Knowledge

Well-order

Source 📝

2030:) of a finite set is equal to the order type. Counting in the everyday sense typically starts from one, so it assigns to each object the size of the initial segment with that object as last element. Note that these numbers are one more than the formal ordinal numbers according to the isomorphic order, because these are equal to the number of earlier objects (which corresponds to counting from zero). Thus for finite 1653: 1640: 1074: 1064: 1034: 1024: 1002: 992: 957: 935: 925: 890: 858: 848: 823: 791: 776: 756: 724: 714: 704: 684: 652: 632: 622: 612: 580: 560: 516: 496: 486: 449: 424: 414: 382: 357: 320: 290: 258: 196: 161: 2721:) imply the axiom of choice and hence a well order of the reals. Nonetheless, it is possible to show that the ZFC+GCH axioms alone are not sufficient to prove the existence of a definable (by a formula) well order of the reals. However it is consistent with ZFC that a definable well ordering of the reals exists—for example, it is consistent with ZFC that 3418:
Subsets that are unbounded by themselves but bounded in the whole set; they have no maximum, but a supremum outside the subset; if the subset is non-empty this supremum is a limit point of the subset and hence also of the whole set; if the subset is empty this supremum is the minimum of the whole
2165: 2374: 2624: 1384: 1313: 2533: 1628: 1242: 1513: 1469: 1425: 2026:, to find the ordinal number of a particular object, or to find the object with a particular ordinal number, corresponds to assigning ordinal numbers one by one to the objects. The size (number of elements, 3203: 3289: 1650:
indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by
1583: 1480: 1436: 1395: 1324: 1253: 1197: 3215:
within the set. Within the set of real numbers, either with the ordinary topology or the order topology, 0 is also a limit point of the set. It is also a limit point of the set of limit points.
3107: 2087: 3034: 2868: 2297: 2081:
Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:
2544: 1186: 1572: 2701: 3400: 2903: 2941: 2754: 2429: 1319: 2022:
of the well-ordered set. The position of each element within the ordered set is also given by an ordinal number. In the case of a finite set, the basic operation of
1726: 1248: 1807: 1778: 1752: 1540: 1157: 1687: 3415:
by themselves); this can be an isolated point or a limit point of the whole set; in the latter case it may or may not be also a limit point of the subset.
4280: 3368:— this type does not occur in finite sets, and may or may not occur in an infinite set; the infinite sets without limit point are the sets of order type 61: 3507:
Bonnet, Rémi; Finkel, Alain; Haddad, Serge; Rosa-Velardo, Fernando (2013). "Ordinal theory for expressiveness of well-structured transition systems".
2439: 1578: 4263: 1192: 3793: 3302:
of this set, 1 is a limit point of the set, despite being separated from the only limit point 0 under the ordinary topology of the real numbers.
3629: 1475: 3597: 1431: 4110: 1390: 4246: 4105: 3119: 3221: 4100: 2718: 3736: 3818: 2870:
whose elements are nonempty and disjoint intervals. Each such interval contains at least one rational number, so there is an
54: 3430:
in the whole set if and only if it is unbounded in the whole set or it has a maximum that is also maximum of the whole set.
2953:
is countable. On the other hand, a countably infinite subset of the reals may or may not be a well order with the standard
4137: 4057: 3731: 2160:{\displaystyle {\begin{matrix}0&2&4&6&8&\dots &1&3&5&7&9&\dots \end{matrix}}} 3922: 3851: 3051: 3825: 3813: 3776: 3751: 3726: 3680: 3649: 3328:
Every strictly decreasing sequence of elements of the set must terminate after only finitely many steps (assuming the
3756: 3746: 1954:. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible. 4122: 3622: 4095: 3761: 3442: 3329: 2038:-th element" of a well-ordered set requires context to know whether this counts from zero or one. In a notation " 47: 2971: 2369:{\displaystyle {\begin{matrix}0&1&2&3&4&\dots &-1&-2&-3&\dots \end{matrix}}} 2078:
is a well ordering and has the additional property that every non-zero natural number has a unique predecessor.
1947:
well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a
4323: 4318: 4027: 3654: 2804: 2053:, but not conversely: well-ordered sets of a particular cardinality can have many different order types (see 1908:, has a unique successor (next element), namely the least element of the subset of all elements greater than 4275: 4258: 3551: 2714: 2619:{\displaystyle {\begin{matrix}0&-1&1&-2&2&-3&3&-4&4&\dots \end{matrix}}} 1993: 4187: 3803: 2645: 2183:. Every element has a successor (there is no largest element). Two elements lack a predecessor: 0 and 1. 1091: 84: 1162: 4313: 4165: 4000: 3991: 3860: 3695: 3659: 3615: 3434: 3427: 3322: 1982: 1978: 1970: 1948: 1101: 94: 3741: 2728:
An uncountable subset of the real numbers with the standard ordering ≤ cannot be a well order: Suppose
2945:
to the natural numbers (which could be chosen to avoid hitting zero). Thus there is an injection from
1546: 4253: 4212: 4202: 4192: 3937: 3900: 3890: 3870: 3855: 3589: 2656: 1977:, states that every set can be well ordered. If a set is well ordered (or even if it merely admits a 1667: 878: 153: 4180: 4091: 4037: 3996: 3986: 3875: 3808: 3771: 3380: 2883: 1690: 1126: 537: 119: 36: 2924: 2737: 2725:, and it follows from ZFC+V=L that a particular formula well orders the reals, or indeed any set. 1379:{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}} 4219: 4072: 3981: 3971: 3912: 3830: 3478: 2871: 2401: 2058: 1951: 1121: 1116: 1096: 1086: 1012: 114: 109: 89: 79: 4292: 4132: 3766: 1308:{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}} 4229: 4207: 4067: 4052: 4032: 3835: 3593: 3462: 3345: 1929: 1836: 2919:, which could be mapped to zero later). And it is well known that there is an injection from 1646:
indicates that the column's property is always true the row's term (at the very left), while
4042: 3895: 3560: 3542: 3516: 3473: 2011: 1958: 1944: 1905: 1696: 811: 744: 3528: 4224: 4007: 3885: 3880: 3865: 3690: 3675: 3524: 3483: 3373: 2710: 2207: 2200: 2027: 1989: 1974: 1783: 672: 469: 40: 3781: 1810:
A term's definition may require additional properties that are not listed in this table.
1757: 1731: 1519: 1136: 3583: 4142: 4127: 4117: 3976: 3954: 3932: 3579: 3468: 3359: 3349: 3299: 2431: 2383: 2217: 2192: 2075: 2015: 2005: 1962: 1843: 1672: 340: 4307: 4241: 4197: 4175: 4047: 3917: 3905: 3710: 2649: 1862: 1111: 1106: 945: 278: 104: 99: 4062: 3944: 3927: 3845: 3685: 3638: 3488: 1912:. There may be elements, besides the least element, that have no predecessor (see 1985:
can be used to prove that a given statement is true for all elements of the set.
4268: 3961: 3840: 3705: 3450: 3412: 3365: 3312: 3212: 2528:{\displaystyle |x|<|y|\qquad {\text{or}}\qquad |x|=|y|{\text{ and }}x\leq y.} 2050: 1925: 1820: 402: 3036:
has no least element and is therefore not a well order under standard ordering
1623:{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}} 4236: 4170: 2630: 2171: 2019: 1966: 1237:{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}} 3520: 2398:
Another relation for well ordering the integers is the following definition:
1873:. In some academic articles and textbooks these terms are instead written as 4287: 4160: 3966: 3565: 3446: 3319:
The set is well ordered. That is, every nonempty subset has a least element.
1851: 17: 4082: 3949: 3700: 2023: 217: 1992:
are well ordered by the usual less-than relation is commonly called the
1508:{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}} 2196: 1464:{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}} 1854: 1420:{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}} 2046:
can also be an infinite ordinal, it will typically count from zero.
1900:
Every non-empty well-ordered set has a least element. Every element
3355:
With respect to this topology there can be two kinds of elements:
2961:
The natural numbers are a well order under the standard ordering
2722: 1932:, namely the least element of the subset of all upper bounds of 3611: 3607: 3546: 3547:"Some Applications of the Notions of Forcing and Generic Sets" 2706: 3198:{\displaystyle \{-2^{-n}-2^{-m-n}\,|\,0\leq m,n<\omega \}} 2713:) one can show that there is a well order of the reals. Also 3362:— these are the minimum and the elements with a predecessor. 3284:{\displaystyle \{-2^{-n}\,|\,0\leq n<\omega \}\cup \{1\}} 3437:
if and only if it has order type less than or equal to ω
3585:
Real Analysis: Modern Techniques and Their Applications
2199:
is not a well ordering, since, for example, the set of
3335:
Every subordering is isomorphic to an initial segment.
2549: 2302: 2092: 3383: 3224: 3122: 3054: 2974: 2927: 2886: 2807: 2740: 2659: 2547: 2442: 2404: 2300: 2090: 2061:
set, the set of possible order types is uncountable.
1786: 1760: 1734: 1699: 1675: 1581: 1549: 1522: 1478: 1434: 1393: 1322: 1251: 1195: 1165: 1139: 4153: 4081: 4020: 3790: 3719: 3668: 3315:, then the following are equivalent to each other: 3411:Subsets with a maximum (that is, subsets that are 3394: 3283: 3197: 3102:{\displaystyle \{-2^{-n}\,|\,0\leq n<\omega \}} 3101: 3028: 2935: 2897: 2862: 2748: 2695: 2618: 2527: 2423: 2368: 2159: 2049:For an infinite set the order type determines the 1801: 1772: 1746: 1720: 1681: 1622: 1566: 1534: 1507: 1463: 1419: 1378: 1307: 1236: 1180: 1151: 2648:is not a well ordering, since, for example, the 2213:is an example of well ordering of the integers: 1398: 3588:. Pure and applied mathematics (2nd ed.). 2538:This well order can be visualized as follows: 3623: 3433:A well-ordered set as topological space is a 2705:does not contain a least element. From the 1663:in the "Antisymmetric" column, respectively. 55: 8: 3422:Subsets that are unbounded in the whole set. 3278: 3272: 3266: 3225: 3192: 3123: 3096: 3055: 3023: 2975: 2857: 2814: 1869:together with the ordering is then called a 2203:integers does not contain a least element. 4281:Positive cone of a partially ordered group 3630: 3616: 3608: 3344:Every well-ordered set can be made into a 3029:{\displaystyle \{1/n\,|\,n=1,2,3,\dots \}} 1916:below for an example). A well-ordered set 62: 48: 31: 3564: 3385: 3384: 3382: 3250: 3245: 3244: 3235: 3223: 3170: 3165: 3164: 3149: 3133: 3121: 3080: 3075: 3074: 3065: 3053: 2995: 2990: 2989: 2981: 2973: 2949:to the natural numbers, which means that 2929: 2928: 2926: 2888: 2887: 2885: 2863:{\displaystyle A=\{(x,s(x))\,|\,x\in X\}} 2847: 2842: 2841: 2806: 2742: 2741: 2739: 2658: 2548: 2546: 2508: 2503: 2495: 2487: 2479: 2473: 2467: 2459: 2451: 2443: 2441: 2412: 2403: 2301: 2299: 2091: 2089: 1904:of a well-ordered set, except a possible 1785: 1759: 1733: 1698: 1674: 1602: 1582: 1580: 1550: 1548: 1521: 1496: 1479: 1477: 1452: 1435: 1433: 1408: 1394: 1392: 1356: 1333: 1323: 1321: 1294: 1265: 1252: 1250: 1217: 1196: 1194: 1164: 1138: 4264:Positive cone of an ordered vector space 3499: 2915:(except possibly for a last element of 2220:one of the following conditions holds: 1172: 45: 3445:), that is, if and only if the set is 2191:Unlike the standard ordering ≤ of the 7: 2709:axioms of set theory (including the 2054: 1913: 1666:All definitions tacitly require the 2010:Every well-ordered set is uniquely 1957:Every well-ordered set is uniquely 1181:{\displaystyle S\neq \varnothing :} 3791:Properties & Types ( 25: 4247:Positive cone of an ordered field 3325:works for the entire ordered set. 3211:. The previous set is the set of 2195:, the standard ordering ≤ of the 4101:Ordered topological vector space 3407:For subsets we can distinguish: 2719:generalized continuum hypothesis 2057:, below, for an example). For a 1651: 1638: 1567:{\displaystyle {\text{not }}aRa} 1072: 1062: 1032: 1022: 1000: 990: 955: 933: 923: 888: 856: 846: 821: 789: 774: 754: 722: 712: 702: 682: 650: 630: 620: 610: 578: 558: 514: 494: 484: 447: 422: 412: 380: 355: 318: 288: 256: 194: 159: 2696:{\displaystyle (0,1)\subseteq } 2644:The standard ordering ≤ of any 2478: 2472: 2291:can be visualized as follows: 2074:The standard ordering ≤ of the 27:Class of mathematical orderings 3246: 3166: 3076: 2991: 2843: 2838: 2835: 2829: 2817: 2690: 2678: 2672: 2660: 2504: 2496: 2488: 2480: 2468: 2460: 2452: 2444: 2170:This is a well-ordered set of 1659:in the "Symmetric" column and 1595: 1340: 1285: 1214: 1: 4058:Series-parallel partial order 3395:{\displaystyle \mathbb {N} .} 2898:{\displaystyle \mathbb {Q} .} 1973:, which is equivalent to the 1969:of the well-ordered set. The 1850:with the property that every 1660: 1647: 1057: 1052: 1047: 1042: 1017: 985: 980: 975: 970: 965: 950: 918: 913: 908: 903: 898: 883: 871: 866: 841: 836: 831: 816: 804: 799: 784: 769: 764: 749: 737: 732: 697: 692: 677: 665: 660: 645: 640: 605: 593: 588: 573: 568: 553: 548: 543: 529: 524: 509: 504: 479: 474: 462: 457: 442: 437: 432: 407: 395: 390: 375: 370: 365: 350: 345: 333: 328: 313: 308: 303: 298: 283: 271: 266: 251: 246: 241: 236: 231: 226: 209: 204: 189: 184: 179: 174: 169: 3737:Cantor's isomorphism theorem 2936:{\displaystyle \mathbb {Q} } 2749:{\displaystyle \mathbb {R} } 2065:Examples and counterexamples 3777:Szpilrajn extension theorem 3752:Hausdorff maximal principle 3727:Boolean prime ideal theorem 3509:Information and Computation 2907:There is an injection from 2424:{\displaystyle x\leq _{z}y} 4340: 4123:Topological vector lattice 2717:proved that ZF + GCH (the 2003: 1981:), the proof technique of 1920:contains for every subset 1865:in this ordering. The set 3645: 3330:axiom of dependent choice 3044:Examples of well orders: 1988:The observation that the 3732:Cantor–Bernstein theorem 3521:10.1016/j.ic.2012.11.003 3348:by endowing it with the 4276:Partially ordered group 4096:Specialization preorder 3566:10.4064/fm-56-3-325-345 3552:Fundamenta Mathematicae 3307:Equivalent formulations 2797:is the last element of 2268:are both negative, and 2249:are both positive, and 1996:(for natural numbers). 1994:well-ordering principle 3762:Kruskal's tree theorem 3757:Knaster–Tarski theorem 3747:Dushnik–Miller theorem 3396: 3285: 3199: 3103: 3030: 2937: 2899: 2864: 2750: 2697: 2620: 2529: 2425: 2370: 2161: 2055:§ Natural numbers 1914:§ Natural numbers 1803: 1774: 1748: 1722: 1721:{\displaystyle a,b,c,} 1683: 1624: 1568: 1536: 1509: 1465: 1421: 1380: 1309: 1238: 1182: 1153: 3435:first-countable space 3397: 3323:Transfinite induction 3286: 3200: 3104: 3031: 2938: 2900: 2865: 2751: 2698: 2621: 2530: 2426: 2382:is isomorphic to the 2371: 2162: 1983:transfinite induction 1979:well-founded relation 1971:well-ordering theorem 1804: 1775: 1749: 1723: 1684: 1625: 1569: 1537: 1510: 1466: 1422: 1381: 1310: 1239: 1183: 1154: 1133:Definitions, for all 4254:Ordered vector space 3449:or has the smallest 3381: 3222: 3120: 3052: 2972: 2925: 2884: 2805: 2781:be the successor of 2738: 2657: 2545: 2440: 2402: 2298: 2088: 1802:{\displaystyle aRc.} 1784: 1758: 1732: 1697: 1673: 1668:homogeneous relation 1579: 1547: 1520: 1476: 1432: 1391: 1320: 1249: 1193: 1163: 1137: 879:Strict partial order 154:Equivalence relation 4092:Alexandrov topology 4038:Lexicographic order 3997:Well-quasi-ordering 3592:. pp. 4–6, 9. 3218:The set of numbers 3116:The set of numbers 3048:The set of numbers 2042:-th element" where 1833:well-order relation 1773:{\displaystyle bRc} 1747:{\displaystyle aRb} 1535:{\displaystyle aRa} 1152:{\displaystyle a,b} 538:Well-quasi-ordering 4073:Transitive closure 4033:Converse/Transpose 3742:Dilworth's theorem 3580:Folland, Gerald B. 3479:Well partial order 3392: 3372:, for example the 3281: 3195: 3099: 3026: 2933: 2895: 2872:injective function 2860: 2746: 2693: 2616: 2614: 2525: 2421: 2366: 2364: 2157: 2155: 2059:countably infinite 2034:, the expression " 1952:strict total order 1799: 1770: 1744: 1718: 1679: 1620: 1618: 1564: 1532: 1505: 1503: 1461: 1459: 1417: 1415: 1376: 1374: 1305: 1303: 1234: 1232: 1178: 1149: 1013:Strict total order 4301: 4300: 4259:Partially ordered 4068:Symmetric closure 4053:Reflexive closure 3796: 3599:978-0-471-31716-6 3463:Tree (set theory) 3346:topological space 2715:Wacław Sierpiński 2511: 2476: 2235:is positive, and 1930:least upper bound 1815: 1814: 1682:{\displaystyle R} 1633: 1632: 1605: 1553: 1499: 1455: 1411: 1359: 1268: 946:Strict weak order 132:Total, Semiconnex 16:(Redirected from 4331: 4043:Linear extension 3792: 3772:Mirsky's theorem 3632: 3625: 3618: 3609: 3603: 3571: 3570: 3568: 3539: 3533: 3532: 3504: 3474:Well-founded set 3465:, generalization 3403: 3401: 3399: 3398: 3393: 3388: 3371: 3297: 3290: 3288: 3287: 3282: 3249: 3243: 3242: 3210: 3204: 3202: 3201: 3196: 3169: 3163: 3162: 3141: 3140: 3112: 3108: 3106: 3105: 3100: 3079: 3073: 3072: 3039: 3035: 3033: 3032: 3027: 2994: 2985: 2964: 2956: 2952: 2948: 2944: 2942: 2940: 2939: 2934: 2932: 2918: 2914: 2910: 2906: 2904: 2902: 2901: 2896: 2891: 2877: 2869: 2867: 2866: 2861: 2846: 2800: 2796: 2792: 2788: 2784: 2780: 2769: 2765: 2761: 2758:well ordered by 2757: 2755: 2753: 2752: 2747: 2745: 2731: 2704: 2702: 2700: 2699: 2694: 2635: 2625: 2623: 2622: 2617: 2615: 2534: 2532: 2531: 2526: 2512: 2509: 2507: 2499: 2491: 2483: 2477: 2474: 2471: 2463: 2455: 2447: 2430: 2428: 2427: 2422: 2417: 2416: 2394: 2381: 2375: 2373: 2372: 2367: 2365: 2290: 2283: 2281: 2275: 2267: 2263: 2258: 2248: 2244: 2238: 2234: 2229: 2216: 2212: 2182: 2166: 2164: 2163: 2158: 2156: 2045: 2041: 2037: 2033: 2012:order isomorphic 1959:order isomorphic 1939: 1935: 1923: 1919: 1911: 1906:greatest element 1903: 1871:well-ordered set 1868: 1860: 1849: 1841: 1808: 1806: 1805: 1800: 1779: 1777: 1776: 1771: 1753: 1751: 1750: 1745: 1727: 1725: 1724: 1719: 1688: 1686: 1685: 1680: 1662: 1658: 1655: 1654: 1649: 1645: 1642: 1641: 1629: 1627: 1626: 1621: 1619: 1606: 1603: 1573: 1571: 1570: 1565: 1554: 1551: 1541: 1539: 1538: 1533: 1514: 1512: 1511: 1506: 1504: 1500: 1497: 1470: 1468: 1467: 1462: 1460: 1456: 1453: 1426: 1424: 1423: 1418: 1416: 1412: 1409: 1385: 1383: 1382: 1377: 1375: 1360: 1357: 1334: 1314: 1312: 1311: 1306: 1304: 1295: 1269: 1266: 1243: 1241: 1240: 1235: 1233: 1218: 1199: 1187: 1185: 1184: 1179: 1158: 1156: 1155: 1150: 1079: 1076: 1075: 1069: 1066: 1065: 1059: 1054: 1049: 1044: 1039: 1036: 1035: 1029: 1026: 1025: 1019: 1007: 1004: 1003: 997: 994: 993: 987: 982: 977: 972: 967: 962: 959: 958: 952: 940: 937: 936: 930: 927: 926: 920: 915: 910: 905: 900: 895: 892: 891: 885: 873: 868: 863: 860: 859: 853: 850: 849: 843: 838: 833: 828: 825: 824: 818: 812:Meet-semilattice 806: 801: 796: 793: 792: 786: 781: 778: 777: 771: 766: 761: 758: 757: 751: 745:Join-semilattice 739: 734: 729: 726: 725: 719: 716: 715: 709: 706: 705: 699: 694: 689: 686: 685: 679: 667: 662: 657: 654: 653: 647: 642: 637: 634: 633: 627: 624: 623: 617: 614: 613: 607: 595: 590: 585: 582: 581: 575: 570: 565: 562: 561: 555: 550: 545: 540: 531: 526: 521: 518: 517: 511: 506: 501: 498: 497: 491: 488: 487: 481: 476: 464: 459: 454: 451: 450: 444: 439: 434: 429: 426: 425: 419: 416: 415: 409: 397: 392: 387: 384: 383: 377: 372: 367: 362: 359: 358: 352: 347: 335: 330: 325: 322: 321: 315: 310: 305: 300: 295: 292: 291: 285: 273: 268: 263: 260: 259: 253: 248: 243: 238: 233: 228: 223: 221: 211: 206: 201: 198: 197: 191: 186: 181: 176: 171: 166: 163: 162: 156: 74: 73: 64: 57: 50: 43: 41:binary relations 32: 21: 4339: 4338: 4334: 4333: 4332: 4330: 4329: 4328: 4324:Wellfoundedness 4319:Ordinal numbers 4304: 4303: 4302: 4297: 4293:Young's lattice 4149: 4077: 4016: 3866:Heyting algebra 3814:Boolean algebra 3786: 3767:Laver's theorem 3715: 3681:Boolean algebra 3676:Binary relation 3664: 3641: 3636: 3606: 3600: 3578: 3574: 3541: 3540: 3536: 3506: 3505: 3501: 3497: 3484:Prewellordering 3459: 3440: 3379: 3378: 3376: 3374:natural numbers 3369: 3360:isolated points 3342: 3313:totally ordered 3309: 3292: 3291:has order type 3231: 3220: 3219: 3206: 3205:has order type 3145: 3129: 3118: 3117: 3110: 3109:has order type 3061: 3050: 3049: 3037: 2970: 2969: 2962: 2957:. For example, 2954: 2950: 2946: 2923: 2922: 2920: 2916: 2912: 2908: 2882: 2881: 2879: 2875: 2803: 2802: 2798: 2794: 2790: 2786: 2782: 2771: 2767: 2763: 2759: 2736: 2735: 2733: 2732:is a subset of 2729: 2711:axiom of choice 2655: 2654: 2652: 2642: 2633: 2613: 2612: 2607: 2602: 2594: 2589: 2581: 2576: 2568: 2563: 2555: 2543: 2542: 2510: and  2438: 2437: 2408: 2400: 2399: 2386: 2379: 2363: 2362: 2357: 2349: 2341: 2333: 2328: 2323: 2318: 2313: 2308: 2296: 2295: 2288: 2277: 2276:| ≤ | 2271: 2269: 2265: 2261: 2250: 2246: 2242: 2236: 2232: 2224: 2214: 2210: 2208:binary relation 2193:natural numbers 2189: 2174: 2154: 2153: 2148: 2143: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2103: 2098: 2086: 2085: 2076:natural numbers 2072: 2070:Natural numbers 2067: 2043: 2039: 2035: 2031: 2028:cardinal number 2008: 2002: 2000:Ordinal numbers 1990:natural numbers 1975:axiom of choice 1937: 1933: 1921: 1917: 1909: 1901: 1866: 1858: 1847: 1839: 1817: 1816: 1809: 1782: 1781: 1756: 1755: 1730: 1729: 1695: 1694: 1671: 1670: 1664: 1656: 1652: 1643: 1639: 1617: 1616: 1599: 1598: 1577: 1576: 1545: 1544: 1518: 1517: 1502: 1501: 1493: 1492: 1474: 1473: 1458: 1457: 1449: 1448: 1430: 1429: 1414: 1413: 1405: 1404: 1389: 1388: 1373: 1372: 1361: 1344: 1343: 1335: 1318: 1317: 1302: 1301: 1296: 1282: 1281: 1270: 1267: and  1247: 1246: 1231: 1230: 1219: 1211: 1210: 1191: 1190: 1161: 1160: 1135: 1134: 1077: 1073: 1067: 1063: 1037: 1033: 1027: 1023: 1005: 1001: 995: 991: 960: 956: 938: 934: 928: 924: 893: 889: 861: 857: 851: 847: 826: 822: 794: 790: 779: 775: 759: 755: 727: 723: 717: 713: 707: 703: 687: 683: 655: 651: 635: 631: 625: 621: 615: 611: 583: 579: 563: 559: 536: 519: 515: 499: 495: 489: 485: 470:Prewellordering 452: 448: 427: 423: 417: 413: 385: 381: 360: 356: 323: 319: 293: 289: 261: 257: 219: 216: 199: 195: 164: 160: 152: 144: 68: 35: 28: 23: 22: 15: 12: 11: 5: 4337: 4335: 4327: 4326: 4321: 4316: 4306: 4305: 4299: 4298: 4296: 4295: 4290: 4285: 4284: 4283: 4273: 4272: 4271: 4266: 4261: 4251: 4250: 4249: 4239: 4234: 4233: 4232: 4227: 4220:Order morphism 4217: 4216: 4215: 4205: 4200: 4195: 4190: 4185: 4184: 4183: 4173: 4168: 4163: 4157: 4155: 4151: 4150: 4148: 4147: 4146: 4145: 4140: 4138:Locally convex 4135: 4130: 4120: 4118:Order topology 4115: 4114: 4113: 4111:Order topology 4108: 4098: 4088: 4086: 4079: 4078: 4076: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4024: 4022: 4018: 4017: 4015: 4014: 4004: 3994: 3989: 3984: 3979: 3974: 3969: 3964: 3959: 3958: 3957: 3947: 3942: 3941: 3940: 3935: 3930: 3925: 3923:Chain-complete 3915: 3910: 3909: 3908: 3903: 3898: 3893: 3888: 3878: 3873: 3868: 3863: 3858: 3848: 3843: 3838: 3833: 3828: 3823: 3822: 3821: 3811: 3806: 3800: 3798: 3788: 3787: 3785: 3784: 3779: 3774: 3769: 3764: 3759: 3754: 3749: 3744: 3739: 3734: 3729: 3723: 3721: 3717: 3716: 3714: 3713: 3708: 3703: 3698: 3693: 3688: 3683: 3678: 3672: 3670: 3666: 3665: 3663: 3662: 3657: 3652: 3646: 3643: 3642: 3637: 3635: 3634: 3627: 3620: 3612: 3605: 3604: 3598: 3575: 3573: 3572: 3559:(3): 325–345. 3534: 3498: 3496: 3493: 3492: 3491: 3486: 3481: 3476: 3471: 3469:Ordinal number 3466: 3458: 3455: 3438: 3424: 3423: 3420: 3416: 3405: 3404: 3391: 3387: 3363: 3350:order topology 3341: 3340:Order topology 3338: 3337: 3336: 3333: 3326: 3320: 3308: 3305: 3304: 3303: 3300:order topology 3280: 3277: 3274: 3271: 3268: 3265: 3262: 3259: 3256: 3253: 3248: 3241: 3238: 3234: 3230: 3227: 3216: 3194: 3191: 3188: 3185: 3182: 3179: 3176: 3173: 3168: 3161: 3158: 3155: 3152: 3148: 3144: 3139: 3136: 3132: 3128: 3125: 3114: 3098: 3095: 3092: 3089: 3086: 3083: 3078: 3071: 3068: 3064: 3060: 3057: 3042: 3041: 3025: 3022: 3019: 3016: 3013: 3010: 3007: 3004: 3001: 2998: 2993: 2988: 2984: 2980: 2977: 2966: 2931: 2894: 2890: 2859: 2856: 2853: 2850: 2845: 2840: 2837: 2834: 2831: 2828: 2825: 2822: 2819: 2816: 2813: 2810: 2744: 2692: 2689: 2686: 2683: 2680: 2677: 2674: 2671: 2668: 2665: 2662: 2641: 2638: 2627: 2626: 2611: 2608: 2606: 2603: 2601: 2598: 2595: 2593: 2590: 2588: 2585: 2582: 2580: 2577: 2575: 2572: 2569: 2567: 2564: 2562: 2559: 2556: 2554: 2551: 2550: 2536: 2535: 2524: 2521: 2518: 2515: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2432:if and only if 2420: 2415: 2411: 2407: 2384:ordinal number 2377: 2376: 2361: 2358: 2356: 2353: 2350: 2348: 2345: 2342: 2340: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2303: 2287:This relation 2285: 2284: 2259: 2240: 2230: 2218:if and only if 2206:The following 2188: 2185: 2168: 2167: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2093: 2071: 2068: 2066: 2063: 2016:ordinal number 2006:Ordinal number 2004:Main article: 2001: 1998: 1963:ordinal number 1844:total ordering 1813: 1812: 1798: 1795: 1792: 1789: 1769: 1766: 1763: 1743: 1740: 1737: 1717: 1714: 1711: 1708: 1705: 1702: 1678: 1635: 1634: 1631: 1630: 1615: 1612: 1609: 1601: 1600: 1597: 1594: 1591: 1588: 1585: 1584: 1574: 1563: 1560: 1557: 1542: 1531: 1528: 1525: 1515: 1495: 1494: 1491: 1488: 1485: 1482: 1481: 1471: 1451: 1450: 1447: 1444: 1441: 1438: 1437: 1427: 1407: 1406: 1403: 1400: 1397: 1396: 1386: 1371: 1368: 1365: 1362: 1358: or  1355: 1352: 1349: 1346: 1345: 1342: 1339: 1336: 1332: 1329: 1326: 1325: 1315: 1300: 1297: 1293: 1290: 1287: 1284: 1283: 1280: 1277: 1274: 1271: 1264: 1261: 1258: 1255: 1254: 1244: 1229: 1226: 1223: 1220: 1216: 1213: 1212: 1209: 1206: 1203: 1200: 1198: 1188: 1177: 1174: 1171: 1168: 1148: 1145: 1142: 1130: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1081: 1080: 1070: 1060: 1055: 1050: 1045: 1040: 1030: 1020: 1015: 1009: 1008: 998: 988: 983: 978: 973: 968: 963: 953: 948: 942: 941: 931: 921: 916: 911: 906: 901: 896: 886: 881: 875: 874: 869: 864: 854: 844: 839: 834: 829: 819: 814: 808: 807: 802: 797: 787: 782: 772: 767: 762: 752: 747: 741: 740: 735: 730: 720: 710: 700: 695: 690: 680: 675: 669: 668: 663: 658: 648: 643: 638: 628: 618: 608: 603: 597: 596: 591: 586: 576: 571: 566: 556: 551: 546: 541: 533: 532: 527: 522: 512: 507: 502: 492: 482: 477: 472: 466: 465: 460: 455: 445: 440: 435: 430: 420: 410: 405: 399: 398: 393: 388: 378: 373: 368: 363: 353: 348: 343: 341:Total preorder 337: 336: 331: 326: 316: 311: 306: 301: 296: 286: 281: 275: 274: 269: 264: 254: 249: 244: 239: 234: 229: 224: 213: 212: 207: 202: 192: 187: 182: 177: 172: 167: 157: 149: 148: 146: 141: 139: 137: 135: 133: 130: 128: 126: 123: 122: 117: 112: 107: 102: 97: 92: 87: 82: 77: 70: 69: 67: 66: 59: 52: 44: 30: 29: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4336: 4325: 4322: 4320: 4317: 4315: 4312: 4311: 4309: 4294: 4291: 4289: 4286: 4282: 4279: 4278: 4277: 4274: 4270: 4267: 4265: 4262: 4260: 4257: 4256: 4255: 4252: 4248: 4245: 4244: 4243: 4242:Ordered field 4240: 4238: 4235: 4231: 4228: 4226: 4223: 4222: 4221: 4218: 4214: 4211: 4210: 4209: 4206: 4204: 4201: 4199: 4198:Hasse diagram 4196: 4194: 4191: 4189: 4186: 4182: 4179: 4178: 4177: 4176:Comparability 4174: 4172: 4169: 4167: 4164: 4162: 4159: 4158: 4156: 4152: 4144: 4141: 4139: 4136: 4134: 4131: 4129: 4126: 4125: 4124: 4121: 4119: 4116: 4112: 4109: 4107: 4104: 4103: 4102: 4099: 4097: 4093: 4090: 4089: 4087: 4084: 4080: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4048:Product order 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4025: 4023: 4021:Constructions 4019: 4013: 4009: 4005: 4002: 3998: 3995: 3993: 3990: 3988: 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3956: 3953: 3952: 3951: 3948: 3946: 3943: 3939: 3936: 3934: 3931: 3929: 3926: 3924: 3921: 3920: 3919: 3918:Partial order 3916: 3914: 3911: 3907: 3906:Join and meet 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3887: 3884: 3883: 3882: 3879: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3859: 3857: 3853: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3820: 3817: 3816: 3815: 3812: 3810: 3807: 3805: 3804:Antisymmetric 3802: 3801: 3799: 3795: 3789: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3724: 3722: 3718: 3712: 3711:Weak ordering 3709: 3707: 3704: 3702: 3699: 3697: 3696:Partial order 3694: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3673: 3671: 3667: 3661: 3658: 3656: 3653: 3651: 3648: 3647: 3644: 3640: 3633: 3628: 3626: 3621: 3619: 3614: 3613: 3610: 3601: 3595: 3591: 3587: 3586: 3581: 3577: 3576: 3567: 3562: 3558: 3554: 3553: 3548: 3544: 3538: 3535: 3530: 3526: 3522: 3518: 3514: 3510: 3503: 3500: 3494: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3464: 3461: 3460: 3456: 3454: 3452: 3448: 3444: 3436: 3431: 3429: 3421: 3417: 3414: 3410: 3409: 3408: 3389: 3375: 3367: 3364: 3361: 3358: 3357: 3356: 3353: 3351: 3347: 3339: 3334: 3331: 3327: 3324: 3321: 3318: 3317: 3316: 3314: 3306: 3301: 3295: 3275: 3269: 3263: 3260: 3257: 3254: 3251: 3239: 3236: 3232: 3228: 3217: 3214: 3209: 3189: 3186: 3183: 3180: 3177: 3174: 3171: 3159: 3156: 3153: 3150: 3146: 3142: 3137: 3134: 3130: 3126: 3115: 3093: 3090: 3087: 3084: 3081: 3069: 3066: 3062: 3058: 3047: 3046: 3045: 3020: 3017: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2986: 2982: 2978: 2967: 2960: 2959: 2958: 2892: 2873: 2854: 2851: 2848: 2832: 2826: 2823: 2820: 2811: 2808: 2778: 2774: 2726: 2724: 2720: 2716: 2712: 2708: 2687: 2684: 2681: 2675: 2669: 2666: 2663: 2651: 2650:open interval 2647: 2646:real interval 2639: 2637: 2632: 2629:This has the 2609: 2604: 2599: 2596: 2591: 2586: 2583: 2578: 2573: 2570: 2565: 2560: 2557: 2552: 2541: 2540: 2539: 2522: 2519: 2516: 2513: 2500: 2492: 2484: 2464: 2456: 2448: 2436: 2435: 2434: 2433: 2418: 2413: 2409: 2405: 2396: 2393: 2389: 2385: 2359: 2354: 2351: 2346: 2343: 2338: 2335: 2330: 2325: 2320: 2315: 2310: 2305: 2294: 2293: 2292: 2280: 2274: 2260: 2257: 2253: 2241: 2231: 2227: 2223: 2222: 2221: 2219: 2209: 2204: 2202: 2198: 2194: 2186: 2184: 2181: 2177: 2173: 2150: 2145: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2105: 2100: 2095: 2084: 2083: 2082: 2079: 2077: 2069: 2064: 2062: 2060: 2056: 2052: 2047: 2029: 2025: 2021: 2018:, called the 2017: 2013: 2007: 1999: 1997: 1995: 1991: 1986: 1984: 1980: 1976: 1972: 1968: 1965:, called the 1964: 1960: 1955: 1953: 1950: 1946: 1941: 1931: 1927: 1915: 1907: 1898: 1896: 1895:well ordering 1892: 1888: 1884: 1880: 1876: 1872: 1864: 1863:least element 1856: 1853: 1845: 1838: 1834: 1830: 1829:well-ordering 1826: 1822: 1811: 1796: 1793: 1790: 1787: 1767: 1764: 1761: 1741: 1738: 1735: 1715: 1712: 1709: 1706: 1703: 1700: 1692: 1676: 1669: 1637: 1636: 1613: 1610: 1607: 1592: 1589: 1586: 1575: 1561: 1558: 1555: 1543: 1529: 1526: 1523: 1516: 1489: 1486: 1483: 1472: 1445: 1442: 1439: 1428: 1401: 1387: 1369: 1366: 1363: 1353: 1350: 1347: 1337: 1330: 1327: 1316: 1298: 1291: 1288: 1278: 1275: 1272: 1262: 1259: 1256: 1245: 1227: 1224: 1221: 1207: 1204: 1201: 1189: 1175: 1169: 1166: 1146: 1143: 1140: 1132: 1131: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1092:Antisymmetric 1090: 1088: 1085: 1083: 1082: 1071: 1061: 1056: 1051: 1046: 1041: 1031: 1021: 1016: 1014: 1011: 1010: 999: 989: 984: 979: 974: 969: 964: 954: 949: 947: 944: 943: 932: 922: 917: 912: 907: 902: 897: 887: 882: 880: 877: 876: 870: 865: 855: 845: 840: 835: 830: 820: 815: 813: 810: 809: 803: 798: 788: 783: 773: 768: 763: 753: 748: 746: 743: 742: 736: 731: 721: 711: 701: 696: 691: 681: 676: 674: 671: 670: 664: 659: 649: 644: 639: 629: 619: 609: 604: 602: 601:Well-ordering 599: 598: 592: 587: 577: 572: 567: 557: 552: 547: 542: 539: 535: 534: 528: 523: 513: 508: 503: 493: 483: 478: 473: 471: 468: 467: 461: 456: 446: 441: 436: 431: 421: 411: 406: 404: 401: 400: 394: 389: 379: 374: 369: 364: 354: 349: 344: 342: 339: 338: 332: 327: 317: 312: 307: 302: 297: 287: 282: 280: 279:Partial order 277: 276: 270: 265: 255: 250: 245: 240: 235: 230: 225: 222: 215: 214: 208: 203: 193: 188: 183: 178: 173: 168: 158: 155: 151: 150: 147: 142: 140: 138: 136: 134: 131: 129: 127: 125: 124: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 86: 85:Antisymmetric 83: 81: 78: 76: 75: 72: 71: 65: 60: 58: 53: 51: 46: 42: 38: 34: 33: 19: 4314:Order theory 4085:& Orders 4063:Star product 4011: 3992:Well-founded 3945:Prefix order 3901:Distributive 3891:Complemented 3861:Foundational 3826:Completeness 3782:Zorn's lemma 3686:Cyclic order 3669:Key concepts 3639:Order theory 3584: 3556: 3550: 3543:Feferman, S. 3537: 3512: 3508: 3502: 3489:Directed set 3453:order type. 3432: 3426:A subset is 3425: 3406: 3366:limit points 3354: 3343: 3311:If a set is 3310: 3293: 3213:limit points 3207: 3043: 2789:ordering on 2776: 2772: 2727: 2643: 2628: 2537: 2397: 2391: 2387: 2378: 2286: 2278: 2272: 2255: 2251: 2225: 2205: 2190: 2179: 2175: 2169: 2080: 2073: 2048: 2014:to a unique 2009: 1987: 1961:to a unique 1956: 1949:well-founded 1942: 1899: 1894: 1891:well ordered 1890: 1886: 1883:wellordering 1882: 1878: 1874: 1870: 1832: 1828: 1824: 1818: 1665: 1102:Well-founded 600: 220:(Quasiorder) 95:Well-founded 4269:Riesz space 4230:Isomorphism 4106:Normal cone 4028:Composition 3962:Semilattice 3871:Homogeneous 3856:Equivalence 3706:Total order 3451:uncountable 3298:. With the 2762:. For each 2239:is negative 2051:cardinality 1926:upper bound 1879:wellordered 1821:mathematics 1122:Irreflexive 403:Total order 115:Irreflexive 4308:Categories 4237:Order type 4171:Cofinality 4012:Well-order 3987:Transitive 3876:Idempotent 3809:Asymmetric 3495:References 2631:order type 2172:order type 2020:order type 1967:order type 1945:non-strict 1943:If ≤ is a 1887:well order 1825:well-order 1693:: for all 1691:transitive 1127:Asymmetric 120:Asymmetric 37:Transitive 18:Well order 4288:Upper set 4225:Embedding 4161:Antichain 3982:Tolerance 3972:Symmetric 3967:Semiorder 3913:Reflexive 3831:Connected 3447:countable 3443:omega-one 3270:∪ 3264:ω 3255:≤ 3237:− 3229:− 3190:ω 3175:≤ 3157:− 3151:− 3143:− 3135:− 3127:− 3094:ω 3085:≤ 3067:− 3059:− 3021:… 2852:∈ 2676:⊆ 2610:… 2597:− 2584:− 2571:− 2558:− 2517:≤ 2410:≤ 2360:… 2352:− 2344:− 2336:− 2331:… 2151:… 2121:… 1875:wellorder 1852:non-empty 1604:not  1596:⇒ 1552:not  1487:∧ 1443:∨ 1341:⇒ 1331:≠ 1286:⇒ 1215:⇒ 1173:∅ 1170:≠ 1117:Reflexive 1112:Has meets 1107:Has joins 1097:Connected 1087:Symmetric 218:Preorder 145:reflexive 110:Reflexive 105:Has meets 100:Has joins 90:Connected 80:Symmetric 4083:Topology 3950:Preorder 3933:Eulerian 3896:Complete 3846:Directed 3836:Covering 3701:Preorder 3660:Category 3655:Glossary 3582:(1999). 3545:(1964). 3515:: 1–22. 3457:See also 2968:The set 2793:(unless 2201:negative 2197:integers 2187:Integers 2024:counting 1924:with an 1661:✗ 1648:✗ 1058:✗ 1053:✗ 1048:✗ 1043:✗ 1018:✗ 986:✗ 981:✗ 976:✗ 971:✗ 966:✗ 951:✗ 919:✗ 914:✗ 909:✗ 904:✗ 899:✗ 884:✗ 872:✗ 867:✗ 842:✗ 837:✗ 832:✗ 817:✗ 805:✗ 800:✗ 785:✗ 770:✗ 765:✗ 750:✗ 738:✗ 733:✗ 698:✗ 693:✗ 678:✗ 666:✗ 661:✗ 646:✗ 641:✗ 606:✗ 594:✗ 589:✗ 574:✗ 569:✗ 554:✗ 549:✗ 544:✗ 530:✗ 525:✗ 510:✗ 505:✗ 480:✗ 475:✗ 463:✗ 458:✗ 443:✗ 438:✗ 433:✗ 408:✗ 396:✗ 391:✗ 376:✗ 371:✗ 366:✗ 351:✗ 346:✗ 334:✗ 329:✗ 314:✗ 309:✗ 304:✗ 299:✗ 284:✗ 272:✗ 267:✗ 252:✗ 247:✗ 242:✗ 237:✗ 232:✗ 227:✗ 210:✗ 205:✗ 190:✗ 185:✗ 180:✗ 175:✗ 170:✗ 4188:Duality 4166:Cofinal 4154:Related 4133:Fréchet 4010:)  3886:Bounded 3881:Lattice 3854:)  3852:Partial 3720:Results 3691:Lattice 3529:3016456 3428:cofinal 3413:bounded 3402:⁠ 3377:⁠ 2943:⁠ 2921:⁠ 2905:⁠ 2880:⁠ 2801:). Let 2756:⁠ 2734:⁠ 2703:⁠ 2653:⁠ 1835:) on a 673:Lattice 4213:Subnet 4193:Filter 4143:Normed 4128:Banach 4094:& 4001:Better 3938:Strict 3928:Graded 3819:topics 3650:Topics 3596:  3527:  2770:, let 2282:| 2270:| 1893:, and 1881:, and 1861:has a 1855:subset 1498:exists 1454:exists 1410:exists 39:  4203:Ideal 4181:Graph 3977:Total 3955:Total 3841:Dense 3590:Wiley 2874:from 2640:Reals 2215:x R y 1842:is a 1780:then 143:Anti- 3794:list 3594:ISBN 3419:set. 3261:< 3187:< 3091:< 2457:< 2264:and 2245:and 1827:(or 1823:, a 1754:and 1159:and 4208:Net 4008:Pre 3561:doi 3517:doi 3513:224 3296:+ 1 2911:to 2878:to 2785:in 2766:in 2723:V=L 2707:ZFC 2228:= 0 1936:in 1885:or 1857:of 1846:on 1837:set 1831:or 1819:In 1728:if 1689:be 1399:min 4310:: 3557:56 3555:. 3549:. 3525:MR 3523:. 3511:. 3352:. 3332:). 2636:. 2475:or 2395:. 2390:+ 2254:≤ 2178:+ 1940:. 1928:a 1897:. 1889:, 1877:, 4006:( 4003:) 3999:( 3850:( 3797:) 3631:e 3624:t 3617:v 3602:. 3569:. 3563:: 3531:. 3519:: 3441:( 3439:1 3390:. 3386:N 3370:ω 3294:ω 3279:} 3276:1 3273:{ 3267:} 3258:n 3252:0 3247:| 3240:n 3233:2 3226:{ 3208:ω 3193:} 3184:n 3181:, 3178:m 3172:0 3167:| 3160:n 3154:m 3147:2 3138:n 3131:2 3124:{ 3113:. 3111:ω 3097:} 3088:n 3082:0 3077:| 3070:n 3063:2 3056:{ 3040:. 3038:≤ 3024:} 3018:, 3015:3 3012:, 3009:2 3006:, 3003:1 3000:= 2997:n 2992:| 2987:n 2983:/ 2979:1 2976:{ 2965:. 2963:≤ 2955:≤ 2951:X 2947:X 2930:Q 2917:X 2913:A 2909:X 2893:. 2889:Q 2876:A 2858:} 2855:X 2849:x 2844:| 2839:) 2836:) 2833:x 2830:( 2827:s 2824:, 2821:x 2818:( 2815:{ 2812:= 2809:A 2799:X 2795:x 2791:X 2787:≤ 2783:x 2779:) 2777:x 2775:( 2773:s 2768:X 2764:x 2760:≤ 2743:R 2730:X 2691:] 2688:1 2685:, 2682:0 2679:[ 2673:) 2670:1 2667:, 2664:0 2661:( 2634:ω 2605:4 2600:4 2592:3 2587:3 2579:2 2574:2 2566:1 2561:1 2553:0 2523:. 2520:y 2514:x 2505:| 2501:y 2497:| 2493:= 2489:| 2485:x 2481:| 2469:| 2465:y 2461:| 2453:| 2449:x 2445:| 2419:y 2414:z 2406:x 2392:ω 2388:ω 2380:R 2355:3 2347:2 2339:1 2326:4 2321:3 2316:2 2311:1 2306:0 2289:R 2279:y 2273:x 2266:y 2262:x 2256:y 2252:x 2247:y 2243:x 2237:y 2233:x 2226:x 2211:R 2180:ω 2176:ω 2146:9 2141:7 2136:5 2131:3 2126:1 2116:8 2111:6 2106:4 2101:2 2096:0 2044:β 2040:β 2036:n 2032:n 1938:S 1934:T 1922:T 1918:S 1910:s 1902:s 1867:S 1859:S 1848:S 1840:S 1797:. 1794:c 1791:R 1788:a 1768:c 1765:R 1762:b 1742:b 1739:R 1736:a 1716:, 1713:c 1710:, 1707:b 1704:, 1701:a 1677:R 1657:Y 1644:Y 1614:a 1611:R 1608:b 1593:b 1590:R 1587:a 1562:a 1559:R 1556:a 1530:a 1527:R 1524:a 1490:b 1484:a 1446:b 1440:a 1402:S 1370:a 1367:R 1364:b 1354:b 1351:R 1348:a 1338:b 1328:a 1299:b 1292:= 1289:a 1279:a 1276:R 1273:b 1263:b 1260:R 1257:a 1228:a 1225:R 1222:b 1208:b 1205:R 1202:a 1176:: 1167:S 1147:b 1144:, 1141:a 1078:Y 1068:Y 1038:Y 1028:Y 1006:Y 996:Y 961:Y 939:Y 929:Y 894:Y 862:Y 852:Y 827:Y 795:Y 780:Y 760:Y 728:Y 718:Y 708:Y 688:Y 656:Y 636:Y 626:Y 616:Y 584:Y 564:Y 520:Y 500:Y 490:Y 453:Y 428:Y 418:Y 386:Y 361:Y 324:Y 294:Y 262:Y 200:Y 165:Y 63:e 56:t 49:v 20:)

Index

Well order
Transitive
binary relations
v
t
e
Symmetric
Antisymmetric
Connected
Well-founded
Has joins
Has meets
Reflexive
Irreflexive
Asymmetric
Equivalence relation
Preorder (Quasiorder)
Partial order
Total preorder
Total order
Prewellordering
Well-quasi-ordering
Well-ordering
Lattice
Join-semilattice
Meet-semilattice
Strict partial order
Strict weak order
Strict total order
Symmetric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.