: 1919: 1918: 1909: 1907: 1906:. Edmund Optics 1898: 1897: 1893: 1883: 1881: 1872: 1871: 1867: 1857: 1856: 1847: 1838: 1836: 1828: 1827: 1823: 1816: 1803: 1802: 1793: 1788: 1746: 1684: 1668:can be replaced 1656: 1624: 1542: 1498: 1497: 1487: 1480: 1423: 1398: 1370: 1362: 1361: 1343: 1336: 1270: 1245: 1220: 1212: 1211: 1206: 1177: 1140: 1139: 1111: 1110: 1082: 1081: 1053: 1048: 1047: 1019: 1014: 1013: 966: 858: 797: 796: 760: 759: 712: 620: 567: 556: 555: 523: 522: 494: 493: 465: 464: 436: 435: 433: 412: 410:Half-wave plate 407: 379: 353: 322: 303: 290: 289: 272: 265: 246: 239: 232: 221: 214: 203: 196: 185: 144: 74:light, and the 68:half-wave plate 40: 36: 34: 30: 28: 24: 17: 12: 11: 5: 1976: 1974: 1966: 1965: 1960: 1955: 1945: 1944: 1941: 1940: 1934: 1923: 1922:External links 1920: 1917: 1916: 1891: 1865: 1845: 1821: 1814: 1790: 1789: 1787: 1784: 1783: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1750:Crystal optics 1745: 1742: 1683: 1680: 1672:liquid crystal 1655: 1652: 1636:red-tint plate 1623: 1620: 1589: 1588: 1577: 1572: 1569: 1566: 1563: 1560: 1557: 1554: 1551: 1546: 1541: 1535: 1532: 1526: 1523: 1517: 1514: 1508: 1505: 1485: 1478: 1470: 1469: 1458: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1427: 1422: 1416: 1413: 1405: 1401: 1397: 1394: 1388: 1385: 1377: 1373: 1369: 1341: 1334: 1317: 1316: 1305: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1274: 1269: 1263: 1260: 1252: 1248: 1244: 1238: 1235: 1227: 1223: 1219: 1204: 1176: 1173: 1153: 1150: 1124: 1121: 1095: 1092: 1068: 1062: 1059: 1034: 1028: 1025: 1001: 996: 993: 990: 987: 984: 981: 978: 975: 970: 965: 959: 956: 950: 947: 944: 941: 938: 935: 932: 926: 923: 917: 914: 911: 908: 905: 902: 899: 896: 893: 888: 885: 882: 879: 876: 873: 870: 867: 862: 857: 851: 848: 841: 838: 835: 832: 826: 823: 816: 813: 810: 807: 804: 773: 770: 747: 742: 739: 736: 733: 730: 727: 724: 721: 716: 711: 705: 702: 695: 692: 689: 686: 680: 677: 670: 667: 664: 661: 658: 655: 650: 647: 644: 641: 638: 635: 632: 629: 624: 615: 612: 605: 602: 597: 594: 591: 588: 585: 582: 579: 576: 571: 564: 536: 533: 507: 504: 478: 475: 449: 446: 431: 411: 408: 406: 403: 377: 351: 348: 347: 336: 329: 325: 320: 316: 313: 309: 306: 300: 297: 270: 263: 244: 237: 230: 219: 212: 201: 194: 183: 143: 140: 35: 29: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1975: 1964: 1961: 1959: 1956: 1954: 1951: 1950: 1948: 1938: 1935: 1933: 1930:RP photonics 1929: 1926: 1925: 1921: 1905: 1901: 1895: 1892: 1879: 1875: 1874:"Tint plates" 1869: 1866: 1861: 1854: 1852: 1850: 1846: 1835: 1831: 1825: 1822: 1817: 1811: 1807: 1800: 1798: 1796: 1792: 1785: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1755:Fresnel rhomb 1753: 1751: 1748: 1747: 1743: 1741: 1738: 1734: 1729: 1723: 1721: 1717: 1713: 1712:thin sections 1709: 1705: 1701: 1693: 1688: 1681: 1679: 1677: 1673: 1669: 1665: 1660: 1653: 1651: 1649: 1645: 1644:thin sections 1641: 1637: 1633: 1629: 1621: 1619: 1615: 1613: 1604: 1600: 1596: 1592: 1575: 1567: 1564: 1561: 1558: 1555: 1549: 1524: 1521: 1503: 1496: 1495: 1494: 1492: 1488: 1481: 1473: 1456: 1448: 1445: 1442: 1439: 1436: 1430: 1403: 1399: 1395: 1392: 1375: 1371: 1360: 1359: 1358: 1356: 1352: 1348: 1344: 1337: 1330: 1326: 1322: 1303: 1295: 1292: 1289: 1286: 1283: 1277: 1250: 1246: 1242: 1225: 1221: 1210: 1209: 1208: 1202: 1198: 1189: 1181: 1174: 1172: 1170: 1066: 1032: 999: 991: 988: 985: 982: 979: 973: 945: 942: 936: 933: 930: 912: 909: 903: 900: 894: 891: 883: 880: 877: 874: 871: 865: 839: 836: 833: 830: 814: 811: 808: 802: 794: 790: 745: 737: 734: 731: 728: 725: 719: 693: 690: 687: 684: 668: 665: 662: 656: 653: 645: 642: 639: 636: 633: 627: 603: 600: 592: 589: 586: 583: 580: 574: 553: 429: 425: 416: 409: 404: 402: 400: 396: 390: 386: 384: 375: 371: 366: 364: 360: 355: 334: 327: 323: 318: 314: 307: 304: 298: 288: 287: 286: 284: 280: 274: 269: 262: 258: 254: 250: 243: 236: 229: 225: 218: 211: 207: 200: 193: 189: 182: 178: 177:ordinary axis 174: 170: 166: 157: 148: 141: 139: 137: 133: 129: 128:thin sections 125: 121: 117: 113: 108: 105: 100: 96: 92: 88: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 21: 1931: 1908:. Retrieved 1903: 1894: 1882:. Retrieved 1877: 1868: 1859: 1837:. Retrieved 1833: 1824: 1805: 1736: 1724: 1697: 1661: 1657: 1635: 1631: 1625: 1616: 1609: 1597: 1593: 1590: 1490: 1483: 1476: 1474: 1471: 1354: 1350: 1349:between the 1346: 1339: 1332: 1328: 1324: 1320: 1318: 1200: 1196: 1194: 792: 788: 551: 427: 423: 421: 391: 387: 382: 369: 367: 363:Jones matrix 356: 349: 282: 278: 275: 267: 260: 256: 252: 241: 234: 227: 223: 216: 209: 205: 198: 191: 187: 180: 176: 169:birefringent 162: 109: 87:birefringent 84: 75: 67: 60:polarization 51: 47: 45: 1737:optic angle 1664:Lyot filter 405:Plate types 266: > 240: < 62:state of a 1947:Categories 1928:Waveplates 1910:2019-05-03 1839:2024-01-16 1815:0805385665 1786:References 1780:Zone plate 1728:indicatrix 1331:axis, and 1319:where the 1169:handedness 374:dispersion 359:polarizers 186:, and the 173:optic axis 116:polarizers 104:wavelength 1939:Animation 1676:pass band 1565:ω 1562:− 1534:^ 1516:^ 1446:ω 1443:− 1415:^ 1387:^ 1293:ω 1290:− 1262:^ 1237:^ 1152:^ 1123:^ 1094:^ 1061:^ 1027:^ 989:ω 986:− 958:^ 946:θ 943:− 937:⁡ 925:^ 913:θ 910:− 904:⁡ 881:ω 878:− 850:^ 840:θ 837:⁡ 831:− 825:^ 815:θ 812:⁡ 772:^ 735:ω 732:− 704:^ 694:θ 691:⁡ 679:^ 669:θ 666:⁡ 643:ω 640:− 614:^ 590:ω 587:− 535:^ 506:^ 477:^ 448:^ 324:λ 312:Δ 308:π 296:Γ 257:slow axis 253:fast axis 48:waveplate 1878:DoITPoMS 1744:See also 1708:minerals 1640:minerals 1489: ≡ 1482: = 1067:′ 1033:′ 521:, where 247:, as in 124:minerals 52:retarder 1884:Dec 31, 1770:Q-plate 1203:, and λ 430:, and λ 350:where λ 249:calcite 56:optical 1812:  1806:Optics 758:where 395:quartz 259:. For 91:quartz 54:is an 37:  31:  25:  1731:with 1716:rocks 1670:with 1648:rocks 165:phase 151:wave. 132:rocks 118:of a 64:light 1886:2016 1810:ISBN 1353:and 1338:and 1323:and 1138:and 1080:and 791:and 492:and 397:and 95:mica 1714:of 1710:in 1646:of 1642:in 1199:, Δ 1012:If 934:sin 901:cos 834:sin 809:cos 688:sin 663:cos 426:, Δ 130:of 126:in 93:or 50:or 1949:: 1902:. 1876:. 1848:^ 1832:. 1794:^ 1650:. 1171:. 385:. 222:= 204:= 46:A 1913:. 1888:. 1842:. 1818:. 1576:, 1571:) 1568:t 1559:z 1556:k 1553:( 1550:i 1545:e 1540:) 1531:s 1525:i 1522:+ 1513:f 1507:( 1504:E 1491:E 1486:s 1484:E 1479:f 1477:E 1457:. 1452:) 1449:t 1440:z 1437:k 1434:( 1431:i 1426:e 1421:) 1412:s 1404:s 1400:E 1396:i 1393:+ 1384:f 1376:f 1372:E 1368:( 1355:s 1351:f 1347:i 1342:s 1340:E 1335:f 1333:E 1329:z 1325:s 1321:f 1304:, 1299:) 1296:t 1287:z 1284:k 1281:( 1278:i 1273:e 1268:) 1259:s 1251:s 1247:E 1243:+ 1234:f 1226:f 1222:E 1218:( 1205:0 1201:n 1197:L 1149:z 1120:f 1091:f 1058:p 1024:p 1000:. 995:) 992:t 983:z 980:k 977:( 974:i 969:e 964:] 955:s 949:) 940:( 931:+ 922:f 916:) 907:( 898:[ 895:E 892:= 887:) 884:t 875:z 872:k 869:( 866:i 861:e 856:) 847:s 822:f 806:( 803:E 793:s 789:f 769:s 746:, 741:) 738:t 729:z 726:k 723:( 720:i 715:e 710:) 701:s 685:+ 676:f 660:( 657:E 654:= 649:) 646:t 637:z 634:k 631:( 628:i 623:e 611:p 604:E 601:= 596:) 593:t 584:z 581:k 578:( 575:i 570:e 563:E 552:z 532:f 503:f 474:p 445:p 432:0 428:n 424:L 378:0 370:n 352:0 335:, 328:0 319:L 315:n 305:2 299:= 283:L 279:n 277:Δ 271:o 268:n 264:e 261:n 245:o 242:n 238:e 235:n 231:e 228:n 226:/ 224:c 220:e 217:v 213:o 210:n 208:/ 206:c 202:o 199:v 195:e 192:n 184:o 181:n

Index


optical
polarization
light
linearly polarized
circularly polarized
birefringent
quartz
mica
index of refraction
wavelength
optical mineralogy
polarizers
petrographic microscope
minerals
thin sections
rocks
optical indicatrices


phase
birefringent
optic axis
calcite
polarizers
Jones matrix
dispersion
quartz
magnesium fluoride

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.